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A novel framework to estimate cognitive 
impairment via finger interaction with digital 
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Measuring cognitive function is essential for characterizing brain health and tracking cognitive decline in Alzheimer’s Disease and 
other neurodegenerative conditions. Current tools to accurately evaluate cognitive impairment typically rely on a battery of question
naires administered during clinical visits which is essential for the acquisition of repeated measurements in longitudinal studies. 
Previous studies have shown that the remote data collection of passively monitored daily interaction with personal digital devices 
can measure motor signs in the early stages of synucleinopathies, as well as facilitate longitudinal patient assessment in the real-world 
scenario with high patient compliance. This was achieved by the automatic discovery of patterns in the time series of keystroke dy
namics, i.e. the time required to press and release keys, by machine learning algorithms. In this work, our hypothesis is that the typing 
patterns generated from user-device interaction may reflect relevant features of the effects of cognitive impairment caused by neuro
degeneration. We use machine learning algorithms to estimate cognitive performance through the analysis of keystroke dynamic pat
terns that were extracted from mechanical and touchscreen keyboard use in a dataset of cognitively normal (n = 39, 51% male) and 
cognitively impaired subjects (n = 38, 60% male). These algorithms are trained and evaluated using a novel framework that integrates 
items from multiple neuropsychological and clinical scales into cognitive subdomains to generate a more holistic representation of 
multifaceted clinical signs. In our results, we see that these models based on typing input achieve moderate correlations with verbal 
memory, non-verbal memory and executive function subdomains [Spearman’s ρ between 0.54 (P < 0.001) and 0.42 (P < 0.001)] and a 
weak correlation with language/verbal skills [Spearman’s ρ 0.30 (P < 0.05)]. In addition, we observe a moderate correlation between 
our typing-based approach and the Total Montreal Cognitive Assessment score [Spearman’s ρ 0.48 (P < 0.001)]. Finally, we show that 
these machine learning models can perform better by using our subdomain framework that integrates the information from multiple 
neuropsychological scales as opposed to using the individual items that make up these scales. Our results support our hypothesis that 
typing patterns are able to reflect the effects of neurodegeneration in mild cognitive impairment and Alzheimer’s disease and that this 
new subdomain framework both helps the development of machine learning models and improves their interpretability.
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Graphical Abstract

Introduction
The complex and multifaceted nature of cognitive function
ing poses real challenges when evaluating cognitive decline 
in a clinical context.1 Currently, the main approach used to 
characterize and quantify an individuals’ cognitive function 
involves a combination of clinical examination and psycho
metric tools.2 These tools mainly comprised questionnaires 
and clinical scales that include a variety of items in the form 
of patient-reported outcomes, focused clinical observations 
and small standardized tasks targeting specific skills and 
processes related to cognition.3 In general, the interpret
ation of these tests emphasizes the overall scale score 
with limited consideration of cognitive subdomains, 
which may lead to overly simplified clinical conclusions.4

Moreover, the limited variety of test options and the over
lap between them increases the time required to complete 
an assessment and the likelihood that the testing does not 
provide a holistic view of cognitive state at the subdomain 
level.

Cognitive and neuropsychiatric assessments are typically 
administered during on-site clinical visits. While these clinic
al tools provide some level of standardization to the clinical 
evaluation, their administration and interpretation are sub
jective and dependent on provider experience and patient co
operation.5 In addition to their subjective and episodic 
nature, current standards for cognitive impairment screening 
and evaluation may have difficulty providing the level of 
granularity required to detect and quantify mild manifesta
tions of disease and changes in a patients’ cognitive state.6– 

8 Digital technologies have introduced an opportunity to 
tackle some of these limitations.9

The widespread use of personal electronics has positioned 
typing among the most frequent activities of our daily living. 
The current reliance on technology allows the possibility of le
veraging data from a users’ natural interaction with their devices 
to generate useful clinical insights in an unobtrusive manner.9

Passive monitoring maximizes a patients’ compliance10 as nat
ural interactions with electronic devices can provide quasi- 
continuous information. The current work aims to demonstrate 
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that changes in an individual’s keystroke patterns can be de
tected to indicate psychomotor and cognitive impairments.

Typing relies on the coordination and integration of mul
tiple psychomotor processes such as cognition sensory feed
back, as well as gross and fine motor control.11

Neurodegeneration in Alzheimer’s disease, even in mild cog
nitive impairment (MCI) or earlier stages directly affects psy
chomotor processing and impacts patients’ typing 
performance.12,13 Our previous work in Parkinson’s disease 
focused on the characterization of fine motor impairment 
through the analysis of content agnostic information derived 
from natural keystroke patterns.14–16 Other groups have also 
used this data source to train models to find associations with 
Parkinson’s disease rating scales,14–18 or detection of cogni
tive impairment.19,20 However, to our knowledge, no pub
lished work has developed models for cognitive impairment 
associated with specific cognitive subdomains or with graded 
level of severity. Because typing not only relies on fine motor 
control but also engages several cognitive faculties, such as 
memory and language, in this work, we show that passively 
collected keystroke patterns can be used not only to generate 
scores that approximate to cognitive status but that they can 
also identify impairments in specific cognitive subdomains.

Although digital biomarkers offer promise of more object
ive, quantitative and continuous ways to monitor symptoms, 
these solutions rely upon the processing of unique digital da
tasets using complex technologies that challenge traditional 
frameworks of clinical assessment and evidence generation 
within the healthcare ecosystem. In fact, interpreting the out
put of digital technologies has become a main barrier to their 
adoption for clinical care and clinical trials, in particular for 
those that rely on machine learning-based systems. Cognitive 
biomarkers should reflect the multifaceted nature of the phe
nomenon under study, allowing physicians and researchers 
to interpret its outcome at the subdomain level.

In this work, our main aim is to (i) introduce a framework 
to integrate multiple neuropsychological and clinical scales 
to generate cognitive subdomain representation of multifa
ceted clinical assessments. Our secondary aims are to 
(ii) demonstrate how machine learning models trained on 
passively collected keystroke patterns collected from 
touchscreen devices and mechanical keyboards generate 
scores significantly associated with cognitive impairment 
and (iii) demonstrate how the proposed cognitive subdomain 
framework leads to stronger associations between model 
outputs and cognitive subdomains than an alternative 

Figure 1 Schema of experimental framework. The proposed methodology uses machine learning algorithms to match keystroke patterns 
collected from participants interaction with mechanical and touchscreen keyboards to their cognitive state defined by standard 
neuropsychological assessments. The model is designed to ingest a feature vector derived from the raw data captured during semi-controlled 
typing tasks. During the training phase, the nQiCOG−SUB model uses a subdomain-level representation of the cognitive state of the patient as 
reference to connect the typing inputs to the level of impairment observed on each cognitive subdomain. For a given typing input, the model 
outputs a numeric estimate of the level of impairment for each of the cognitive subdomains under study. Information from clinical assessment or 
subdomain is only visible to the models during the training phase.
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approach to model training based on individual neuro
psychological and cognitive scale items (Fig. 1).

Materials and methods
Study population
This study was conducted as a natural history observational 
study assessing keyboard performance in 120 well- 
characterized participants currently enrolled in the Center 
for Neurodegeneration and Translational Neuroscience 
(CNTN), a collaborative enterprise between the Cleveland 
Clinic Lou Ruvo Center for Brain Health (CCLRCBH) and 
the University of Nevada Las Vegas.21 The CNTN enrols 
and characterizes this cohort of 120 individuals with early 
stage Alzheimer’s disease, Parkinson’s disease, and a cognitive
ly normal control group. A subset (N = 77) of these indivi
duals, with complete clinical assessments and typing tasks 
data, were included in the experiments presented in this article. 
Individuals undergo annual neuropsychological testing, struc
tural and molecular imaging, and clinical examination, includ
ing a typing assessment completed during the clinical visit. 
After each annual assessment the participant is assigned a diag
nosis based on consensus criteria. For this portion of the study 
we included all individuals who conducted typing assessments 
and were diagnosed with early stage cognitive impairment 
(MCI or dementia) or were considered cognitively normal, re
gardless of the presence or absence of Parkinson’s disease. For 
the purposes of modelling, participants were grouped into two 
main age- and gender-matched categories: 38 cognitively im
paired (comprised participants with MCI, MCI/Alzheimer’s 
disease, Alzheimer’s disease, Parkinson’s disease-MCI) and 
39 cognitively normal (comprised Parkinson’s disease partici
pants without cognitive impairment and healthy controls) (see 
Table 1). Initial diagnostic classifications were achieved using 
the National Institute on Aging and Alzheimer’s Association 
criteria; confirmation of diagnosis was achieved via a consen
sus conference of physicians and neuropsychologists. Amyloid 
PET scan status was known but did not influence the diagnosis. 
Cognitively impaired and normal participants showed no stat
istically significant differences in age and years of education 
according to the Kruskal–Wallis test. Similarly, no statistically 
significant differences in sex were found according to χ2 test.

Clinical outcomes module
As shown in Table 2, we compiled nine different cognitive 
subdomains based on the literature. Each clinical item in 
the cognitive assessment was weighted and mapped to one 
(or more) of these nine cognitive subdomains (Fig. 2). The 
cognitive assessments included in our subdomain mapping 
and analysis are detailed in Table 2.22–25 All items from 
the MoCA were included and were accessed in the following 
grouped format as established by the CCLRCBH Center of 
Biomedical Research Excellence (COBRE)’s clinical data 
management group: (i) visuospatial/executive score (sum of 
Trail Making Test B task, clock-drawing task, 3D cube 
task); (ii) Naming score (3-item confrontation naming task); 
(iii) Attention score (sum of the Sustained Attention task, 
Serial Subtraction task, Digits Forward task, Digits 
Backward task); (iv) Language score (sum of the Phonemic 
Fluency task, Repetition of 2 Syntactically Complex 
Sentences task); (v) Abstraction score (2-item verbal abstrac
tion task); (vi) Memory score (short-term memory recall 
task); and (vii) Orientation score (sum of Spatial orientation 
task, Temporal orientation task). Supplementary Table A1
contains a description of each item in each scale used, the ori
ginal scoring system for that item, and the subdomain(s) to 
which each item was mapped. Note that the subdomain com
position has been chosen a priori, uniquely based on existing 
literature, before attempting to train any type of predictive 
model. Information from clinical assessment or subdomain 
were used as training reference to the predictive models.

To compare cognitive subdomains, we converted clinical 
items from each scale into a standardized range of [0, 1], 
where 0 represents no impairment and 1 represents the high
est level of impairment (Fig. 3). Comparing clinical items on 
the same scale allows for a single directionality and a single 
severity range, both of which facilitate a direct comparison 
of cognitive domain severity. For some scales, the highest 
score for an item represents the highest level of impairment, 
whereas for other scales, it is the lowest score for an item 
which represents higher impairment. All scale items are con
verted such that a higher score represents more impairment, 
and therefore the subdomain scores also reflect this direc
tionality. Formally:

A clinical scale X is made up of multiple items xi such that 
X = x1 + … + xN. Each clinical scale item xi is transformed 
into norm(xi) by dividing the item by the maximum possible 
value of that item:

norm(xi) =
xi

(xi)
where norm(xi) ∈ [0, 1] (1) 

A subdomain score S is calculated by first summing all nor
malized clinical scale items norm(xi) from all clinical scales 
for which the literature suggests the item measures the sub
domain of impairment and then dividing by the number of 
valid items M mapped to that subdomain:

norm(S) =
􏽐

xi

M
where norm(S) ∈ [0, 1] (2) 

Table 1 Summary of clinical and demographic data

Cognitively 
impaired

Cognitively 
normal

Subjects # 38 39
Age, mean (std) 73.6 (6.4) 71.1 (7.3) P = 0.08a

Males # 23 20 P = 0.56b

Years of education, 
mean (std)

16.8 (2.7) 16.4 (2.1) P = 0.33a

MoCA, mean (std) 23.0 (3.9) 27.4 (2.0) P < 0.001a

aKruskal–Wallis test. 
bχ2 test.

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac194#supplementary-data
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where N = The number of items in a clinical scale, xi = One 
item in a clinical scale taking on an integer value in [0, (xi)], 
(xi) = The maximum value of a clinical scale item, norm(xi) = 
A normalized clinical scale item taking on a value in [0, 1], 
M = The number of valid items (from any number of clinical 
scales) that map to a single subdomain, norm(S) = A normal
ized subdomain score taking on a value in [0, 1].

Typing feature extraction
All subjects completed two tests in two paradigms: mechan
ical keyboard typing and smartphone touch keyboard typ
ing. The mechanical keyboard typing tests were completed 
on a standardized laptop (Lenovo 330-15IGM running 
Windows 10) and consisted of a copying task and a descrip
tion task. During the mechanical copying task 
(Taskmec_copy), subjects were asked to transcribe the 
Rainbow passage,26 a standard phonetically balanced ex
cerpt used in speech and language evaluations, using a stand
ard word processor or texting application. The subjects were 
given 5 min and instructed to type as they normally do at 
home and left free to correct typing mistakes only if they 
wanted to. During the description task (Taskmec_des), sub
jects were given 5 min to provide a free-typing description 
of the ‘Cookie Theft’ picture from the Boston Diagnostic 
Aphasia Examination27 on the mechanical keyboard 
(QWERTY Standard built in Lenovo 330-15IGM).

The smartphone typing tests were completed on a standar
dized mobile phone (LG K8 2018 running Android 7.1.2, 

Table 2 Definition of cognitive subdomains and contributing scales

Subdomain Scale items Definition

Verbal memory DRS2—Memory 
FAB—Lexical Fluency 
MoCA—Attention 
MoCA—Memory

The memory of words and/or other items regarding language.

Non-verbal memory DRS2—Memory 
FAB—Lexical Fluency 
MoCA—Attention 
MoCA—Memory 
MoCA—Orientation

The memory of abstractions, pictures, concepts, directions, songs, etc. Does not 
include the memory of words/language.

Visual motor ability FAB—Motor Series 
FAB—Conflicting Instructions 
FAB—Go-No-Go

Visuo-constructive function, the ability to copy and draw objects.

Language/verbal skills FAB—Lexical Fluency 
MoCA—Naming 
MoCA—Language

Include receptive and productive abilities and the ability to understand language, 
access semantic memory, to identify objects with a name, and to respond to 
verbal instructions with behavioural acts.

Executive function ADLQ—Self-Care 
DSR2—Initiation/Perseveration 
DRS2—Construction 
DRS2—Conceptualization 
FAB—Similarities 
FAB—Motor Series 
FAB—Conflicting Instructions 
FAB—Go-No-Go 
FAB—Prehension Behaviour 
MoCA—Visuospatial/Executive 
MoCA—Language 
MoCA—Abstraction

The set of processes that manifest control over other component cognitive 
abilities, such that cognitive resources can be effectively utilized to solve 
problems efficiently and plan for the future (reasoning and problem solving).

Perception DRS2—Conceptualization 
FAB—Prehension Behaviour

Sensory info is processed and integrated. It can be assessed in terms of ability to 
recognize objects, sounds, and also for the intactness of the perceptual fields.

Attention and concentration DSR2—Attention 
FAB—Conflicting Instructions 
FAB—Go-No-Go 
MoCA—Attention

Includes selective/sustained attention and divided attention, all of which have 
executive functioning components. Concentration falls under sustained 
attention.

Visuospatial function MoCA—Visuospatial/Executive 
MoCA—Orientation

Involves identification of a stimulus and its location.

Mental tracking/monitoring MoCA—Attention Involves being able to recite the alphabet, months backwards, and letter-number 
alternation.

Figure 2 Patient recruitment flowchart. A total of 77 
subjects were included in this study. Table 1 shows the summary of 
clinical and demographic data.
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using a touchscreen keyboard) and consisted of a copying 
task (Tasktch_copy) and a simulated text conversation 
(Tasktch_conv). During the touchscreen copying task, partici
pants were asked to transcribe the Grandfather passage,28 a 
standard phonetically balanced excerpt used in speech and 
language evaluations, in a dedicated touchscreen text view 
within the nQ Medical mobile phone application. During 
the simulated text conversation, the subjects answered a ser
ies of three questions in a dedicated touchscreen text view 
within the nQ Medical mobile phone application. The ques
tions were designed to gather information about partici
pants’ state and familiarity with smartphone use to 
evaluate potential correlations between their keystroke pat
terns, their present mood and self-reported skill level.

During each typing task, the nQ Medical data collection 
software captures augmented typing data, an input com
prised of multiple dimensions of finger-keyboard interac
tions including: 
• Keystroke data, defined as timing of press and release 

events in a typing stream. (Pkn
, Rkn

)
• Key location data, defined as the keyboard zone corre

sponding to each keystroke event (Zkn
)

• Tap precision data, defined as the relative distance of the 
tap centre to the target key centre (only applies to touchsc
reen data) (Ekn

= [Eknx
, Ekny

])
• Key type data, defined as the key-content category corre

sponding to each keystroke event (alphanumeric, space, 
enter, punctuation, modifier, emoji) (Tkn

)
• Assisted typing events, defined as a log of autocorrect and 

usage of word suggestions provided by the keyboard re
view tool and predictive engine (only applies to smart key
board data) (Ae, We)

• Typing session context, that may include details like ses
sion start time, the application hosting the typing session, 

characteristics of the device used to generate the typing 
session, metrics that monitor device state, etc. (C)

Augmented typing session data are assembled in nested 
variable-length arrays to generate raw keystroke tensors (SI):

SI = {PI
kn

, RI
kn

, ZI
kn

, EI
kn

, TI
kn

, AI
e, WI

e, CI} (3) 

where I represents the session or, in this case, the typing task 
identifier, kn refers to each unique keystroke within a typing 
stream, and e identifies smart keyboard events within a given 
session.

Different dimensions captured by raw keystroke tensors 
are combined to generate a series of primitive signals in the 
shape of enriched keystroke tensors. Enriched keystroke ten
sors are the result of successive transformations of the raw 
typing data structures. These transformations apply combi
nations of one or multiple data types to generate a series of 
primitive feature families that can be included in one of the 
following categories: 
• Keystroke: Content agnostic analysis of the timing infor

mation of combinations of pressing and releasing key
stroke events during a typing session.

• Language: Content agnostic analysis of text structure and 
complexity based on the length and distribution of words 
and the use of punctuation.

• Precision: This category gathers information about the use of 
backspace, the level of intervention of the autocorrect func
tion in smart keyboards, as well as finger precision for each 
keystroke when tapping on a touchscreen keyboard.

Primitive signals belonging to each of these feature fam
ilies are then reduced to a predefined size feature vector 
that will be used as input to the model.

Figure 3 Clinical Outcomes Module. This framework transforms the results from the standard neuropsychological assessments measured in 
the clinical scale space into a simplified representation of the multiscale information in the cognitive subdomain space. Based on their definition, 
clinical scale items are mapped to the corresponding subdomains of cognition that they measure, and their scores are normalized to generate a 
standardized and aggregated representation of the cognitive state of the individual.
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nQiCOG modelling
We used two type of machine learning models to generate 
scores able to predict cognitive status uniquely from the typ
ing features described above generated from the tasks involv
ing mechanical keyboards (Taskmec_copy, Taskmec_des) and 
touch screens (Tasktch_copy, Tasktch_conv). The first approach, 
nQiCOG−SUB Jointly Optimized model, attempts to learn all 
cognitive subdomains or clinical items at the same time by 
minimizing a joint loss, and it is based on extremely rando
mized trees (i.e. extra-trees).29 The second approach, 
nQiCOG−SUB Independently Optimized model, attempts to 
learn all cognitive subdomains or clinical items independent
ly and it is based on a Gradient Boosting Decision with tree 
gradient-based one-side sampling (GOSS) as implemented in 
the LightGBM package v. 3.1.1.30 While a plethora of other 
machine learning approaches exists, we selected these two as 
they have been shown to ac hieve excellent performance with 
problems involving feature engineering, like ours, as indi
cated by the number of citations (currently over 4000 per pa
per), and they allow to compare the predictive performance 
change when cognitive subdomains are used in lieu of clinical 
items.

The nQiCOG−SUB Jointly Optimized model is a way of 
solving a ‘multi-output problem’ that leverages the correl
ation between outcomes (i.e. cognitive subdomains or clinic
al items) to improve predictive performance. The main 
drawback of this approach is that outcomes that are not pre
dictable can drive down the performance of the model as a 
whole. The extra-trees model used in this work constructs 
an ensemble of decision trees. It applies the idea of random
ness to split the nodes to reduce the variance. Any split made 
is evaluated by calculating a mean squared error function. 
We utilize the class ‘ExtraTreeRegressor’ from the 
scikit-learn library v. 0.24.2 and build an ensemble of 100 
trees using a mean squared error loss function. We compen
sate for any missing feature by imputing the mean as the li
brary does not directly support missing values.

In the nQiCOG−SUB Independently Optimized model we 
solve the ‘multi-output problem’ by learning multiple targets 
independently, which requires a ‘cold-start’ for each of the 
outcomes, but avoiding well predictable outcomes to be 
negatively affected by less predictable ones. In addition, 
this approach allows us to include all of the subjects in the 
data set, as we do not have to discard subjects with missing 
clinical test data. We use the LightGBM package v. 3.1.1 
for tree GOSS with 100 estimators and mean squared error 
loss function as in the previous model. In this case, all missing 
values are automatically handled by the gradient boosting 
approach.

No feature scaling was performed as both methods are 
based on decision trees, which are not sensitive to change 
in variance in the data. To avoid any chance of overfitting, 
all models where trained and tested with 10 repetitions of 
a 3-fold cross-validation strategy. At each iteration, the or
der of the samples was randomized to allow for identifying 
different folds and no data sample coming from the same 

subject appeared in the training and testing fold at the 
same time. The default optimization and other hyperpara
meters provided by the LightGBM (v. 3.1.1)30 and 
Scikit-learn (v. 0.24.2).31 While this might not lead to the 
highest performing model, it would avoid any chance of 
overfitting induced by manually tuning hyperparameters 
without using a validation split.32 We used a supervised ap
proach for model development, i.e. the clinical subdomains 
labels were visible to the model only during the training 
phase.

In addition to the two nQiCOG−SUB models designed to 
tackle the ‘multi-output problem’, we also built the 
nQiCOG model following a ‘single-output problem’ design. 
The purpose of this model is to evaluate the performance 
of the multi-output approach versus the traditional single 
outcome design. This model is trained against the MoCA to
tal score following the exact same model architecture and 
train-test strategy as the nQiCOG−SUB Independently 
Optimized, i.e. a tree GOSS trained and tested using the 
same 10 repetitions of a 3-fold cross-validation strategy de
scribed previously and the default setup in the LightGBM 
(v. 3.1.1) implementation.30

Evaluation
All outputs of the models were evaluated using Pearson’s r 
and Spearman ρ to test both linear and monotonic relation
ships between the models’ predictions versus clinical items 
and the models’ predictions versus the cognitive subdomain 
developed. Apart from the correlations, coefficient of deter
mination (R2) and P-value representing its significance are 
calculated to analyze the performance of the regression mod
els. Mean squared error (mse) is also calculated to estimate 
the overall error in the model’s prediction.

As shown in Table 1, our data set does not seem to have 
clear confounders between the cognitive impaired and cogni
tive normal groups; however, we performed an additional 
confounder analysis on the scores generated by the trained 
models. For each score in each model, we estimated the 
measure of association to the clinical subdomain with a lin
ear regression model. Then, the same model was adjusted for 
age or sex. The change between the two is indicative of a po
tential confounding effect of the variables investigated and 
was computed as follows:

change =
|a0 − aadj|

|aadj|
(4) 

where a0 is the unadjusted coefficient and aadj is the adjusted 
one. Both coefficients have been computed using ordinary 
least square models.

Data availability statement
Anonymized data, not published in the article, will be shared 
on reasonable request from a qualified investigator.
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Results
In Table 3, we show the correlation of our two models with the 
proposed subdomains. The nQiCOG–SUB Independently 
Optimized model can predict the scores of four of the nine sub
domains with weak to moderate correlation in both Pearson’s r 
and Spearman’s ρ and a weak but statistically significant correl
ation with R2.33 Using the nQiCOG−SUB Jointly Optimized 
model, we find the same statistical significant correlation, al
though with slightly lower coefficient of correlation.

For the nQiCOG−SUB Independently Optimized model, R2, 
Spearman’s ρ and Pearson’s r provide the same results for 
statistical significance, with verbal memory, non-verbal 
memory, and executive function reporting P < 0.001, lan
guage/verbal skills reporting P < 0.05, and the remaining 
subdomains reporting no statistical significance.

In Fig. 4, we compare performance of nQiCOG−SUB 

Independently Optimized with a LightGBM-based architec
ture, when trained on the subdomains or on the individual 
clinical items that make up the subdomain. In all cases, using 
the subdomain as outcome for the model results in a better 
correlation than any of its constituent clinical items taken in
dividually, in some cases very significantly, such as with ex
ecutive function, where ρ = 0.42 for the subdomain but the 
best correlation in the individual clinical item space is ρ = 
0.24. Looking at the results of the ‘single-output’ reference, 
the nQiCOG, against the MoCA total score we observe a cor
relation of ρ = 0.48, which is slightly better than the best cor
relation achieved by the ‘multi-output’ models in the 
subdomain space (Fig. 5).

Evaluating sex and age as confounding factors for nQiCOG 

−SUB Independently Optimized when trained for predicting 
verbal memory, non-verbal memory, executive function 
and language/verbal skills, i.e. the four subdomains that 
can be predicted with a weak to moderate correlation,33

we see no confounding effect in the majority of cases using 
a change cut-off of 10%34 in the corrected versus 

uncorrected model. The only exceptions are the language/ 
verbal skills subdomain, where adjusting for age induces a 
change of 29%, and the non-verbal memory where adjusting 
for age induces a change of 13%. Confounder analysis re
sults are shown in Supplementary Tables A2 and A3.

To generate more insights on what typing information is 
selected by the models to estimate the cognitive subdomains, 
we perform a Shapley Additive Explanations (SHAP) ana
lysis35 using the independently optimized model 
(Supplementary Figs. A2 and A3). This allows us to estimate 
a relevance weight for each individual typing feature and 
each typing task. As individual typing features taken do 
not have an obvious interpretation, we have grouped them 
by type (i.e. precision, keystroke, language) and task. For 
each of the training iterations, we collect the SHAP values 
for the corresponding test folds. The collection process is re
peated for each subdomain.

Overall, we observe there is a statistically significant con
nection between user-device typing patterns and their cogni
tive state. In addition to the correlation observed between the 
nQiCOG model and the total MoCA score, the subdomain- 
based approach suggests that there are specific facets of cog
nitive performance that seem to be more clearly reflected in 
participants’ typing patterns. Looking at the significance 
and strength of the correlation between the multi-output 
typing-derived biomarkers and each corresponding subdo
main score, we see how verbal memory, non-verbal memory, 
executive function and language/verbal skills stood out, 
based on these results, as being more directly connected to 
the cognitive processes controlling how users type. Results 
appear to be independent of potential confounders, based 
on post-correction analysis. Feature importance analysis 
suggests that both mechanical and touchscreen typing inputs 
contribute similarly to the model predictions. The analysis 
based on feature families indicates language and keystroke 
features and more relevant than precision-based features in 
defining the model outputs.

Table 3 Correlation between subdomains and the predicted scores for nQiCOG−SUB Independently Optimized and 
nQiCOG−SUB Jointly Optimized models

nQiCOG−SUB Independently  
Optimized Model (LightGBM)

nQiCOG−SUB Jointly Optimized  
Model (Extra Trees)

Pearson’s r 
(significance)

Spearman’s ρ 
(significance) R2

Mean 
Squared 

Error 
(mse) n

Pearson’s r 
(significance)

Spearman’s ρ 
(significance) R2

Mean 
Squared 

Error 
(mse) n

Verbal memory 0.508 (***) 0.504 (***) 0.258 (***) 0.017 61 0.516 (***) 0.454 (***) 0.266 (***) 0.015 61
Non-verbal memory 0.458 (***) 0.545 (***) 0.210 (***) 0.017 63 0.451 (***) 0.446 (***) 0.203 (***) 0.013 61
Executive Function 0.469 (***) 0.424 (***) 0.220 (***) 0.003 61 0.336 (**) 0.301 (*) 0.113 (**) 0.003 61
Language/verbal skills 0.262 (*) 0.303 (*) 0.069 (*) 0.012 61 0.222 (n.s.) 0.205 (n.s.) 0.049 (n.s.) 0.012 61
Mental tracking/monitoring 0.001 (n.s.) 0.059 (n.s.) 0.000 (n.s.) 0.025 68 0.348 (**) 0.286 (*) 0.121 (**) 0.016 61
Visual motor ability 0.030 (n.s.) 0.050 (n.s.) 0.001 (n.s.) 0.023 70 0.046 (n.s.) 0.141 (n.s.) 0.002 (n.s.) 0.022 61
Perception −0.272 (*) −0.188 (n.s.) 0.074 (*) 0.001 70 0.065 (n.s.) 0.084 (n.s.) 0.004 (n.s.) 0.000 61
Attention and 

concentration
−0.181 (n.s.) −0.168 (n.s.) 0.033 (n.s.) 0.010 61 0.128 (n.s.) 0.152 (n.s.) 0.016 (n.s.) 0.010 61

Visuospatial function 0.218 (n.s.) 0.204 (n.s.) 0.048 (n.s.) 0.019 68 0.111 (n.s.) 0.164 (n.s.) 0.121 (**) 0.013 61

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac194#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac194#supplementary-data
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Discussion
We present a method that generates quantitative measures of 
cognitive status both at global and subdomain levels using 
the analysis of keystroke patterns extracted from computer 
and smartphone interactions. While other works have indi
cated that cognitive impairment impacts patients’ typing per
formance,12,13 this work is the first attempt to provide 
interpretable granular metrics directly extracted from the 
way our fingers interact with keyboards. Our findings open 
a pathway to the development of passive digital measure
ments that aim to provide more frequent, sensitive, and ac
cessible ways to evaluate patients’ state than current 
clinical standards.

Today, cognitive evaluations often require patients to 
undergo a battery of neuropsychological assessments. 
Research suggests that clinical scales for cognitive screening, 
may be either too broad to detect specific subdomain impair
ment for certain conditions or too focused on disease specific 

aspects and thus they do not present a true picture of overall 
functional impairment.36–40 In addition, apart from being 
time-consuming for the patient and clinician, current neuro
psychological testing results in a collection of assessments 
with a variety of independent and overlapping clinical items 
that are hard to interpret as a whole. One of the main contri
butions of this work is the introduction of the Clinical 
Outcomes Module, a tool that integrates the information 
from multiple standard assessments to generate an aggregate 
representation of the cognitive state that is presented at the 
subdomain level.

In the context of this work, this tool has allowed us to 
train our machine learning algorithms against a representa
tion of the cognitive function deconstructed into functional 
subdomains. This way, we have been able to run parallel op
timization of each of the typing-based algorithm outputs 
against different known aspects of cognitive decline. As dif
ferent phenotypes of impaired cognition may manifest differ
ently through typing, this approach based on multiple 

Figure 4 Correlation between cognition and keystroke dynamic models. In each panel, the nQiCOG−SUB Independently Optimized model 
is trained and tested using a 10 repetitions of a randomized 3-fold cross-validation strategy on the cognitive subdomain (yellow background) and 
the scale components that make up the subdomain (grey background). We calculated the Spearman’s ρ between the model and each of the 
subdomains for a set of subjects. The number of subjects varied for subdomains ranging from 61 in the verbal memory, 63 in non-verbal memory, 
61 in executive function and 61 in language/verbal skills. In all cases where the subdomains were composed of more than a single item, the model 
had higher correlations with subdomains compared with the individual items. Significance is noted as follows: P < 0.001 (***), P < 0.01 (**), P < 0.05 
(*), and P ≥ 0.05 (). In this case, the P-value can be interpreted as the probability of an uncorrelated system producing datasets that have a 
correlation coefficient at least as extreme as the one observed in this data set. These findings were replicated also when using the Jointly Optimized 
model as shown in Supplementary Fig. A1. Note that the subdomain composition has been chosen a priori, before attempting to train any type of 
predictive model. Subdomain with Spearman’s ρ < 0.3 are not shown as the model did not have enough predictive ability to draw any conclusion. 
Full results are shown in Table 3

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac194#supplementary-data
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outputs is able to provide a more detailed representation of 
the impact of neurodegeneration expressed in users’ typing 
by enhancing the specific patterns that reflect functional im
pairment at the subdomain level.

From a biomarker understanding perspective, this ap
proach has also allowed us to identify the aspects of cogni
tion that, based on the results of this work, seem to be 
more relevant to typing. By looking at the correlations of 
each typing-based biomarker against their corresponding 
subdomain score, we observe that executive function, lan
guage/verbal skills, verbal memory and non-verbal memory 
are the components of cognitive performance that appeared 
to be better captured by daily typing patterns.41 These four 
cases achieved a statistically significant correlations ranging 
from weak to moderate, which indicates that these models 
have the potential to be used to evaluate cognitive status re
motely on the patients’ digital devices. This could improve 
clinical research, clinical trials and routine care, as the cogni
tive status of the subject can be measured at a much higher 
frequency than what is normally carried out, at the subject’s 
home as opposed to the clinic and with minimal effort on the 
subject side, which can improve compliance compared with 
standard classic cognitive tests.

In all four cases, the typing-based outcome presented a 
stronger correlation against the clinical target when using 
the subdomain space versus the clinical scale item space for 
model optimization and evaluation. In addition to that, age 
and sex did not have a significant effect on the typing-based 
biomarkers. The only exceptions were sex for the language/ 
verbal skills subdomain and non-verbal memory; however, 
these effects were small for non-verbal memory and affected 

language/verbal skills likely due to the fact that the model 
only achieved a weak correlation. The correlation observed 
in the reference model, the ‘single-output’ nQiCOG, against 
the total MoCA score reveals a stronger relationship be
tween the output and the total MoCA score than the correl
ation observed for the best performing jointly optimized 
model predictions and their corresponding subdomain 
scores. This balance in performance could be due to the nat
ural correlation present between the overall MoCA score 
and the subdomain scores, as these are partially derived 
from MoCA components. The advantage of the subdomain 
decomposition is that it has the potential to reveal the aspects 
of cognition that seem to have a closer connection to typing. 
Still, the independently optimized model outperforms 
‘single-output’ nQiCOG for verbal and non-verbal memory 
subdomains.

In this work, we compared and contrasted two tree-based 
machine learning models, one jointly optimized and another 
independently optimized. This analysis allowed us to evalu
ate if the correlation between the subdomains was strong en
ough to facilitate the learning phase of the jointly optimized 
model. However, this did not seem to be the case likely be
cause some subdomains were not predictable from our fea
ture set, which negatively impacted the theoretical 
advantages of the joint optimization as a whole.

The Clinical Outcomes Module introduced in this work 
has multiple potential applications. Here we present a use 
case for supervised optimization of typing-based biomarkers 
against different subdomains of cognition. However, this 
framework could be useful to support multiple areas in bio
marker development other than algorithm building. For ex
ample, the Clinical Outcomes Module could be considered 
the first step towards the development of a tool to enhance 
clinical interpretability of cognitive testing as it provides an 
understanding of the weight or level of connection of differ
ent areas of cognition to a given biomarker. In addition, this 
tool could also be optimized to facilitate comparability and 
aggregation of different clinical data sets. Our view is that 
this approach would not be limited to cognitive characteriza
tion as it could be applied to other clinical domains such as 
behavioural or motor functions.

This study has some limitations. First, the features ex
tracted require the use of a touchscreen device and a laptop, 
which might exclude some subjects. In addition, subjects 
with high degree of cognitive impairment are unlikely to be 
able to operate these devices. However, this group of patients 
is typically not the focus of clinical trials or monitoring by 
neurologists. For this analysis, we had access to a subset of 
the clinical scales available in the COBRE study and, in 
some instances, some of these samples were incomplete 
(i.e. missing scale items, missing data, etc.), which limited 
the information available to apply the scale to subdomain 
transformation. For future iterations of this work, we will 
explore the possibility of including additional clinical scales 
and items to enhance the robustness and accuracy of the sub
domain score estimates. Finally, the relatively small size of 
our cohort does not allow the use of other machine learning 

Figure 5 Correlation between nQiCOG and MoCA. The 
figure includes a scatter of the MoCA and nQiCOG sample pairs, as 
well as the line of best fit representing the relationship between the 
model output and the clinical reference. The shaded area represents 
the 95% confidence interval for the regressed line. Pearson’s r = 
0.42***, Spearman’s ρ = 0.48*** and R2 = 0.18***. Significance is 
noted as follows: P < 0.001 (***), P < 0.01 (**) and P < 0.05 (*)
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techniques able to perform representation learning, such as 
deep neural networks. Additional data collection would 
also allow for independent testing in a separate cohort to fur
ther validate and test generalizability of the proposed meth
ods, as well as discarding any biases in this limited data set 
leading to inflated prediction accuracy. These limitations 
will be addressed in future work.

We presented an approach that allows for the development 
of computational biomarkers that are directly comparable to 
known aspects of cognitive performance and therefore direct
ly interpretable by expert neurologists. By relying on natural 
typing, this work leverages the frequency of users’ daily inter
actions with their personal devices to introduce an unobtru
sive and quasi-continuous approach to characterize 
cognitive decline in the MCI-Alzheimer’s disease spectrum. 
Future works will aim to translate our learnings from the ana
lysis of typing conducted within a semi-controlled environ
ment to the real-world setting. Passive, quantitative, 
continuous, and objective tools can support precision medi
cine for cognitive characterization offering physicians and pa
tients an accurate, frequent and less burdensome method of 
cognitive assessment and phenotyping.
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