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Abstract: Freshwater bodies and, consequently, drinking water treatment plants (DWTPs) sources
are increasingly facing toxic cyanobacterial blooms. Even though conventional treatment processes
including coagulation, flocculation, sedimentation, and filtration can control cyanobacteria and cell-
bound cyanotoxins, these processes may encounter challenges such as inefficient removal of dissolved
metabolites and cyanobacterial cell breakthrough. Furthermore, conventional treatment processes
may lead to the accumulation of cyanobacteria cells and cyanotoxins in sludge. Pre-oxidation can
enhance coagulation efficiency as it provides the first barrier against cyanobacteria and cyanotoxins
and it decreases cell accumulation in DWTP sludge. This critical review aims to: (i) evaluate the state
of the science of cyanobacteria and cyanotoxin management throughout DWTPs, as well as their
associated sludge, and (ii) develop a decision framework to manage cyanobacteria and cyanotoxins
in DWTPs and sludge. The review identified that lab-cultured-based pre-oxidation studies may not
represent the real bloom pre-oxidation efficacy. Moreover, the application of a common exposure unit
CT (residual concentration × contact time) provides a proper understanding of cyanobacteria pre-
oxidation efficiency. Recently, reported challenges on cyanobacterial survival and growth in sludge
alongside the cell lysis and cyanotoxin release raised health and technical concerns with regards to
sludge storage and sludge supernatant recycling to the head of DWTPs. According to the review,
oxidation has not been identified as a feasible option to handle cyanobacterial-laden sludge due to
low cell and cyanotoxin removal efficacy. Based on the reviewed literature, a decision framework is
proposed to manage cyanobacteria and cyanotoxins and their associated sludge in DWTPs.

Keywords: cyanobacteria; cyanotoxins; pre-oxidation; sludge; accumulation; management; water
treatment plant

Key Contribution: Cyanobacteria and cyanotoxins management in DWTPs is a triangular activity
that includes monitoring, treatment, and sludge handling and interrelation.

1. Introduction

A cyanobacterial bloom occurrence may result in metabolite (cyanotoxins and taste
and odor agents) production and release, which is considered a widespread problem in
drinking water resources around the world [1–10].

Conventional treatment processes, including coagulation, flocculation, sedimentation,
and filtration, are widely applied to remove cyanobacterial cells and cell-bound cyan-
otoxins [11–14]. However, conventional treatment processes may not be able to remove
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dissolved metabolites (e.g., cyanotoxins) efficiently [12,15–22]. Moreover, toxic cyanobac-
terial breakthrough has been reported in the effluent of conventional treatment processes
and even after post-oxidation [18]. Therefore, additional treatment such as oxidation or
powdered (PAC)/granular activated carbon (GAC) may be required to control dissolved
metabolites [23–26].

Pre-oxidation enhances cyanobacteria cell removal during the coagulation/sedimentation
process [27–34] and may decrease the cell breakthrough potential from the downflow
processes. However, it is reported that pre-oxidation may cause cyanobacteria cell damage
(decrease in cell viability) and cell-bound cyanotoxin release [35–37]. The level of cell
lysis/damage and cyanotoxin degradation/release following pre-oxidation depends on
the oxidation exposure (CT as residual concentration x contact time), and it is the driver to
find the best pre-oxidation practice against cyanobacteria and cyanotoxins [38,39].

Furthermore, conventional treatment processes cause cell accumulation in drink-
ing water treatment plants’ (DWTPs) sludge, even in DWTPs with low cyanobacterial
cell numbers in the intake water [13,18,40–44]. Several studies have demonstrated that
cyanobacterial cells could survive in the stored sludge and release cyanotoxins for up to
12 days [13,40,45–52]. Recent studies revealed a new challenge on the probability of ex-
tended survival time and even cyanobacterial growth during sludge storage [53–55]. Thus,
recycling the supernatant of stored cyanobacteria-laden sludge to the head of the DWTPs
can increase health-related concerns [55,56]. Such challenges highlight the importance of
the treatment and management of cyanobacteria-laden sludge [57–59].

The objectives of this study are to: (1) critically review shreds of evidence of the pre-
oxidation impact on the cultured-based and natural bloom studies, (2) perform a critical
review of the fate of cyanobacteria and cyanotoxins in conventional treatment plants’
sludge and during sludge storage, and (3) develop an operational decision framework to
determine the best practice to minimize risks associated with cyanobacteria and cyanotoxin
presence in DWTPs.

This critical review provides insight into the fate of cyanobacteria and their associ-
ated metabolites throughout DWTPs and their sludge; furthermore, a practical decision
framework to mitigate health and operational risks is developed.

2. Impact of Conventional Treatment on Cyanobacteria and Cyanotoxin Accumulation
in Sludge

Different studies have reported that conventional treatment processes can remove 62–
99% of the cyanobacterial cells in DWTPs [13,18,40–42,56]. It has been demonstrated that
potential toxic cyanobacterial cells such as Microcystis, Dolichospermum, and Aphanocapsa
can be removed using conventional processes [12,56,60,61].

The long-term monitoring of a high-risk DWTP (Lake Champlain—Quebec) during
cyanobacterial bloom seasons from 2008 to 2011 showed an extreme accumulation of
cyanobacteria cells (up to 107 cells/mL) and cyanotoxins (up to 60 µg/L microcystin-
LR (MC-LR)) in the sludge of the clarifier [12,18]. Monitoring of the same DWTP in
2017 showed that cyanobacteria cell accumulation in the sludge holding tank was up to
31-fold higher than taxonomic cell counts in the intake water [56]. An investigation of four
DWTPs in the Great Lakes (Ontario) with low cyanobacterial cell influx (<1000 cells/mL)
revealed that cyanobacterial cells and cyanotoxins accumulated in the sludge by up to
100 and 12 times higher than the raw water, respectively [44]. Zamyadi, et al. [57] reported
a 406% and 2600% cell count increase in the thickened and centrifuged sludge, respectively,
in a DWTP equipped with dissolved air flotation (DAF). A similar high accumulation was
also reported for the backwash of the direct filtration process [45].

Pre-oxidation may decrease the risk of cyanobacterial accumulation in the clarifier
and sludge [43]. Two DWTPs (the same source for intake water with low cyanobacte-
ria cells; maximum < 500 cells/mL) with chemically enhanced conventional treatment
processes were studied, but only one of the DWTPs was equipped by pre-ozonation [43].
Pre-ozonation (initial concentration: 0.3–0.8 mg/L, contact time: 6.3 min) decreased cell
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accumulation in the surface of the clarifier and filters by up to 1450 times as compared to
the DWTP without pre-ozonation. Accordingly, an up to 7 times lower cell accumulation
was observed in the sludge of the DWTP with pre-ozonation (Figure 1).
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Figure 1. Cyanobacterial accumulation in two low risk DWTPs (maximum influx cell: <500 cells/mL).
Only DWTP1 had pre-ozonation. The average values are from August to October 2011, adapted
from [43].

In many DWTPs, the supernatant of the stored sludge is recycled to the head of
the plant as the spent filter backwash water [45,57,62]. A full-scale study on a low-risk
DWTP (3400 cells/mL at the intake water) documented that cyanobacterial cell counts in
intake water increased by up to 43% after recycling the supernatant. Surprisingly, 80%
of the transferred cells from the supernatant water were viable [60]. A recent laboratory
investigation on intake water that contained 1 × 106 cells/mL of cultured M. aeruginosa
reported that although conventional treatment maintained the treated effluent parameters
at below WHO and USEPA guidelines, recycling of the sludge supernatant resulted in an
additional increase in cells and cyanotoxins levels in the influent by up to 7 × 104 cells/mL
and 0.26 µg/L MC-LR, respectively [63].

3. Pre-Oxidation Impact on Cyanobacteria Cells, Viability, and Cyanotoxins
3.1. Impact of Pre-Oxidation on Cyanobacteria Cell Counts

Cyanobacterial entry into DWTPs can be dampened by using pre-oxidation. Pre-
oxidation may cause cell lysis, damage, and cyanotoxin release and degradation. Several
studies were conducted to evaluate the pre-oxidation impact on cyanobacteria (e.g., cell
viability and lysis) and cyanotoxins (release and degradation). A recent study tried to
map the treatment barriers against cyanobacteria cells and cyanotoxins in drinking water
facilities [10]. The results showed that the efficiency of the multi-barrier approach depends
on the species present, metabolite concentration, and pre-oxidation dose [10]. Tables 1–4
summarize the literature on the impact of pre-oxidation on cyanobacteria (cultured-based
and natural blooms) for four common oxidants (chlorine, ozone, potassium permanganate,
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and hydrogen peroxide). Tables 1–4 show that CT (residual concentration × contact time)
is a main driver of cyanobacterial cell lysis, damage, cyanotoxin release, and degradation.

Although some studies have reported a reduction of more than 90% in taxonomic cell
counts following pre-oxidation in the lab-cultured cells, Zamyadi, et al. [35] reported a cell
reduction of 70% at high chlorine exposure (CT 296 mg min/L). Fan, et al. [37] showed
a limited impact of chlorine exposure (CT 104 mg min/L) on the taxonomic cell counts
of Microcystis aeruginosa (logarithmic phase). These observations might be related to the
cyanobacteria stage of life and agglomeration. Furthermore, comparing the taxonomic
cell count percentage in cultured-based and natural bloom studies demonstrates the lower
impact of pre-oxidation during natural blooms. Figure 2 exhibits a lower impact of pre-
ozonation (2 mg/L) on cell number reduction in a natural bloom in comparison with
lab-cultured cyanobacteria.
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Figure 2. Comparison of cell count reduction following ozonation (2 mg/L) in the (a) cultured
Dolichospermum, Microcystis [64], (b) Natural bloom [65].

Tables 1–4 and Figure 2 show that pre-oxidation, even at high CTs, may not be able to
cause complete cell lysis. Consequently, it is important to clarify how far the pre-oxidation
can cause viability loss and cyanotoxin release.
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Table 1. Summary of the literature on the impact of pre-chlorination on cyanobacteria (cultured and
natural blooms). HV: high viability, LV: low viability, DV: development stage, MA: maintenance stage.

Dominant
Cyanobacteria
(Cell Density)

Lab/Field Cl2 Dose
(mg/L)

Contact
Time (min)

CT (mg
min/L)

Cell Count
Reduction %

Cell
Viability % Toxins Reference Comment

Microcystis
(2 × 106

cells/mL)
Lab 1–2 - min. 15

max. 90 - min. 83
max. 18.4

99% degra-
dation [66]

Saline solution;
exact dose and

contact time
were not

provided; no
residual; CT
evaluation
weak; no

cell-bound

D. circinalis
(46,000 cells/mL) Lab 2

3 0–60 min. 1.8
max. 50 - min. 15%

0 for CT 5.8

>100%
release (CT

5.8)
>90 degra-
dation (CT

50)

[67]

River water;
using

fluorescein
diacetate (FDA)

for viability

Microcystis
(6 × 104 cells/mL

(2.5 × 105

cells/mL)
(5 × 105

cells/mL)

Lab
2

4.5
10

0–60 min. 3
max. 296.1 max. 76% -

>100%
release (CT

5)
>90 degra-
dation (CT

35)

[35]

River water,
ultrapure
water; no

viability was
reported

Microcystis
(7 × 105

cells/mL)
Lab 3, 4, 5 1, 2, 5, 10, 20,

30, 60
min. 2.8
max. 104 Limited impact <5% (CT 4)

25% degra-
dation (CT

2.8)
Complete
degrada-
tion (CT

104)

[37,68] Ultrapure
water

Microcystis
(2 × 106

cells/mL)
Lab

0.5
0.7
1.5

5, 11, 50, 60,
120

min. 2.5
max 180 - <5% (CT 180)

10% degra-
dation

40%
increase in

released

[69] Lake water; no
CT reported

Microcystis
(106 cells/mL)

Lab 0.2, 0.4, 0.8 Range 0–480 min. 12
max. 396 -

18% (at CT
12)

0.1% (at CT
396)

- [70]

Lake water; no
CT reported; no

cell count; no
toxin

Microcystis
(106 cells/mL)

Lab 1, 2, 4, 8 1, 2, 4, 8, 16,
32, 60

HV
min. 0.98
max. 361

LV
min. 0.98
max 200

-

HV
95–0% (CT >

15)
LV

44–0% (CT >
15)

HV
CT↑—

degradation↑
Complete
(CT 108)

CT↑—
degradation↑

> 50%
release CT

> 7
> 62%

degrada-
tion at

highest CT

[71]
Ultrapure
water; two

viability range

Microcystis
(1 × 106 cells/mL)

(2 × 106

cells/mL)

Lab 1, 2, 4, 8 1, 2, 4, 8, 16,
32, 60

DV
min. 3.8
max 356

MA
min 3.7
max 293

>95% reduction
(CT > 13.3)

>95% reduction
(CT > 11.9)

No cell
viability after

oxidation

Same as
cell death [72]

Ultrapure
water; two
stage of life

Microcystis-
Colony

(105 cells/mL)
Lab 0.3, 0.5, 1,

2
Range 0–20

min
min. 0.97
max. 52 -

Depends on
colony size

(0–95%)

Release
and degra-

dation
Colony-

size-
dependent

[73]

Lake water;
different colony

size; no cell
count

Natural bloom Field Cl2/DOC:
0.05–3.6 0–20 min min. 0.15

max 6.8
>80% increase

(CT 6.8)
88%

reduction

Complete
release

CT:4
(Cl2/DOC:

0.3)

[74]

No CT
provided; CT

estimated;
Chl-a measured
as cell damage

surrogate

Natural bloom
US: (3 × 106

cells/mL) -
Planktothrix

agardhii
Canada: (3 × 105

cells/mL) -
D. spiroides

Field
Cl2/DOC:
0.05, 025,

0.15, 0.1, 1
0–20 min

US
min 0.13
max 15

CA
min 0.3 max

21

- Complete
degradation

Complete
degrada-

tion
CT 11 (US),

CT 7.5
(CA)

[75]

No cell
viability; no cell

count; Chl-a
measured as
cell damage

surrogate
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Table 1. Cont.

Dominant
Cyanobacteria
(Cell Density)

Lab/Field Cl2 Dose
(mg/L)

Contact
Time (min)

CT (mg
min/L)

Cell Count
Reduction %

Cell
Viability % Toxins Reference Comment

Natural bloom
(3.3 × 105

cells/mL)
D. spiroides
(5.4 × 104

cells/mL)
M. aeruginosa

Field 0.2, 0.6 0–120 min min 0.15
max 3.84

min. CT 5%
decrease

max. CT 34%
decrease

min CT: 82%
max CT:55%

CT 3.84:
23%

decrease
[76]

Soft
chlorination
(low dose)

Natural bloom Field 2, 5 0–60 min min 1.14
max 14.8

min. < 5%
reduction

max. > 50%
reduction

-

2 mg, CT
10, >200%

release
5 mg, CT
20, >200%

release

[77] No cell viability

Table 2. Summary of the literature on the impact of pre-ozonation on the cyanobacteria (cultured
and natural bloom).

Dominant
Cyanobacteria
(Cell Density)

Lab/Field O3 Dose
(mg/L)

Contact
Time (min)

CT (mg
min/L)

Cell Count
Reduction %

Cell Viability
% (for CT) Toxins Reference Comment

Microcystis
(2 × 106 cells/mL)

Lab 1
2 - min. 12

max 16 - CT > 54,
complete loss

CT = 12
complete

degradation
[66]

Saline solution;
exact dose and

contact time
were not

provided; no
residual; CT

evaluation weak

Microcystis
(7 × 105 cells/mL)

Lab 2, 4, 6 5 min. < 0.22
max. 2.29 - Min CT: 50%

Max CT: 8.5%

>100%
release

(high CT)
50% degra-

dation

[37,68] Ultrapure water

Microcystis
D. flos-Aquae

(2.5 × 104 cells/mL
(1.5 × 105 cells/mL)

Lab 0.5, 2, 4 0.5–10 min. < 0.2
max. 22

32% for 2 mg/L
41% for 4 mg/L

Complete
loss,

CT < 0.2
- [64] Ultrapure; no

flow cytometry

Microcystis
(2 × 105 cells/mL)

Oscillatoria
(2800 cells/mL)

Lyngbya sp.
(1600 cells/mL)

Lab 0.63–5 24 h min. 0.5
max 17

100% reduction
(CT 0.5)

Complete
loss,

(CT > 2)
- [78]

River water;
Chl-a measured
as cell damage
surrogate; no

toxin
measurement

Microcystis,
Dolichospermum

(4 × 105 cells/mL)
Lab 0.5, 1, 2 5, 10 max. 2.5 >95% reduction Complete loss - [79]

Natural water;
no toxin

measurement

Microcystis,
Dolichospermum
(1.2 × 105–2 ×
106 cells/mL)

Field 2, 3, 4, 5 0–10 min. 1.4
max 16.8

75% reduction
(CT 16.8)

CT 3.2: 45%
CT 16.8: 15%

CT < 2,
more than

100%
release

[65] Natural bloom

Natural bloom
US (3 × 106 cells/mL)—

Planktothrix agardhii
CA (3 ×

105 cells/mL)—
D. spiroides

Field O3/DOC:
0.05—0.75 0–20

US-min. 1.5
max. 3

CA-min 0.2
max. 4.1

- -
>80%

degrada-
tion

CT 4.1(CA)
[75]

No cell viability;
no cell count;

Chl-a measured
as cell damage

surrogate

Natural bloom
(3.3 × 105 cells/mL)

D. spiroides
(5.4 × 104 cells/mL)

M. aeruginosa

Field 0.1, 0.3 0–10 max: 0.86 max CT 14%
decrease max CT: 79%

14% degra-
dation

No release
[76] Soft ozonation

(low dose)

Table 3. Summary of the literature on the impact of potassium permanganate on cyanobacteria
(cultured and natural bloom).

Dominant
Cyanobacteria
(Cell Density)

Lab/Field
KMnO4

Dose
(mg/L)

Contact
Time (h)

CT (mg
min/L)

Cell Count
Reduction %

Cell Viability
% (for CT) Toxins Reference Comment

Microcystis
(2 × 106 cells/mL)

Lab 1–2 - min. 15
max. 600 -

min. CT: 60%,
CT > 60:

complete loss

CT: 30
Complete
dissolved
degrada-

tion

[66]

Saline solution;
exact dose and

contact time
were not

provided; no
residual; CT

evaluation weak



Toxins 2022, 14, 410 7 of 24

Table 3. Cont.

Dominant
Cyanobacteria
(Cell Density)

Lab/Field
KMnO4

Dose
(mg/L)

Contact
Time (h)

CT (mg
min/L)

Cell Count
Reduction %

Cell Viability
% (for CT) Toxins Reference Comment

Microcystis
(7 × 105 cells/mL)

Lab 1, 5, 10 0.25–7 min. 28.7
max. 2642

14% cell num-
ber reduction

(CT max)
CT 2600:

complete loss

Release at
CT > 70

Complete
degrada-
tion CT

2600

[37,68] Ultrapure water

Microcystis,
Dolichospermum

(4 × 105 cells/mL)
Lab 2, 5 20 max. 456 10% reduction

at highest CT
CT 456: 18%

viability - [80]
Natural water;

no toxin
measurement

Microcystis
Bloom from Lake Erie

Lab
Field 0.5–8 1–5 min. 120

max. 1920 -
Cell, CT 1920:

2%
Bloom, CT
1920: 40%

- [81]

No cell count
and toxin; no
CT; CT with

lower doses was
unable to
decrease
viability

Table 4. Summary of the literature on the impact of hydrogen peroxide on cyanobacteria (cultured
and natural bloom). h: hour, d: day.

Dominant
Cyanobacteria
(Cell Density)

Lab/Field H2O2 Dose (mg/L) Contact Time CT (mg h/L) Cell Count
Reduction %

Cell Viability
% (for CT) Toxins Reference Comment

Microcystis
(3.7 × 106 cells/mL)

Lab 3.4, 17 4 h, 2 d, 4 d min. 13.6
max. 1632

min. CT: 8%
reduction

max. CT: 89%
reduction

K+ release
min. CT: 81%
max. CT: 5%

CT > 816
26% MC
release

[82]

K release as a
surrogate for cell
damage; no CT

provided

Microcystis
(7 × 105 cells/mL)

Lab 10.2, 51, 102 0.1 d–7 h min. 189.3
max. 17,678 Limited change min. CT: 86%

CT 4770: 7%

No release,
CT 364:
>95%

degradation
[37,68] Ultrapure water

Pseudanabaena
(107 cells/mL) Lab 3, 5, 10, 20 2 h, 4 h, 8 h, 2

d, 4 d
min. 6

max. 960

min. CT: No
change

max. CT: >90%
reduction

CT 120: 2% - [83] Reservoir water;
no toxins

Microcystis
(6 × 106 cells/mL)

Lab 1–15 0.1 d–7 d min. 2.4
max. 2520

CT 1680: 95%
reduction

max. CT
3% viability

CT > 1512,
82%

degradation
[84] Culture; no CT

provided

Microcystis,
Dolichospermum

(4 × 105 cells/mL)
Lab 5, 10 6 h min. 13.9

max. 96.1 <5% reduction min. CT: 39%
max. CT: 30% - [79] Natural water

Natural bloom:
(3.3 × 105 Cells/mL)

D. spiroides:
(5.43 × 104

cells/mL)
M. aeruginosa

Field 10 6 h–1 d min. 47
max. 140.7

max. CT 52%
reduction

min. CT: 60%
max. CT: 40%

No release
max.; 15%

MC
degradation

[76] -

3.2. Chlorination

Figure 3 is a reconstructed graph from the cell viability results following pre-chlorination
based on the oxidant exposure (CT). Parameters such as background water quality (e.g.,
pH and dissolved organic carbon (DOC)) which have an impact on the oxidant demand are
included in the CT concept. Therefore, a comparable level of damage should be found by
comparing cell viability results using oxidant exposure (CT) for lab-cultured and natural
blooms. Figure 3 demonstrates that at the same level of chlorine exposure, the natural
bloom is more resistant to pre-chlorination as compared to lab-cultured cells. In other
words, lab-cultured studies are not representative of natural bloom pre-chlorination. Fan,
et al. [73] reported that the level of cell damage and toxin release depends on the colony
size. Figure 3b shows the cultured-based studies fitted with the Chick–Watson equation.
Although the results from different unicellular studies are aligned with each other, the
colonial Microcystis chlorination shows a different cell damage rate. This could be related
to the agglomeration of cyanobacteria cells and increasing the mucilage sheath in colonial
cyanobacteria [73]. Despite using the CT calculation to compare the results, Figure 3c
demonstrates different cell damage rates for each study of real bloom after chlorination,
and the same level of chlorine exposure may not result in the same level of cell damage.
Figure 3c shows that cyanobacterial bloom oxidation could be site- and bloom-specific,
depending on the agglomeration, cyanobacteria (bloom) stage of life, and metabolic func-
tions. Higher cell damage following pre-oxidation (especially with higher CTs) can lead to
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higher cyanotoxin release, which cannot be removed during conventional treatment. Soft
chlorination showed cell damage by up to 45% and total microcystin (MC) degraded by
up to 23%, while no cyanotoxin release was observed [76]. In addition, soft chlorination
may cause lower disinfection by-products as a lower oxidant concentration is used in
this approach.

1 
 

 
Figure 3. (a) Comparison of the cell viability results of cultured-based Microcystis and Dolichosper-
mum [37,68,71,72,85] and natural cyanobacterial blooms [74,76,77] following pre-chlorination. [74]
used Chl-a as a proxy for cell viability. (b) Cell viability experimental data and fitted model of unicel-
lular [37,68,71,72,85] and colonial Microcystis [73] following pre-chlorination. (c) Cell viability experi-
mental data and fitted model for three different cyanobacterial blooms following pre-chlorination.

3.3. Ozonation

Figure 4 shows the impact of pre-ozonation on cyanobacteria cell damage for cultured-
based and natural bloom studies. Figure 4a demonstrates lower cyanobacteria cell damage
for a specific ozone exposure for natural blooms as compared to the lab-cultured cyanobac-
teria. The model fit results (Figure 4b) show a higher cell damage rate for the lab-cultured
cyanobacteria in comparison to the natural bloom. As per soft oxidation, soft pre-ozonation
was reported to cause up to 21% of cell damage and 14% of MC degradation, while no MC
release was observed simultaneously [76]. Such an observation implies the effectiveness of
soft pre-ozonation to damage the cells without cyanotoxin release.

3.4. Potassium Permengeanate

Figure 5 demonstrates that the viability loss of the lab-cultured studies harvested in
the logarithmic phase is lower than those that harvested in the stationary phase. This
observation implies the impact of the cyanobacteria stage of life on pre-oxidation efficiency.
A comparison of the cell viability results of the lab-cultured with natural bloom studies
following potassium permanganate pre-oxidation confirms the higher resistance of real
cyanobacterial bloom cells (Figure 5). In addition, the degradation rate constant of dissolved
MCs was higher than that released by MCs for high potassium permanganate doses [36,81].
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Figure 5. (a) Comparison of the cell viability results of cultured-based and natural bloom samples
for different studies following potassium permanganate peroxidation: Microcystis [37,68], Micro-
cystis, Dolichospermum [66,79], and natural blooms [76]. (b) Comparison of the cell viability results
of cultured-based samples (Microcystis) following potassium permanganate peroxidation adapted
from [81]. (c) Comparison of the cell viability results of natural bloom samples (from Lake Erie)
adapted from [81].

3.5. Hydrogen Peroxide

Matthijs, et al. [86] reported that a concentration of 2 mg/L H2O2 was able to de-
crease cyanobacteria (natural bloom) by two logs within 3 days. In addition, cyanobacteria
remained at a low abundance level for 7 weeks following H2O2 addition. Figure 6 demon-
strates that natural blooms are more resistant to H2O2 than the lab-cultured cyanobacteria,
as observed for other oxidants (Figures 2–5). Foo, et al. [87] reported that the impact of
H2O2 on cyanobacteria is dependent on the residual concentration (C) and contact time
(T). In addition, the authors concluded that toxic and non-toxic Microcystis aeruginosa are
impacted by H2O2 with the same trend. Zhou, et al. [84] stated that a low dose of H2O2
(<5 mg/L) would have a low and recoverable impact on the lab-cultured Microcystis. On
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the other hand, the higher the H2O2 dose (>8 mg/L), the higher necrosis, cell death, and
consequent cyanotoxin release. A medium dosage of H2O2 with low to medium contact
time can activate apoptosis-like programmed cell death (AL-PCD) [84]. The cellular energy
required for AL-PCD is provided from the transcriptional, biochemical, and structural
changes. Zhou, et al. [84] documented the maximum cell death with low MC production
by AL-PCD activation. Zamyadi, et al. [17] studied the impact of H2O2 on blooms and lab-
cultured cyanobacteria (Microcystis aeruginosa). The results highlighted a delayed impact
of H2O2 on cyanobacteria cells after complete depletion of H2O2 during stagnation (up to
one week) [17]. Chl-a and phycocyanin (PC) fluorescence were significantly declined by
93% and 74% in natural bloom and lab-cultured samples, respectively. Additionally, the
lab-cultured results revealed delayed MC release during stagnation [17].

Toxins 2022, 14, x FOR PEER REVIEW 13 of 30 
 

 

93% and 74% in natural bloom and lab-cultured samples, respectively. Additionally, the 
lab-cultured results revealed delayed MC release during stagnation [17]. 

Besides the current oxidants, peracetic acid (PAA) has been used in wastewater treat-
ment facilities as a disinfection alternative for chlorine [88]. Almuhtaram and Hofmann 
[89] studied the impact of PAA and PAA/UV on cyanobacteria and cyanotoxin removal. 
The results show that 10 mg/L of PAA with 60 min contact time was able to degrade MC-
LR by 80% (3.46 M−1 s−1 lower reaction rate as compared to HOCl 1.2 × 102 M−1s−1). In addi-
tion, the results elaborated that PAA alone can barely remove cyanobacteria, except at a 
high dose (10 mg/L) and with lower cyanobacterial cell counts (105 cells/mL). 

 
Figure 6. Comparison of the cell viability results of cultured-based cyanobacterial cells (Microcystis, 
Pseudanabaena) [37,68,83,84] and natural bloom cells [76,86] after oxidation by hydrogen peroxide. 

3.6. Considerations on the Impact of Pre-Oxidation on Downflow Processes 
The impact of pre-oxidation on downflow processes should also be considered as it 

may influence the removal of cyanobacteria by coagulation, flocculation, and sedimenta-
tion. Previous studies have been reported that pre-oxidation has a positive impact on en-
hancing cyanobacterial removal through coagulation/flocculation and sedimentation 
[27,28,31,32,34,90]. Pre-oxidation can cause morphological deformation [82] and changes 
in the surface charge of the cells, leading to increased cell removal efficiency during coag-
ulation/flocculation [37]. 

KMnO4 increases the binding potential to the coagulant by oxidizing organic matter 
(extracellular and released cell-bound) to lower molecular weight fractions, as well as 
forming colloids (by MnO2) to be adsorbed to the cyanobacterial cells and forming larger 
flocs [32,34,81]. Xie, et al. [27] reported that KMnO4 exposure (CT: 10 mg min/L, estimated) 
could increase cyanobacteria cell removal by 22% during coagulation/flocculation. In ad-
dition, pre-ozonation with CT: 4, 10, and 20 mg min/L (estimated) led to an increase in 
cyanobacteria cell removal during coagulation by 14%, 20%, and 24%, respectively [27]. 
Cyanobacteria cell removal during coagulation was improved in a full-scale DWTP 
equipped by pre-ozonation systems (CT: 2.52–3.78 mg min/L (estimated)) [43]. Pre-oxida-
tion may cause metabolite release (organic matter and cell-bound cyanotoxins) following 
cyanobacterial cell damage. Besides the challenge to remove dissolved cyanotoxins, coag-
ulation efficiency can be compromised by high algal organic matter release following pre-
oxidation. Xie, et al. [27] showed that due to pre-ozonation with CT > 4 mg min/L (esti-
mated), cyanobacteria cell viability was completely degraded, and consequently, organic 
matter concertation increased. Further, Barešová, et al. [91] demonstrated that pre-ozona-
tion (CT < 40 mg min/L (estimated)) could interrupt the coagulation (Al/Fe-based) 

0

20

40

60

80

100

0 100 200 300 400 500

Ce
ll 

Vi
ab

ili
ty

 %

CT (mg.h/L)

Culture-Based Natural Bloom

Figure 6. Comparison of the cell viability results of cultured-based cyanobacterial cells (Microcystis,
Pseudanabaena) [37,68,83,84] and natural bloom cells [76,86] after oxidation by hydrogen peroxide.

Besides the current oxidants, peracetic acid (PAA) has been used in wastewater treat-
ment facilities as a disinfection alternative for chlorine [88]. Almuhtaram and Hofmann [89]
studied the impact of PAA and PAA/UV on cyanobacteria and cyanotoxin removal. The
results show that 10 mg/L of PAA with 60 min contact time was able to degrade MC-LR
by 80% (3.46 M−1 s−1 lower reaction rate as compared to HOCl 1.2 × 102 M−1s−1). In
addition, the results elaborated that PAA alone can barely remove cyanobacteria, except at
a high dose (10 mg/L) and with lower cyanobacterial cell counts (105 cells/mL).

3.6. Considerations on the Impact of Pre-Oxidation on Downflow Processes

The impact of pre-oxidation on downflow processes should also be considered as it
may influence the removal of cyanobacteria by coagulation, flocculation, and sedimen-
tation. Previous studies have been reported that pre-oxidation has a positive impact
on enhancing cyanobacterial removal through coagulation/flocculation and sedimen-
tation [27,28,31,32,34,90]. Pre-oxidation can cause morphological deformation [82] and
changes in the surface charge of the cells, leading to increased cell removal efficiency
during coagulation/flocculation [37].

KMnO4 increases the binding potential to the coagulant by oxidizing organic matter
(extracellular and released cell-bound) to lower molecular weight fractions, as well as
forming colloids (by MnO2) to be adsorbed to the cyanobacterial cells and forming larger
flocs [32,34,81]. Xie, et al. [27] reported that KMnO4 exposure (CT: 10 mg min/L, esti-
mated) could increase cyanobacteria cell removal by 22% during coagulation/flocculation.
In addition, pre-ozonation with CT: 4, 10, and 20 mg min/L (estimated) led to an in-
crease in cyanobacteria cell removal during coagulation by 14%, 20%, and 24%, respec-
tively [27]. Cyanobacteria cell removal during coagulation was improved in a full-scale
DWTP equipped by pre-ozonation systems (CT: 2.52–3.78 mg min/L (estimated)) [43].
Pre-oxidation may cause metabolite release (organic matter and cell-bound cyanotoxins)
following cyanobacterial cell damage. Besides the challenge to remove dissolved cyan-
otoxins, coagulation efficiency can be compromised by high algal organic matter release
following pre-oxidation. Xie, et al. [27] showed that due to pre-ozonation with CT > 4 mg
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min/L (estimated), cyanobacteria cell viability was completely degraded, and consequently,
organic matter concertation increased. Further, Barešová, et al. [91] demonstrated that pre-
ozonation (CT < 40 mg min/L (estimated)) could interrupt the coagulation (Al/Fe-based)
efficiency of DOC removal (in comparison with higher CTs) due to the degradation of high
molecular weight algal organic matter to low molecular weight compounds.

It is noteworthy to recall that H2O2 can have a delayed impact on cyanobacteria
and, potentially, cyanotoxin release after complete degradation of the oxidant [17]. This
delayed cyanotoxin release should be considered in the downstream processes, as well as
in sludge handling.

The oxidant exposure must be adjusted to maximize cell damage and cyanobacteria
cell removal (directly or after coagulation) and minimize cyanotoxin release and cell
accumulation in the sludge, simultaneously. Figure 7 summarizes the pre-oxidation (soft
and normal) advantages/disadvantages of cyanobacteria and cyanotoxins during water
treatment. In fact, soft pre-oxidation (low CT of Cl2 and O3) can (1) partially degrade
cyanobacteria cells, (2) cause low cyanotoxin release, (3) improve coagulation efficiency to
remove cells, and (4) cause low cell accumulation in the downflow processes.
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4. Sludge Storage, Oxidation, and Handling

Cyanobacteria and cyanotoxins (cell-bound) accumulate in the sludge of clarifiers
throughout the flocculation/coagulation/sedimentation processes. This cyanobacteria-
laden sludge remains in the sludge holding tank before disposal. In addition, potential
options to treat cyanobacteria-laden sludge need to be considered. Furthermore, safe
(healthy, both operationally and environmentally) cyanobacteria-laden sludge handling
approaches are required.

4.1. Fate of Cyanobacteria and Cyanotoxins during Sludge Storage

Several studies (Table 5) demonstrated that cyanobacteria cells could stay viable within
2–12 days in the stored sludge. The loss of viability and consequent cyanotoxin release caused an
increase in dissolved cyanotoxin concentrations during sludge storage [13,40,45–52]. However,
dissolved cyanotoxins in stored sludge can be adsorbed onto the remained PAC injected
into the intake water [56], flocs [50] or it can be biodegraded by cyanotoxin degrader
species [58,92].

Besides cell survival potential during sludge storage, some studies have hypothesized
that cyanobacteria can also grow in stored sludge [53–55]. Water Research Foundation
(WRF) and Water Research Australia [53] documented that concentrations of DOC, MC-
LR, and cylindrospermopsin in stored coagulated sludge contained M. aeruginosa and C.
raciborskii exceeded the expected concentrations by 4–10-fold based on the cell quota (if
all cell-bound metabolites are released) within 7–16 days, respectively. Dreyfus, et al. [55]
studied the fate of stored sludge that contained cultured M. aeruginosa, D. circinale, and C.
raciborskii within 18 days. The authors demonstrated that DOC, MC-LR, MC-LA, and CYN
concentrations increased by up to 5-, 2.2-, 1.2-, and 2.5-fold during storage, respectively.
Another investigation on stored sludge containing cultured M. aeruginosa and D. circinale
reported that taxonomic cell counts increased by up to 4.2-fold in sludge stored in a lagoon
within 7 days [54]. The authors also reported that the concentrations of cyanobacterial
metabolites increased by up to 5 times in the sludge supernatant within 20 days. In the
worst case, cyanobacteria could survive by up to 35 days in the stored sludge [54]. Despite
the important findings of the previous studies on cell survival and metabolite release during
sludge storage, cyanobacterial cell growth during sludge storage is yet to be explored in
detail. In these studies, cell and metabolite increase during sludge storage might be due to
the cell growth or to either the (1) underestimation of cell quota, (2) increase of metabolite
production per cell during storage, or (3) additional cell settling from the supernatant to
the sludge during the storage [53–55].

Our recent study on the cyanobacteria-laden sludge of a DWTP documented cell
depletion, survival, and growth in different sludge samples [58]. Cell growth was observed
in four out of eight sludge samples (different sampling dates) stored in the dark for
7–38 days. In the worst-case scenario, taxonomic cell counts increased from 2.7 × 106 to
5.3 × 106 cells/mL within 16 days (96% cell growth). Cell growth was also confirmed by
increasing cyanobacterial biomarkers such as the “Pentose phosphate pathway” marker,
which is responsible for the heterotrophic growth of cyanobacteria [93].

Table 5. Impact of sludge storage on cyanobacteria and cyanotoxins. STX: saxitoxin, PACl: colyalu-
minium chloride, CTSAC: Chitosan-aluminum chloride.

Initial Characteristics of
Cyanobacteria/Coagulation/

Sedimentation Process

Initial Condition of
Cyanobacteria and
Cyanotoxins in the

Stored Sludge

Observation Reference

Cultured M. aeruginosa
(1 × 106 cells/mL)

(Jar test, 70 mg/L alum)

8 × 106 cells/mL,
2500 µg MC-LR/L

Cell survival (2 days); cell lysis
and cyanotoxin release (2 days);

degradation of dissolved
cyanotoxins (8–10 days)

[13]
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Table 5. Cont.

Initial Characteristics of
Cyanobacteria/Coagulation/

Sedimentation Process

Initial Condition of
Cyanobacteria and
Cyanotoxins in the

Stored Sludge

Observation Reference

Cultured D. circinale and C. raciborskii
(1.0 × 105 cells/mL)

(Jar test, 40 mg/L alum)

Sludge supernatant:
D. circinale:

1300 cells/mL
STX: 0.4 µg/L

Cells remained viable up to 7
days; cell lysis and toxin release

within 3 days
[45]

Cultured M. aeruginosa
(2 × 106 cells/mL)

(Jar test, 15 mg/L AlCl3)
18 µg/L dissolved MCs Cell lysis and cyanotoxin release

after 6 days [40]

Cultured M. aeruginosa
(1 × 106 cells/mL)

(Jar test, 4 mg/L PACl-optimum
dose)

20 µg/L dissolved MCs Cell lysis and cyanotoxin release
within 6–12 days [46]

Microcystis flos aquae
(5.2 × 105 cells/mL)

(Jar test, 100 mg/L alum)

Sludge supernatant:
MC-RR, MC-YR: < 2 µg/L

Cell survival (5 days); cell lysis
and cyanotoxin release (5–10

days); degradation of dissolved
cyanotoxins (up to 15 days)

[62]

Cultured M. aeruginosa
(1 × 106 cells/mL)

(Jar test, 15 mg/L ALCl3, 4 mg/L
PACl)

−0.9 bar vacuum pressure for
dewatering the sludge

23 µg/L total MCs

Cell lysis and cyanotoxin release
within 4–6 days; optimum sludge
storage time for AlCl3 and PACl

was suggested to be 4 and 2 days,
respectively.

[47]

Cultured M. aeruginosa
(1 × 106 cells/mL)

(Jar test, 0–70 mg/L FeCl3)
~1 µg/L dissolved MCs

Cell lysis and cyanotoxin release
(2–8 days); degradation of

dissolved cyanotoxins (> 10 days)
[48]

Myponga reservoir
Cultured M. aeruginosa (2.3 × 105

cells/mL)
Cell-bound MC-LR: 4.7 µg/L
Dissolved MC-LR: 2.0 µg/L

(Jar test-80 mg/L alum)

Sludge supernatant after 1 day
storage:

Cells: 4300 cells/mL
Cell-bound MC-LR: 0.5 µg/L
Dissolved MC-LR: 2.5 µg/L

Cell survival (4 days); cell lysis
and cyanotoxin release (4–7 days);

degradation of dissolved
cyanotoxins (> 4 days)

[53]

Myponga reservoir
Cultured M. aeruginosa (3.1 × 105

cells/mL)
DOC: 10.1 mg/L

Cell-Bound MC-LR: 5.0 µg/L
Dissolved MC-LR: 2.9 µg/L

(Jar test-80 mg/L alum)

Sludge supernatant after 1 day
storage:

DOC: 5.2 mg/L
Cell: 2760 cells/mL

Cell-bound MC-LR: <DL
Dissolved MC-LR: 4.0 µg/L

Cell growth (within 7–16 days)
confirmed by DOC and MC-LR

cell quota

Myponga reservoir
Cultured C. raciborskii (3.1 × 105

cells/mL)
DOC: 10 mg/L

Cell-bound CYN: 2.5 µg/L
Dissolved CYN: 0.7 µg/L
(Jar test-80 mg/L alum)

Sludge supernatant after 1 day
storage:

DOC: 6.0 mg/L
Cell: 7080 cells/mL

Cell-bound CYN: 1.0 µg/L
Dissolved CYN: 0.8 µg/L

Cell growth (within 7–23 days)
confirmed by DOC and CYN cell

quota

River Murary
Cultured C. raciborskii (3.1 × 105

cells/mL)
DOC: 8.63 mg/L

Cell-bound CYN: 2.7 µg/L
Dissolved CYN: 0.3 µg/L
(Jar test-80 mg/L alum)

Sludge supernatant after 1 day
storage:

DOC: 4.9 mg/L
Cell: 4140 cells/mL

Cell-bound CYN: 0.3 µg/L
Dissolved CYN: 0.9 µg/L

Cell growth (within 15–23 days)
confirmed by DOC and CYN cell

quota
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Table 5. Cont.

Initial Characteristics of
Cyanobacteria/Coagulation/

Sedimentation Process

Initial Condition of
Cyanobacteria and
Cyanotoxins in the

Stored Sludge

Observation Reference

Cultured M. aeruginosa
(1 × 106 cells/mL)

(Jar test- 15 mg/L AlCl3, 50 mg/L
FeCl3, 15 mg/L PAFC)

20 µg/L dissolved MCs
1–4.2 mg/L dissolved

polysaccharides
4 mg/L chla

Cell lysis and toxin release (2–10
days) [49]

Cultured M. aeruginosa
(2 × 106 cells/mL)

(Jar test, 2.6 mg/L chitosan- 7.5 mg/L
AlCl3 (CTSAC)

9 µg/L dissolved MCs
(after coagulation)

18 µg/L dissolved MCs
(without coagulation); the

difference is due to adsorption
in CTSAC

Toxin release (0–4 days);
degradation of dissolved
cyanotoxins (6–10 days)

[50]

M. aeruginosa, D. circinale, C.
raciborskii

(3.0 × 105 cells/mL)
(Jar test, 80 mg/L Alum)

Sludge supernatant after 1 day
storage:

DOC: 5.2–6.5 mg/L
Cell: 2162–7080 cells/mL

Cell-bound MC-LR: <0.5 µg/L
Dissolved MC-LR: 2.5–4.0

µg/L
Cell-bound CYN: 1.0 µg/L
Dissolved CYN: 0.8 µg/L

Increased DOC, MC-LR, MC-LA,
and CYN to higher the expected

values
(hypothesis: increase of the
metabolite production, cell

growth or both)

[55]

M. aeruginosa and D. circinale
(8.6 × 104 cells/mL)

(Jar test, 80 mg/L Alum)

Non-coagulated sludge: 5.0 ×
106 cells/mL

Coagulated sludge: 5.4 × 105

cells/mL

Cell survival (up to 35 days); 4.2×
increase in cell counts in the
sludge lagoon within 7 days;

increased metabolites to higher
the expected values (up to 5×);

increased cell counts in the sludge
(hypothesis: cell growth,

additional settling, or both)

[54]

Cultured M. aeruginosa
× 105 cells/mL)

(Jar test, 15 mg/L AlCl3, 50 mg/L
FeCl3, 15 mg/L PAFC)

1 µg/L dissolved MCs Cell lysis and toxin release (4–6
days); degradation of dissolved

cyanotoxins (6–10 days)
[51]

Cultured Oscillatoria sp.
(1.0 × 104 cells/mL)

(Jar test, 5 and 10 mg/L PAFC)

1.0 mg/L chla
2.3 µg/L cell-bound protein

8.6–11.4 µg/L dissolved CYN

Increase in chla level after 4 days,
suggesting cell growth; loss of cell
integrity after 2 days, while cells

remained viable up to 8 days;
increase in dissolved CYN,

showing toxin release within 4
days

[94]

Cultured C. raciborskii
(1 × 106 cells/mL at late exponential

phase)
(Jar test, 10 mg/L PAFC)

1.1 µg/L dissolved CYN
2 mg/L cell-bound protein

Cell lysis and toxin release after 6
days; degradation of dissolved

cyanotoxins after 10 days
[52]

n/a

Sludge of a DWTP containing
natural cyanobacterial blooms

stored for 7–35 days in the
darkness (8 samples).

0.7 × 105–5.6 × 106 cells/mL
25–7130 ng/L cell-bound MCs
38–349 ng/L dissolved MCs

Cell growth in 4/8 samples after
9–35 stagnation days; cell death in
the rest 4/8 samples; degradation
of dissolved cyanotoxins after 8

days

[58]
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4.2. Cyanobacteria-Laden Sludge Treatment

A summary of studies on the treatment of cyanobacteria-laden sludge is presented
in Table 6. The available data demonstrated that sludge oxidation could not completely
remove cyanobacteria cells and metabolites from the sludge [57,59]. Sludge is often stored
after oxidation, while its supernatant can be recycled to the head of the DWTP. Thus, the
impact of oxidation on sludge storage should be investigated. Recent findings showed
no remarkable benefits in sludge oxidation followed by sludge storage as compared to
only sludge storage [59]. The maximum additional taxonomic cell count decreased by a
combination of oxidation (KMnO4 or H2O2) and storage was 32% as compared to stor-
age only. However, oxidation/storage could cause a remarkable cell growth (by up to
145%) and toxic gene copy numbers of mcyD increase (by up to 13.0×) in some sludge
samples [59]. This phenomenon can be attributed to gene expression regulation due to
the presence of oxidative stresses [58,59,95,96]. Similarly, sludge oxidation could not com-
pletely remove cyanobacteria and cyanotoxins from the supernatant sludge [59]. Finally,
the costs and by-product formation during the oxidation of organic-matter-rich sludge
should be considered [58].

Table 6. Data of cyanobacteria-laden sludge treatment. MIB: 2-Methylisoborneol.

Source of
Sludge Scale Treatment

Agent/Dosage
Contact

Time
Initial

Conditions
Cell Count
Reduction

Metabolite
Reduction Reference

Sludge
thickener

Laboratory 3 mg/L
KMnO4

2 h
5.0 × 104

cells/mL
Pseudanabaena

>95% -

[57]

Laboratory 10–100 mg/L
PAC 1 h 100/L MIB - 42–100% MIB

Full-scale 10 mg/L
KMnO4

15 h (max.)
4.3 × 105

cells/mL
(natural blooms)

13–98% total
and Pseudan-

abaena cell
counts

-

Full-scale

10 mg/L
KMnO4
20 mg/L

PAC

KMnO4:
24–72 h
PAC: 1 h

3.7 × 105

cells/mL
120 ng/L MIB

(natural blooms)

40–52% in
total and
Pseudan-

abaena cell
counts

20–22% MIB

Sludge
holding tank

Laboratory

5 mg/L
KMnO4 60 min

2.3–2.7 × 106

cells/mL
63–161 ng/L

MCs
(natural blooms)

46–55% total
cell counts 0.3–24% MCs

[59]

10 mg/L
KMnO4

59–62% total
cell counts 2–32% MCs

10 mg/L
H2O2 24 h

58% total cell
counts 27% MCs

20 mg/L
H2O2

77% total cell
counts 41% MCs

Full-scale
(shock

oxidation)

10 mg/L
KMnO4

24–72 h

2.4 × 106

cells/mL
88–1083 ng/L

MCs
(natural blooms)

24–43% total
cell counts
(31% cell

count
increase after

48 h in one
sample)

MCs:
3–25%

decrease in
one sample

37–589%
increase in
one sample

4.3. Sludge Handling Challenges

In general, the sludge supernatant is recycled to the head of the DWTP or is discharged
into the source [13,56,97]. The solid phase either can be transferred to the WWTP or is ap-
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plied for landfilling [98–100]. Less environmentally friendly approaches such as untreated
residual discharge into lakes or ponds can be also applied in some circumstances [101]. The
re-use of DWTPs’ residuals is growing [99,102–104]. However, an investigation demon-
strated that the half-life of MC analogs varies from 8 to 18 days in soil [105]. Since there is a
risk of soil and groundwater contamination, landfill and field applications of cyanobacteria-
laden sludge should be avoided. Overall, cyanobacteria-laden sludge should be treated
before disposal either in situ or via sending it to wastewater treatment plants.

Flocs may have a protective role during sludge storage for M. aeruginosa [40,46–48,52].
In contrast, Li, et al. [52] documented that polyaluminium ferric chloride (PAFC) can
stimulate the lysis of C. raciborskii and CYN release by up to 94% during sludge storage.
This may occur in the sludge and lead to cyanotoxin release. However, all studies have
been conducted in laboratory conditions and on cultured-based cyanobacteria. In fact, due
to complex parameters such as the presence of various cyanobacterial cells in various forms
(aggregated, multicellular), ages, and viabilities, the design of such experiments in full
scale is complex.

Stresses such as oxidation and storage can shift cyanobacterial communities towards
resistant genera (e.g., Microcystis and Aphanocapsa), which can produce MCs [56,58,59].
Thus, the survival probability of MC producer species can increase during sludge oxidation
or storage. The fate of cyanotoxins in the sludge is complex due to the simultaneous
occurrence of various phenomena such as cell survival, growth, lysis, cell-bound cyanotoxin
release, and released cyanotoxin degradation [53–56,59,106,107]. Based on the increased
risk of cell lysis and cyanotoxin release during sludge storage, some studies have suggested
that cyanobacteria-laden sludge should be disposed of prior to 4 days to avoid metabolite
release [47,51,108]. However, these studies only focused on metabolite release and not on
cell survival/growth phenomena. Additionally, the possibility of sludge disposal can be a
technical and financial challenge in large DWTPs.

5. Decision Framework to Manage Cyanobacteria and Cyanotoxins in Drinking Water
Treatment Plants
5.1. Framework Basis

Since cyanobacterial cells and their associated metabolites, including cyanotoxins, as
well as taste and odor agents such as geosmin and 2-Methylisoborneol (MIB), affect water
and sludge quality, monitoring should be applied for the evaluation of the water treatment
chain and sludge handling.

Microscopy taxonomic cell count techniques have been widely applied to evaluate the
water and sludge in previous studies [12,18,43,44,56,77]. Previous cyanobacterial monitor-
ing guidelines were prepared based on taxonomic cell counts and biovolumes [109–111]. A
recent study suggested 0.3 mm3/L biovolumes as the vigilance level [109]. However, bias
related to human error [112], the negative impact of Lugol’s iodine on biovolumes [113],
cell underestimation/overestimation due to the presence of aggregated cells [114], and
the presence of debris and sediments, especially in the sludge samples [56], may affect the
results. More importantly, the significant time required for taxonomic cell counts is a major
barrier in using them for a real-time/practical approach.

In situ fluorometry using on-line probes is a compromising technique for measurement
of PC based on relative fluorescence units (RFU) in water resources [18,115–119]. How-
ever, the correlation between RFU and biovolume is complex and site-specific [119–121].
Previous investigations have reported that various RFUs ranging from 0.7 to 1.8 could
correlate with a 0.3 mm3/L biovolume in different sources and bloom events [116,119].
Therefore, it is recommended to perform a correlation between on-line probe readings
(RFU) and biovolumes for each water resource. It is noteworthy that the limits of detection
and quantification of on-line probes should be considered [116,118].

MC concentration has been introduced in several guidelines such as those of the
WHO (1.0 µg/L MC-LR) [122,123] and Health Canada (1.5 µg/L) [124]. Geosmin and
MIB negatively affect water quality, raise complaints about taste and odor, and decrease
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the public’s confidence about the treated water safety [125–129]. Thus, they should be
monitored throughout the treatment chain and the recycled sludge supernatant. Using
enzyme-linked immunoassay (ELISA) tests for cyanotoxins measurement has been accepted
for cyanotoxin monitoring [44,130–132]. The reported thresholds for geosmin and MIB are
1.3–4.0 ng/L and 6.3–15 ng/L, respectively [133–135]. Since the taste and odor agents are not
harmful, but increase complaints and concerns about the water quality [126,127,129,134],
olfactory detection can be considered for monitoring and detection [128,136].

5.2. Decision Framework

A decision framework to manage cyanobacteria and cyanotoxins in DWTPs is pre-
sented in Figure 8. The objective of this framework is to minimize cell breakthrough
and accumulation throughout DWTPs and sludge. The three steps, (i) source water risk
assessment, (ii) treatment breakthrough assessment and management, and (iii) sludge
and supernatant risk assessment and management, should be taken for cyanobacteria
and cyanotoxin control in DWTPs and sludge. This framework can help water utilities
to understand appropriate approaches/strategies against cyanobacteria and cyanotoxins
in DWTPs.
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Overall, taxonomic cell counts, MCs, and taste and odor agents should be monitored
in the (i) intake water, (ii) treatment chain, and (iii) sludge supernatant. These points are
subjected to cyanobacteria and cyanotoxin accumulation, leading to a negative impact on
water quality.

The optimization of conventional processes may include coagulant dose adjustment,
applying aid-flocculants, and lowering the sedimentation and filtration rate during cell
breakthrough [12,137–139]. Secondary barriers such as pre-oxidation, PAC injection, and
GAC, in case of metabolite breakthrough, should be applied [15,25,39,65,140–144]. The
impact of supernatant recycling or discharging on the source/intake water quality should
be considered during toxic cyanobacterial blooms. Supernatant treatment may be required
in the presence of cyanotoxins or taste and odor agents. MC concentration levels should
be monitored in the sludge (solids) in case of landfilling or land application. In the case of
elevated concentrations of MCs, sludge treatment is required.
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6. Conclusions

# Using the exposure unit (CT) is recommended for cyanobacteria and cyanotoxins
oxidation studies, rather than using dose or contact time individually.

# Regardless of the oxidant type, lab-cultured studies cannot depict the complete picture
of natural cyanobacterial bloom behavior during oxidation and may overestimate
the oxidation efficiency. In addition, cyanobacterial bloom oxidation is site- and
bloom-specific, which could be related to the level of agglomeration, cyanobacteria
(bloom) stage of life, and metabolic functions.

# Soft pre-chlorination and pre-ozonation can compromise cell viability with no or
limited cyanotoxin release. Overall, soft pre-oxidation may cause lower disinfection
by-products compared to normal pre-oxidation.

# The cyanobacteria in stored sludge can not only survive, but also grow and release
cyanotoxins, even in the dark. Although dissolved cyanotoxins can be degraded
during sludge storage, the potential risk of growth and cyanotoxin release should
be considered. In fact, the cell growth/depletion in stored sludge is complex and
not easy to predict. Therefore, the worst-case scenario should be considered during
sludge handling.

# Due to the low efficacy of sludge oxidation as compared to only stored sludge, as well as
the occurrence of cell growth, and gene expression regulation during oxidation/storage,
oxidation cannot be a reliable approach in sludge treatment and management.

# Management of cyanobacteria and cyanotoxins in sludge should be initiated with the
minimization of cyanobacteria and cyanotoxin accumulation throughout DWTPs.

# To control the negative impacts of cyanobacterial accumulation in DWTPs, recycling
sludge supernatant to the head of the DWTPs should be regulated during cyanobacte-
rial seasons. Suitable treatment and disposal approaches should be set into guidance
and regulations for sludge-containing cyanotoxins.
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