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Abstract: Ziziphi Spinosae Semen (ZSS) has been widely used in traditional Chinese medicine
system for decades. Under proper humidity and temperature, ZSS is easily contaminated by fungi
and mycotoxins during harvest, storage, and transport, thereby posing a considerable threat to
consumer health. In this study, we first used the Illumina MiSeq PE250 platform and targeted the
internal transcribed spacer 2 sequences to investigate the presence of fungi in moldy and normal ZSS
samples collected from five producing areas in China. Results showed that all 14 samples tested were
contaminated by fungi. Ascomycota was the dominant fungus at the phylum level, accounting for
64.36–99.74% of the fungal reads. At the genus level, Aspergillus, Candida, and Wallemia were the most
predominant genera, with the relative abundances of 13.52–87.87%, 0.42–64.56%, and 0.06–34.31%,
respectively. Meanwhile, 70 fungal taxa were identified at the species level. Among these taxa, three
potential mycotoxin-producing fungi, namely, Aspergillus flavus, A. fumigatus, and Penicillium citrinum
that account for 0.30–36.29%, 0.04–7.37%, and 0.01–0.80% of the fungal reads, respectively, were
detected in all ZSS samples. Moreover, significant differences in fungal communities were observed
in the moldy and normal ZSS samples. In conclusion, our results indicated that amplicon sequencing
is feasible for the detection and analysis of the fungal community in the ZSS samples. This study
used a new approach to survey the fungal contamination in herbal materials. This new approach
can provide early warning for mycotoxin contamination in herbal materials, thereby ensuring drug
efficacy and safety.
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Key Contribution: We utilized the amplicon sequencing platform and targeted the internal
transcribed spacer 2 (ITS2) sequences to investigate the fungal contamination in herbal materials
for the first time. A total of 70 fungal species were accurately identified in Ziziphi Spinosae Semen,
among which three (i.e., Aspergillus flavus, A. fumigatus, and Penicillium citrinum) were potential
toxigenic fungi.

1. Introduction

Herbal medicines, which are commonly used to prevent, diagnose, and cure diseases, have played
an important role in health care since ancient times [1]. However, many studies have described the
occurrence of mycotoxins in medicinal plants and herbal medicines from various countries [2–4],
thereby attracting considerable attention worldwide due to drug efficacy and safety. For instance,
58 (8.29%) and 17 (2.43%) of the 700 herbal medicine samples in South Korea are aflatoxin B1 (AFB1)-
and total aflatoxin (AF)-positive, respectively, and the AFB1 (up to 73.27 mg/kg) and total aflatoxin
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contents (up to 108.42 mg/kg) in some samples exceeded the legal limits (10 mg/kg) [2]. Both AFs
and ochratoxin A (OTA) are detected in all Glycyrrhiza uralensis samples (six moldy and nine normal
samples) that were collected from different areas in China [5]. Moreover, the transfer rate of OTA
and AFs were investigated in decoctions of herbal medicines. The transfer rate of OTA from the three
herbal medicines, namely Trichosanthis Semen, Eucommiae Cortex, and Rubi Fructus, to decoctions is
12.72–61.33% [6]. Considerable transfer rates of AFB1 (4.37–26.37%), AFB2 (9.64–47.68%), and AFG2

(7.26–115.36%) are also observed from the five herbal medicines (i.e., Lilii Bulbus, Hordei Fructus
Germinatus, Nelumbinis Semen, Polygalae Radix, and Bombyx Batryticatus) to decoctions [7]. Chronic
toxicity is the most common form of mycotoxicoses and is caused by low-dose exposure over an
extended period, leading to cancers and other irreversible effects [8,9]. The presence of mycotoxins
in the decoctions poses a considerable direct threat to consumer safety, because the ingestion of even
extremely small amounts of mycotoxins can lead to many diseases or even death in humans and
animals [10]. Among the approximately 400 recognized mycotoxins [11], AFs, OTA, fumonisins
(FBs), zearalenone (ZEA), deoxynivalenol (DON), and patulin are important contaminants on humans
in terms of health perspective [12,13]. AFB1 has been classified as a group 1 carcinogen by the
International Agency for Research on Cancer (IARC) [14] and is risk factors for human hepatocellular
carcinoma [15]. Meanwhile, OTA has been classified in Group 2B as possibly carcinogenic to humans
by IARC [14].

Some species from the Aspergillus and Penicillium genera are AFs and OTA producers [3,16].
The detection of toxigenic fungi in herbal medicines has received considerable attention. Singh et al. [17]
found that Aspergillus is the most prevailing genus that infects the raw materials of six medicinal plants
from the herbal markets of Varanasi, and 13 out of 32 isolates of Aspergillus flavus were AFB1-positive.
Another study showed that 90% of the 30 medicinal plant samples from Pakistan are contaminated
with molds. The frequently isolated fungi predominantly consist of A. flavus, A. niger, A. parasiticus,
and Penicillium spp., and 31% of the 47 isolates tested are toxigenic [3]. Fungal contamination in herbal
medicines occurs during all the processes, including growing, harvesting, cleaning, transporting, and
storage [18–21]. Under favorable temperature and humidity conditions, toxigenic fungi belonging to
Aspergillus, Penicillium, and Fusarium produce mycotoxins [13]. Among these fungi, 21 species from
Flavi, Ochraceorosei, and Nidulantes in Aspergillus produce AFs, while various Aspergillus and Penicillium
species produce OTA [22,23]. The occurrence of toxigenic fungi in herbal medicines has the potential
to produce mycotoxins. Therefore, the simultaneous detection of fungi, especially toxigenic fungi,
in herbal medicines is important for early warning for mycotoxin contamination.

Ziziphi Spinosae Semen (ZSS, suanzaoren in Chinese), which is derived from the dried ripe
seed of Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou, is widely used to treat insomnia
and palpitation in traditional Chinese medicine [24]. Pharmacological studies have demonstrated
that ZSS regulates immune function, ameliorates learning and memory, and has a hypnotic-sedative
effect [25–27]. Ziziphi Spinosae Semen is mainly produced in the Henan, Shanxi, Liaoning, and Hebei
provinces of China and sold throughout the country. ZSS samples are prone to fungal and mycotoxin
contamination if improperly harvested, processed, and stored. At present, regulation has been set for
the maximum limits of AFB1 (5 µg/kg) and the sum of AFB1, AFB2, AFG1, and AFG2 in ZSS (10 µg/kg)
in Chinese Pharmacopeia, respectively [24]. The accurate and rapid differentiation of fungi in ZSS is
important to guarantee the safe use of ZSS.

At present, the identification of fungi in herbal medicines is mainly based on fungi isolation and
culture. The morphological and microscopic features of pure isolates are generally combined with
DNA sequences for a comprehensive analysis [4,28,29]. However, fungi isolation and culture is a
complicated and time-consuming procedure with the risk of missing some strains, thereby leading
to an imprecise characterization of the fungal diversities. Therefore, an accurate and rapid method
to detect fungi in herbal medicines is urgently needed. High-throughput sequencing (HTS) is a
growth-independent method that can provide mass data of the composition of mixed microbial
communities in low abundances, such as soil, sediment, and air filter samples. HTS has been widely
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used in fungal ecology studies [30–32], thereby providing a new prospect for the detection of fungal
diversity in herbal medicines.

Here, we first investigated the presence of fungi in ZSS by using the Illumina MiSeq PE250
platform and demonstrated the diversity of fungal contamination in the ZSS samples to provide early
warning for mycotoxin contamination in ZSS.

2. Results

2.1. Analyses of the Diversity of Fungal Communities in the ZSS Samples

All 14 ZSS samples were successfully amplified by PCR for the internal transcribed spacer 2
(ITS2) sequences. A total of 912,941 ITS2 sequences that were longer than 200 bp were produced
after excluding the chimeric sequences. The optimized sequences were divided into 210 operational
taxonomic units (OTUs) after cluster analysis.

Table S1 shows the calculated Chao 1, Shannon, and Good’s coverage to measure the α-diversity.
High Chao 1 value demonstrated a large variation of species in each sample. High Shannon value
indicated high community diversity in each sample. Meanwhile, the results of Good’s coverage,
which is an estimator of sampling completeness, indicated good overall sampling with levels of
>99.8%. Rarefaction curve analysis showed that all samples were almost parallel to the x-axis, thereby
indicating that the obtained reads were sufficient to represent the overall fungal diversity (Figure S1).
The fungal community in the WM group also had higher Chao 1 estimate and Shannon index than
those of the FM group (Figure 1a). The number of unique and common OTUs for the two groups are
shown in a Venn diagram (Figure 1b). The results showed that the WM group possessed more unique
OTUs than the FM group.

For β-diversity, principal coordinate analysis (PCoA) showed that samples were clustered
according to the presence of mold. This result was consistent with the results of hierarchical clustering
analysis (Figure 1c–d). Significant differences were reported between the FM and WM groups (analysis
of similarity, ANOSIM, R = 0.524 and p = 0.002; Figure S2a). By contrast, the samples from the five
producing areas showed an insignificant difference (Figure S2b).Toxins 2018, 10, x FOR PEER REVIEW    4 of 11 
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Figure 1. Diversity analyses of the fungal community in the Ziziphi Spinosae Semen (ZSS) samples.
(a) α-Diversity plots of taxa richness (Chao 1 estimate) and diversity (Shannon index) in the FM and
WM groups. (b) Venn diagram of operational taxonomic units (OTUs) in the FM and WM groups.
(c) principal coordinate analysis (PCoA) plots on the basis on weighted UniFrac distance matrices.
(d) Unweighted Pair Group Method with Arithmetic Mean (UPGMA) clustering on the basis of
unweighted UniFrac distance analysis.

2.2. Fungal Community Composition in the ZSS Samples

Three fungal phyla, namely, Ascomycota, Basidiomycota, and Mucoromycota, were identified
in all ZSS samples. Among the three phyla, Ascomycota was the dominant fungus, accounting for
64.36–99.74% of the fungal reads. Meanwhile, other fungal phyla were detected with extremely low
relative abundances (0–0.33%, Figure 2a).

Further taxonomical classification detected 61 genera, and the genera with high relative abundance
are shown in Figure 2b. Among these genera, Aspergillus, Candida, and Wallemia were the most
common, with the relative abundances of 13.52–87.87%, 0.42–64.56%, and 0.06–34.31%, respectively.
The differences in the fungal community compositions between the FM and WM groups were
significant. The relative abundances of the Aspergillus species in the FM group (42.66–87.87%) were
higher than those of the Aspergillus species in the WM group (13.52 to 49.67%). Meanwhile, the relative
abundances of the Candida species in the FM group (0.42–23.95%) were relatively lower than those of
the Candida species in the WM group (3.13–64.56%). The linear discriminant analysis effect size (LEfSe)
algorithm, which was used to identify the different relative abundances of the fungal taxa in the two
groups, showed the same results (Figure 2c). Compared with the WM group, Aspergillus was the most
dominant genus in the FM group. Meanwhile, the WM group possessed a much higher proportion of
Candida, Meyerozyma, and Botryosphaeria species than those in the FM group.

A total of 162 fungal taxa were identified in the ZSS samples. Among these fungal taxa, 70 can
be identified at the species level, while the remaining 92 can be resolved at the genus level or higher.
Among the 70 accurately differentiated species, potential mycotoxin-producing fungi, namely, A. flavus,
A. fumigatus, and Penicillium citrinum that account for 0.30–36.29%, 0.04–7.37%, and 0.01–0.80% of
the fungal reads, respectively, were detected in all ZSS samples (Figure 2d). A higher percentage of
potential mycotoxin-producing fungi was also detected in the WM group (1.14–36.37%) than that in
the FM group (0.61–5.03%).
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3. Discussion

3.1. Prevalence of Fungal Contamination in the Commercial ZSS Samples

Fungi are common natural contaminants of herbal medicines due to their widespread distribution
in the air. Fungal contamination in medicinal herbs has received considerable concern from the public.
An investigation [33] on the occurrence of fungi in medicinal herbs and spices from India showed that
92% samples are contaminated by fungi, and 47% of the contaminated samples exceed the permissible
limits set by the World Health Organization. Kong et al. [4] also found that 14 functional foods and
10 spices from Chinese markets are infected by molds. Zheng et al. [34] also showed the widespread
fungal contamination in 15 medicinal herbs collected from China. Meanwhile, Su et al. [35] found
that 48 samples of eight root herbs from Chinese markets are all contaminated by fungi. In all these
studies, Aspergillus and Penicillium are identified as the most common contaminants. In the present
study, the results indicated that Aspergillus was the most abundant genus in the ZSS samples, followed
by Candida, accounting for 13.52–87.87% and 0.42–64.56% of the total reads, respectively. In contrast
to previous studies, Penicillium species were detected at relatively low abundances (<1%) in all ZSS
samples, except for the LY01 sample (7.77%). The relationship between fungal species and herbal
materials cannot be fully explained owing to the complicated contamination reasons [34,36]. Aspergillus
and Penicillium species were the principal storage fungi [36]. The substrate composition and storage
conditions, such as moisture content, aeration, and temperature, might be the factors to influence the
fungal community [34,36].
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Meanwhile, Aspergillus, Penicillium, Fusarium, and Alternaria are the most common contaminants
in food and herbal medicines, which contain the majority of mycotoxin producers [3,16]. Potential
toxigenic fungi, such as A. fumigatus, A. flavus, A. tubingensis, and A. aculeatus, were previously isolated
in different herbal medicines [3,34,37]. In the present study, three potential mycotoxin-producing
fungi, namely, A. flavus, A. fumigatus, and P. citrinum that are potential producers of AFB1, OTA, and
citrinin, respectively, were identified in the ZSS samples. The high relative abundances of the potential
mycotoxin-producing fungi ranging from 0.61–36.37% in ZSS poses a considerable threat to public
health. The relative abundances of the potential toxigenic fungi in normal samples were much higher
than those in the moldy samples. Therefore, evaluating the safety of herbal medicines according to the
presence or absence of molds is unadvisable.

The differences in the fungal community structure between the FM and WM groups were
significant. Candida species were dominant in the normal ZSS samples, whereas Aspergillus was
the predominant genus in the presence of molds. Meanwhile, all samples were clustered according to
the initial grouping in PCoA, thereby indicating the meaningfulness of grouping samples according
to the presence of microscopic molds. However, the differences in the fungal community structures
among the SX, HN, LN, HB, and SD groups were insignificant, thereby demonstrating that the presence
or absence of molds affected the fungal community structure in ZSS samples to a greater extent than
the producing areas.

3.2. DNA Marker Selection to Analyze the Fungal Community in ZSS

An effective molecular marker is the precondition for the application of DNA barcoding technique.
Schoch et al. [38] evaluated six candidate DNA regions, namely, ITS, LSU, SSU, RPB1, RPB2, and
MCM7, for fungal identification and proposed ITS as the primary barcode marker. The length of
the ITS region differs substantially among the different fungal genera and species, which distort the
community description due to the preferential amplification of shorter sequences, thereby resulting in
a biased quantification of the taxon relative abundances in the HTS research [39,40]. ITS1 and ITS2,
which were shorter than the complete ITS, were of appropriate length for HTS and have become the
most commonly used markers for fungal diversity analyses. Considering the lower phylogenetic
richness and fewer OTUs generated by ITS1 region than those of the ITS2 region, ITS2 is recommended
for metabarcoding [41]. In the present study, the results showed that the ITS2 region exhibited good
identification ability for fungi in the ZSS samples. A total of 162 fungal taxa were detected in the
ZSS samples. Among these fungal taxa, 92 cannot be resolved at the species level mainly due to the
following reasons. First, some information on species is lacking on the UNITE database. Second, the
ITS2 region cannot provide an adequate variation information in distinguishing some sibling species
in Aspergillus, Fusarium, Penicillium, and Candida [42–45].

3.3. Prospects of Applying Amplicon Sequencing for the Analysis of Fungal Diversity in Herbal Materials

The application of HTS platform in analyzing the abundance and richness of the microbial
species with low abundances in environmental samples overcomes the isolation limitations of the
culture-based approach. Most microorganisms cannot be cultivated using traditional cultivation
techniques [46]. Xia et al. [47] identified 55 fungal genera from Chinese Cordyceps through Illumina
Miseq sequencing that were not observed using culture-dependent methods. The amplicon sequencing
platform is widely used for the analysis of microbial diversity in soil, outdoor air, food, and other
environmental samples [32,48–51]. The application of HTS platform in analyzing the fungal diversity
in herbal materials has not been reported to date. In the present study, we utilized the amplicon
sequencing platform and targeted the ITS2 sequences to investigate the fungal contamination in herbal
materials for the first time. Fungal contamination in the ZSS samples is extremely common. Hence, all
samples were infected. HTS platform is a good tool for investigating the occurrence of fungi, especially
the potential toxigenic fungi, in herbal materials. The application of amplicon sequencing provides a
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new approach to analyze the fungal diversity in herbal materials, thereby providing an early warning
for mycotoxin contamination in herbal materials.

4. Materials and Methods

4.1. Sampling

A total of 14 commercial ZSS samples were collected from Henan, Shanxi, Hebei, Liaoning, and
Shandong, which are the five main ZSS producing provinces in China. The samples were divided
into five groups, namely, SX, HN, LN, HB, and SD, by production areas. Among these commercial
samples, six samples were affected with mildew due to inappropriate storage. Samples were also
divided into two groups, namely, FM and WM, according to the presence or absence of macroscopic
molds. The detailed information of the samples is listed in Table 1.

Table 1. Voucher information and GenBank accession numbers for the ZSS samples in this study.

Name Voucher No. Sources Group Mildewy Group GenBank
Accession No.

Ziziphi Spinosae Semen RY01 Ruyang, Henan HN No WM SAMN10275060
Ziziphi Spinosae Semen RY02 Ruyang, Henan HN No WM SAMN10275061
Ziziphi Spinosae Semen HX01 Hui, Henan HN No WM SAMN10275062
Ziziphi Spinosae Semen SJ01 Shijiazhuang, Hebei HB No WM SAMN10275069
Ziziphi Spinosae Semen QH01 Qinhuangdao, Hebei HB No WM SAMN10275067
Ziziphi Spinosae Semen SL01 Shengli, Liaoning LN No WM SAMN10275065
Ziziphi Spinosae Semen SL02 Shengli, Liaoning LN No WM SAMN10275066
Ziziphi Spinosae Semen DP01 Dongping, Shandong SD No WM SAMN10275070
Ziziphi Spinosae Semen LL01 Lanling, Shandong SD Yes FM SAMN10275071
Ziziphi Spinosae Semen QH02 Qinhuangdao, Hebei HB Yes FM SAMN10275068
Ziziphi Spinosae Semen YC01 Yuncheng, Shanxi SX Yes FM SAMN10275058
Ziziphi Spinosae Semen YC02 Yuncheng, Shanxi SX Yes FM SAMN10275059
Ziziphi Spinosae Semen LY01 Lingyuan, Liaoning LN Yes FM SAMN10275063
Ziziphi Spinosae Semen LY02 Lingyuan, Liaoning LN Yes FM SAMN10275064

4.2. DNA Extraction

Approximately 3 g ZSS samples were transferred into a 15 mL sterilized centrifuge tube with
10 mL of sterilized water and shaken with a vortex mixer for 20 min. Then, the mixture was filtered
through a single layer of sterile gauze, and the microorganisms were collected from the filtrate by
centrifugation at 7830 rpm for 15 min (Centrifuge 5430 R, Eppendorf AG, Hamburg, Germany) [52].
The total DNA was extracted using the EZNA® soil DNA kit (Omega Bio-tek., Inc., Norcross, GA,
USA) according to the manufacturer’s instructions.

4.3. PCR Amplification and HTS

ITS2 sequences were amplified with the primer pairs ITS3 (5′-GCATCGATGAAGAACGCAGC-3′)
and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) [53]. PCR was performed with the following conditions:
Initial denaturation at 95 ◦C for 5 min; 35 cycles of denaturation at 95 ◦C for 45 s, annealing at 58 ◦C
for 50 s, and elongation at 72 ◦C for 45 s; and a final extension at 72 ◦C for 10 min. Amplifications were
conducted for each sample in triplicate, and the PCR products were pooled to minimize the PCR bias.
The PCR products were detected using electrophoresis on a 2% agarose gel and purified using the
DNA gel extraction kit (Axygen, Union City, CA, USA). Subsequently, the PCR products were further
identified on a 2% agarose gel and quantified using QuantiFluorTM-ST (Promega, Madison, WI, USA).
Then, amplicons were sequenced using the Illumina MiSeq PE250 platform (Illumina, San Diego,
CA, USA) by AuwiGene Technology Co., Ltd. (Beijing, China). Raw sequences are available in the
Sequence Read Archive of the NCBI under the accession numbers SAMN10275058–SAMN10275071.
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4.4. Sequence Analysis

Raw FASTQ files were demultiplexed, and their quality was filtered using the Quantitative
Insights into Microbial Ecology (QIIME, version 1.8, http://qiime.org) software [54]. The reads
were truncated at any site, thereby receiving an average quality score of <20 over a 50 bp sliding
window. The primers were exactly matched, thereby allowing two nucleotide mismatches, and the
reads containing ambiguous bases were removed. Only sequences that overlap longer than 10 bp
were merged according to their overlap sequences. The sequences were clustered into OTUs at 97%
sequence similarity by using UPARSE (version 7.1, http://drive5.com/uparse/) [55], and chimeras
were removed using USEARCH (version 8.1.1861, Http://Www.Drive5.Com/Usearch/) [56]. OTUs
were denominated at the kingdom, phylum, class, order, family, genus, and species levels according to
the UNITE database [57]. To estimate the α-diversity, we calculated the three metrics, including Chao 1,
Shannon, and Good’s coverage, after the reads were normalized to the minimum reads (35,924 reads)
in each sample. β-Diversity was measured using the weighted UniFrac and unweighted UniFrac
distance matrices. PCoA was performed based on the weighted UniFrac distance matrices. Samples
were also hierarchically clustered based on the unweighted Unifrac distances by using Unweighted
Pair Group Method with Arithmetic Mean (UPGMA). LEfSe was applied to identify the differentially
abundant taxa between the FM and WM groups [58]. Statistical differences among the sample groups
were tested using ANOSIM (available through QIIME). Venn diagram and heat map were drawn using
R tools.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/10/12/
494/s1, Figure S1: Rarefaction curves of OTUs for the ZSS samples, Figure S2: ANOSIM analysis of the ZSS
samples. (a) The differences in the fungal community structures between the FM and WM groups were significant.
(b) The differences in the fungal community structures among samples from the five producing areas were
insignificant. Table S1: α-Diversity of the fungal community in the ZSS samples.
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