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Abstract

Triglyceride accumulation is associated with obesity and type 2 diabetes. Genetic disruption of diacylglycerol acyltransferase
1 (DGAT1), which catalyzes the final reaction of triglyceride synthesis, confers dramatic resistance to high-fat diet induced
obesity. Hence, DGAT1 is considered a potential therapeutic target for treating obesity and related metabolic disorders.
However, the molecular events shaping the mechanism of action of DGAT1 pharmacological inhibition have not been fully
explored yet. Here, we investigate the metabolic molecular mechanisms induced in response to pharmacological inhibition
of DGAT1 using a recently developed computational systems biology approach, the Causal Reasoning Engine (CRE). The CRE
algorithm utilizes microarray transcriptomic data and causal statements derived from the biomedical literature to infer
upstream molecular events driving these transcriptional changes. The inferred upstream events (also called hypotheses) are
aggregated into biological models using a set of analytical tools that allow for evaluation and integration of the hypotheses
in context of their supporting evidence. In comparison to gene ontology enrichment analysis which pointed to high-level
changes in metabolic processes, the CRE results provide detailed molecular hypotheses to explain the measured
transcriptional changes. CRE analysis of gene expression changes in high fat habituated rats treated with a potent and
selective DGAT1 inhibitor demonstrate that the majority of transcriptomic changes support a metabolic network indicative
of reversal of high fat diet effects that includes a number of molecular hypotheses such as PPARG, HNF4A and SREBPs.
Finally, the CRE-generated molecular hypotheses from DGAT1 inhibitor treated rats were found to capture the major
molecular characteristics of DGAT1 deficient mice, supporting a phenotype of decreased lipid and increased insulin
sensitivity.
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Introduction

Triacylglycerol is a highly efficient energy storage form critical

for surviving periods of starvation and extended physical activity.

Many industrialized societies maintain a diet rich in fat and

carbohydrates, and a sedentary lifestyle leading to the excess

storage of triglyceride in tissues. The resulting adiposity has been

linked to an increased prevalence of multiple diseases such as

diabetes and atherosclerosis [1]. Diacylglycerol Acyltransferase

(DGAT) enzymes catalyze the final step in the synthesis of

triacylglycerol from diacylglycerol (DAG) and fatty acyl-coA

making them attractive targets for reducing triglyceride storage

[2]. Two separate genes encode for the DGAT1 and DGAT2

enzymes [3]. DGAT1 knock out (-/-) mice are lean, resistant to

diet induced obesity and have increased insulin sensitivity, while

the DGAT2 (-/-) genotype is lethal [4,5]. Interestingly, intestine

selective overexpression of DGAT1 in the context of mice null for

DGAT1 reverses the lean phenotype and hepatic steatosis

suggestive that DGAT1 expression in intestine is a major

contributor to metabolic phenotype [6]. Out of a broad panel of

human tissues DGAT1 was most abundant in the small intestine

[2] We have confirmed these findings in human, rat and mouse

tissues with gene chip profiling and RT-qPCR (data not shown).

Therefore we sought to investigate the molecular changes

occurring in the small intestine with pharmacological inhibition

of DGAT1.

Whole genome expression measurements provide snapshots of

the abundance of thousands of transcripts and have the potential

to paint a comprehensive picture of modulated biological processes

in a given sample. While most problems relating to the statistically

robust estimation of transcript levels changing between different

samples have been successfully solved, the task of manually

interpreting the usually hundreds of changing transcript levels is

daunting. At the same time, the amount of biomedical knowledge

is growing rapidly. The PubMed database comprises more than 20

million citations as of October 2010 [7]. Methods that harness this

knowledge for the interpretation of gene expression data are

promising candidates to make the biological interpretation process
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as routine in the future as the statistical analysis of the transcript

level changes is today.

The most popular class of methods to analyze gene expression

data using pre-defined categories of genes (e.g. pathways,

biological processes) is called gene-set enrichment analysis. Ackermann

& Strimmer give an excellent recent review of the many methods

proposed [8]. Gene-set enrichment methods provide a good first

overview of high-level processes changing between measured

conditions, but oftentimes lack the ability to provide concrete

molecular hypotheses as to the causal drivers of the processes as

well as direct suggestions for experimental follow-up. In this

article, we focus on the use of a novel causal reasoning algorithm

to infer upstream molecular mechanisms that caused observed

expression changes. Causal reasoning algorithms can be viewed as

a form of gene set enrichment with two major enhancements.

First, such methods provide predictions on causal drivers on a

molecular level by using gene sets corresponding to the effects of

defined causal perturbations. Second, they account for direction-

ality of the gene expression changes and hence the directionality of

the inferred upstream molecular causes can be computed as well.

Similar causal reasoning-based approaches have been described in

the work of Pollard et al [9]. Here, we rely on a novel algorithm,

called the Causal Reasoning Engine introduced by Chindelevitch

et al, 2010 [10].

To increase our understanding of a novel DGAT1 inhibitor,

PF-04620110 and its mechanism of action we monitored gene

expression changes in the jejunum of rats following an acute

exposure to PF-04620110. The gene expression changes were used

by the causal reasoning platform to infer the molecular events

shaping the biological response.

Materials and Methods

Ethics Statement
All in vivo procedures were reviewed and approved by the

Institutional Animal Care and Use Committee at Pfizer Inc.

(AUP# 3573).

Animal Experiments
Male Sprague Dawley rats (Charles River Laboratories)

(average initial body weight of approximately 250 grams) were

individually housed in hanging wire mesh cages and acclimated to

a reverse light/dark cycle (lights off at 10:00 am/lights on at 10:00

pm) and high fat Western diet (Research Diets D12079B) for 14

days prior to experimentation. Rats (n = 8 per treatment group)

were randomized to receive vehicle or compound PF-04620110 at

3 or 15 mg/kg. PF-04620110 is a highly potent and selective

inhibitor of DGAT1 with an IC50 of 19 nM at human DGAT1

and IC50 of 64 nM at rat DGAT1 [11]. PF-04620110 also

possesses greater than 100-fold selectivity against hDGAT2,

hACAT1, hAWAT1/2, hMGAT2/3, mMGAT1 [11].

Food was removed from each cage 24 hours prior to

administration of DGAT1 inhibitor. Vehicle or test compound

was administered via standard oral gavage in a dose volume of

5 mL/kg and rats were allowed ad libidum access to food and

water for six hours, during which time food intake was monitored.

After six hours animals were sacrificed for blood and tissue

collection. Tissue samples (jejunum, liver) were flash frozen in

liquid nitrogen. Blood was collected via cardiac puncture and

placed into vacutainer EDTA tubes containing Aprotinin and

DPP-IV inhibitor for plasma isolation. Triglyceride concentration

in plasma samples were determined on a Roche 912 clinical

chemistry analyzer (Roche Diagnostics). Plasma samples treated

with Aprotinin and DPP-IV inhibitor were analyzed for total

amide GLP-1 (SPE-MSD), and PYY (SPE-Luminex) according to

manufacturers protocols. Significance P values for food intake,

triglycerides, amide GLP-1 and PYY were calculated using a

student’s unpaired T-test.

Lipomics
Jejunum tissue samples were sent to Tethys Bioscience for

quantitation of lipid metabolites with a proprietary TrueMass

Lipomic Panel. Significance P values were calculated using a

student’s unpaired T-test.

Microarray Gene Expression
Tissue samples were submitted to Genelogic for RNA

purification, probe synthesis and Affymetrix Genechip profiling.

Affymetrix Rat Expression Array 230 2.0 chip was utilized to

assess gene expression. For quality control, RNA degradation plots

were generated for each CEL file. To assess potential RNA

degradation, 39/59 ratios and their associated confidence intervals

were evaluated [12]. Two techniques were used to distill the probe

results into a small number of representative variables; Multidi-

mensional scaling (MDS) [13] and Principal component analysis

(PCA). These two techniques were applied to the data before and

after Robust Mult-Array Average (RMA) [13] signal processing.

During this processing, only the perfect match (PM) probe data

were used; the mismatch (MM) probes were not used.

To assess differential expression of genes between groups of

interest, a common statistical model was applied independently to

each probeset. Gene expression for all sample types was analyzed on

the log2 scale. Linear models were used to calculate t-statistics, which

were subsequently adjusted using the moderated t-statistic procedure

[14]. The Benjamini and Hochberg adjustment procedure [15] based

on controlling the False Discovery Rate (FDR) was used.

TaqMan Quantitative PCR
A subset of the observed gene changes on the Affymetrix array

was confirmed by quantitative PCR analysis (Table S1). First strand

cDNA was synthesized using the Applied Biosystems (ABI) High

Capacity Reverse Transcription Kit according to the manufactur-

er’s protocol. Gene expression was measured using a customized

ABI 384-well TaqMan Low Density Array (TLDA) card and the

TaqMan Universal PCR Master Mix (Applied Biosystems) on an

ABI 7900HT sequence detector. Expression of target genes were

normalized with the house-keeping genes 18S and validated with

ACTB. Expression level of each gene was calculated by RQ method

and expressed as ‘‘relative expression per 106 18S’’.

Gene Set Enrichment Analysis (GSEA)
Enrichment analyses were conducted using Gene Ontology

(GO) groupings using a two-sided Fisher’s Exact Test (i.e.

hypergeometric test). The two-sided test can differentiate between

enrichment and depletion of statistically significant results. For

each test, the odds ratio (similar to a fold-change) is calculated

using the observed and expected number of significant genes, as

well as raw p-values. This technique accounts for the size of the

groupings as well as the overlap between related groups in the

hierarchy via conditioning. Each GO terms was scored using

desirability functions [16] where the most desirable GO term

would have large (absolute) fold-change, small p-value and a target

group size of 20 genes.

Causal Reasoning Engine Algorithm
The Causal Reasoning Engine (CRE) follows the general data

model introduced in Pollard et al [9]. We utilized the CRE

Causal Reasoning Network of DGAT1 Inhibition
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algorithm of Chindelevitch et al [10] which provides novel

statistical measures to assess relevance of uncovered upstream

regulators to plausibly interpret the observed expression changes.

Briefly, the approach relies on a large collection of curated causal

statements of the form:

A ½increases or decreases�B,

where A and B are measurable biological entities:

The biological entities can be of different types (e.g. phosphor-

ylated proteins, transcript levels, biological process and compound

exposure) and each statement is tied to accessible, peer-reviewed

articles. For this work, we licensed approximately 450,000 causal

statements from commercial sources (Ingenuity Systems and

Selventa).

Each biological entity in the network and its assumed mode of

regulation is a potential hypothesis (e.g. predicted decrease in PPARG

transcription activity). For each hypothesis, we can now compare all

possible downstream transcriptional changes in the knowledge base

with the observed transcriptional changes in the experiment. We

consider two metrics to quantify the significance of a hypothesis with

respect to our experimental data set, namely enrichment and

correctness. The Enrichment p-value for a hypothesis h quantifies the

statistical significance of finding (#incorrect + #correct) transcripts

within the set of all transcripts downstream of h. The exact p-value

can be computed by a Fisher’s exact test. This is a standard

approach in gene set enrichment methods and does not take the

direction of regulation into account [17].

The Correctness p-value is a measure of significance for the score

of a hypothesis h defined as (#correct - #incorrect). As desired, this

score is high, if the number of correct prediction exceeds the

number of incorrect predictions. To ensure statistical significance

under a null model of randomly re-assigning up- and downreg-

ulated transcripts to arbitrary nodes, we compute the distributions

for this score and derive appropriate p-values. Surprisingly, the

distributions can be computed analytically in polynomial time

using combinatorial programming approaches [10]. The Causal

Reasoning Engine is implemented in the statistical programming

language R [18] and uses the igraph package for representation of

the network of causal assertions.

Network Modeling of the CRE Hypotheses
The analysis results are communicated using the Causal

Reasoning Browser (Figure 1), a Java application based on the

open-source biological network viewer Cytoscape [19]. We have

developed a plugin that enables browsing, clustering, merging,

sorting and filtering of upstream hypotheses in conjunction with

the relevant causal networks.

In the CRE browser an overview graph allows users to visualize

hypotheses and examine their network relationships in the context

of the causal relationships obtained from the literature based

knowledgebase. Each edge in the graph is linked to an evidence

statement directly obtained from the original peer reviewed article.

Furthermore, each hypothesis can be expanded into a network

showing all the causal relationships that qualified the hypothesis

based on the gene expression changes from the experiment.

To facilitate the construction of biological networks from the

generated hypotheses several analytical tools were developed.

Figure 1. A screen shot of the cytoscape based causal reasoning engine browser showing the network overview window,
hypothesis table and parameters filter panel.
doi:10.1371/journal.pone.0027009.g001

Causal Reasoning Network of DGAT1 Inhibition
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Alternative to manual selection of potentially related hypotheses a

clustering tool uses cosine similarity metric and an average linkage

method to group related hypotheses together. The average

similarity for clustering can be adjusted by setting a cluster

threshold to reflect the desired extent of similarity. Where 1

indicates hypotheses with identical supporting evidence and 0

indicates dissimilar hypotheses [20].

Once a subset of hypotheses is selected, either manually or using

the clustering tool, similarity statistics are displayed in the browser.

This includes the percent of unique gene expression changes correctly

explained by this subset of hypotheses, overlap and contradictions.

For each selected set of hypotheses a dynamic heatmap, the evidence

matrix, is automatically generated whereby each cell in the heatmap

represents the relationship between each hypothesis and each gene in

this subset, if one exists. Finally, the browser enables the user to merge

the hypotheses for further investigation of the underlying context,

evidence statement and source literature.

Results

Food Intake and Plasma triglycerides level
In high fat habituated Sprague Dawley rats, mean six hour food

intake was significantly decreased following administration of PF-

04620110 by 40 and 37% at 3 and 15 mg/kg respectively relative to

mean food intake of vehicle controls (Figure 2A). Six hour fed plasma

triglyceride levels were significantly decreased by 53 and 59% at 3

and 15 mg/kg respectively compared to fed plasma triglyceride of

vehicle controls following a single dose of PF-04620110 (Figure 2B).

Total amide GLP-1 and PYY were also significantly increased in both

dose groups (Figure 2C and 2D) at six hours.

Gene expression analysis
A single dose of PF-04620110 resulted in 403 and 831 gene

expression changes in the jejunum at 3 and 15 mg/kg,

respectively, using an adjusted p-value ,0.05 and fold change

$1.3. Table S1 confirms a subset of the observed gene changes on

the affymetrix array using quantitative PCR analysis. In contrast,

no significant gene expression changes in the liver with the

exception of one gene at high dose (data not shown). These data

are consistent with the jejunum having the highest expression of

DGAT1 in the Sprague-Dawley rat as evidenced by the ,10-15

fold lower basal level of DGAT1 expression in the liver as

compared to the jejunum (Data not shown).

Gene Set Enrichment Analysis
Tables 1 and 2 show the top 10 most significant GO terms for

the gene expression changes in the jejunum at high and low dose,

Figure 2. Food intake (A), plasma triglycerides (B), total amide
GLP-1 (C) and total PYY (D) in response to a single dose of PF-
04620110. Symbols indicate statistical significance from vehicle with
p-value thresholds of ,0.001 (*), ,0.005 (ˆ), for n = 8 rats per treatment
group.
doi:10.1371/journal.pone.0027009.g002

Table 1. GO enrichment analyses for the 15 mg/kg group.

ID Term Raw p-Value Odds Ratio Size

GO:0006637 (BP) acyl-CoA metabolic process , 0.00001 12.838 14

GO:0005777 (CC) peroxisome , 0.00001 4.64 72

GO:0006071 (BP) glycerol metabolic process , 0.00001 16.615 10

GO:0006066 (BP) alcohol metabolic process , 0.00001 3.291 110

GO:0008203 (BP) cholesterol metabolic process 0.0001 4.155 41

GO:0006869 (BP) lipid transport 0.0001 3.404 59

GO:0006631 (BP) fatty acid metabolic process , 0.00001 2.478 126

GO:0019752 (BP) carboxylic acid metabolic process , 0.00001 1.79 455

GO:0045930 (BP) negative regulation of progression through mitotic cell cycle 0.0002 35.548 6

GO:0004430 (MF) 1-phosphatidylinositol 4-kinase activity 0.0002 Inf 4

*The results are sorted by a scoring function that uses the p-value, odds-ratio and the size of the GO terms.
doi:10.1371/journal.pone.0027009.t001

Causal Reasoning Network of DGAT1 Inhibition
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respectively. The majority of the top ranking GO terms in the high

dose group indicate several metabolic biological processes

involving lipid, fatty acids, glycerol and cholesterol. However, in

the low dose group there was minor indication of metabolic lipid

changes.

Causal Reasoning Engine Inferences and Network
Modeling

Approximately 76% of the gene changes from each dose group

mapped to biological entities in our knowledge base. Using the

filtering functionality we applied the following cutoffs for the CRE

generated hypotheses; correctness p-value ,0.01, enrichment p-

value ,0.01, minimum number of correctly explained gene

expression changes $3, percent correctly explained gene expres-

sion changes $60%. This resulted in a total of 79 and 160

hypotheses for the 3 and 15 mg/kg dose groups, respectively.

The CRE platform is developed with a set of analysis tools that

enable flexible analysis schemes for evaluation of the biological

significance of the hypotheses and integrating them into

biological network models. However, for the purpose of this

article we report the results from an example systematic approach

utilizing some of the analysis tools we developed in the CRE

browser. The basic premise for this approach is to preserve the

context of the supporting evidence and employ it as the main

driver for integrating the hypotheses into biological networks/

models. To achieve this we started by grouping the hypotheses

using the hypothesis clustering tool. We used a cluster threshold

of 0.15 at which we see clustering of hypotheses that are not mere

surrogates of one another. See tables 3 and 4 for examples of the

top ranking largest clusters at cluster threshold 0.3 and 0.15,

respectively. Table 3 shows the top two clusters from the 15 mg/

kg group at cluster threshold 0.3 to be primarily composed of

redundant hypothesis such as decrease in PPARA- and number of

its ligands, and decrease in a number of SREBF family members.

However, in table 4 the largest and highest ranking cluster for the

15 mg/kg group at cluster threshold 0.15 is indicative of

decreased PPAR signaling, decreased lipids (high-fat diet-,

diacylglycerol-, lipid-) increased fatty acid oxidation enzymes

(EHHADH+, HSD17B4+). The second ranking cluster comprises

hypotheses indicative of decreased sterol regulators (SREBFs-,

SCAP-) and cholesterol trafficking (NPC1-), and decreased insulin

resistance (hyperinsulinism-, supported by causal relations from

studies of high fat diet in insulin resistance animal model [21])

and decreased glucose response regulators and glucose dependant

activators of carbohydrate response element (MLX-, MLXIPL-,

Carbohydrate-).

Table 2. GO enrichment analyses for the 3 mg/kg group.

ID Term Raw p-Value Odds Ratio Size

GO:0008191 (MF) metalloendopeptidase inhibitor activity 0.0001 54.027 5

GO:0005604 (CC) basement membrane 0.0001 6.368 28

GO:0006629 (BP) lipid metabolic process 0 1.894 542

GO:0006457 (BP) protein folding 0.0002 0.085 153

GO:0006066 (BP) alcohol metabolic process 0.0002 2.074 257

GO:0005783 (CC) endoplasmic reticulum 0.0006 1.718 466

GO:0016705 (MF) oxidoreductase activity, acting on paired donors, with
incorporation or reduction of molecular oxygen

0.0006 2.713 103

GO:0005885 (CC) Arp2/3 protein complex 0.0007 17.7 7

GO:0005615 (CC) extracellular space 0.0004 1.439 1419

GO:0005730 (CC) nucleolus 0.001 0 94

*The results are sorted by a scoring function that uses the p-value, odds-ratio and the size of the GO terms.
doi:10.1371/journal.pone.0027009.t002

Table 3. Top two clusters for the high dose at cluster threshold 0.3.

Hypothesis Hypothesis Rank Cluster ID Cluster Size Correctness p-value Enrichment p-value Percent Correct

Clofibrate- 1 1 5 6.38E-16 5.99E-22 0.87

PPARA- 6 1 5 2.32E-07 1.59E-34 0.63

Pirinixic acid- 7 1 5 9.09E-09 1.23E-19 0.76

Gemfibrozil- 33 1 5 6.34E-07 1.98E-10 0.85

Fenofibrate- 45 1 5 0.001993 3.38E-13 0.67

SREBF1- 12 12 5 1.28E-08 1.16E-12 0.86

Srebf1a- 19 12 5 2.55E-07 2.65E-10 0.88

Srebf1c- 60 12 5 0.0002758 2.32E-05 0.89

SREBF2- 76 12 5 0.0036389 3.36E-07 0.75

SCAP- 76 12 5 0.0013972 1.73E-06 0.8

The sign following the hypothesis name indicates the CRE predicted directionality (+ = predicted increase and - = predicted decrease).
doi:10.1371/journal.pone.0027009.t003

Causal Reasoning Network of DGAT1 Inhibition
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In order to understand the context of the hypotheses we

investigate the nature of the causal relationships supporting them

by referring to their original studies. This is especially helpful for

molecular hypotheses with a broad range of context dependant

biological functions such as PPARG- (Rank = 5, Correctness p-

value = 1.94E-7, Enrichment p-value = 1.21E-26). For example,

investigating the causal relationships from the PPARG- subnetwork

(Figure 3) reveals that ,50% of the supporting assertions

consistent with the predicted directionality were derived from

studies on induction of adipogenesis [22,23], the majority of which

in context of adipogenic steatosis due to PPARG overexpression

[24]. On the other hand, many of the assertions inconsistent with

the predicted directionality originated from studies of PPARG

insulin sensitization in Zucker diabetic rat model [25] and

cholesterol efflux in macrophages [26].

Lastly, we constructed biological networks primarily guided by

hypothesis clustering and investigation of the underlying evidence

and the potential inter-hypothesis causal relations from the causal

graph overview. These biological models (summarized in Figure 4)

support 3 major effects of PF-04620110; reversal of the high fat

diet and decreased hyperlipidemia, decreased insulin resistance

and decreased glucose, and altered fatty acid metabolism. The key

high-fat diet responsive regulators supported by the causal

evidence are PPARG- (see above) and SREBFs- (e.g. some of the

assertions supporting SREBF1- are obtained from a study

demonstrating its role in mediating the hyperlipidemic response

to high fat diet [27]). Glucose metabolism is represented by a

network of hypotheses indicative of decreased glucose levels,

decreased glucose response activators and decreased insulin

resistance. The glucose metabolism network appears to be

secondary to decreased lipids; however, there exists causal

interactions with several lipid network components positively

reinforcing both networks as evidenced by edges from the

overview graph and investigating the context of overlapping

Table 4. Top two clusters for the high dose at cluster threshold 0.15 after excluding redundancies.

Hypothesis Hypothesis Rank Cluster ID Cluster Size
Correctness
p-value

Enrichment
p-value

Percent
Correct

PPARA- 6 1 30 2.32E-07 1.59E-34 0.63

MEHP- (PPARG modulator) 10 1 30 2.26E-10 5.24E-13 0.91

PPARGC1A- 11 1 30 1.32E-08 8.94E-09 0.89

FOXA2- 15 1 30 4.25E-07 1.21E-11 0.82

PPARD- 27 1 30 1.46E-07 9.46E-17 0.74

ESRRA- 45 1 30 0.0022058 2.06E-12 0.68

high-fat diet- 45 1 30 0.0011581 1.74E-14 0.67

EHHADH+ 60 1 30 3.51E-08 5.59E-08 1

HSD17B4+ 60 1 30 3.51E-08 5.59E-08 1

9-cis-retinoic acid- 76 1 30 0.0062967 7.64E-06 0.75

PCK1+ 76 1 30 3.30E-09 4.54E-09 1

LPL- 115 1 30 0.0009964 1.61E-06 0.78

meldonium- 115 1 30 8.68E-07 1.17E-06 1

SCD+ 115 1 30 0.0001995 5.89E-06 0.86

quercetin- 164 1 30 0.0006924 0.0025397 1

TFAM- 164 1 30 0.0006092 0.0013388 1

Prasterone- 164 1 30 0.0003124 0.0004421 1

diacylglycerol- 246 1 30 0.0003967 0.0004851 1

lipid- 246 1 30 0.0046444 5.29E-05 0.8

SREBF1- 12 12 15 1.28E-08 1.16E-12 0.86

RXRA- 19 12 15 8.69E-08 3.42E-13 0.79

MLX- 19 12 15 3.86E-10 1.10E-09 1

25-hydroxycholesterol+ 76 12 15 2.35E-05 1.05E-06 0.88

SREBF2- 76 12 15 0.0036389 3.36E-07 0.75

SCAP- 76 12 15 0.0013972 1.73E-06 0.8

hyperinsulinism- 164 12 15 0.0001294 0.0003134 1

essential fatty acid-deficient diet- 164 12 15 1.94E-05 2.50E-05 1

NPC1- 246 12 15 0.0003757 0.0019058 1

MLXIPL- 246 12 15 0.0006679 0.0008302 1

cafeteria diet- 246 12 15 0.0012353 0.0026628 1

carbohydrate- 246 12 15 0.0059513 0.0090411 1

THRSP- 246 12 15 0.0003967 0.0004851 1

The sign following the hypothesis name indicates the CRE predicted directionality (+ = predicted increase and - = predicted decrease).
doi:10.1371/journal.pone.0027009.t004

Causal Reasoning Network of DGAT1 Inhibition
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assertions using the merge hypotheses function (Figure 5). The

third network indicates decrease in some fatty acids like linolenic

and oleic acid but increase in arachidonic acid. Lipomics analysis

of corresponding jejunum tissue from the same rats confirmed the

predicted changes in these free fatty acids. Figure 6 shows the

depletion of oleic acid C18:1n9 and the enrichment of arachidonic

acid C20:4n6 in the jejunum with DGAT1 inhibition. The less

abundant linolenic acid was also significantly depleted -2.4 fold

(umol/g tissue) for both dose groups. Finally, there is also support

for a number of nuclear receptors and co-regulators to cooperate

Figure 4. Summary overview graph showing the biological model constructed for reversal of high fat diet, decreased insulin
resistance and changes in fatty acid metabolism in response to PF-04620110 treatment. (Blue nodes = predicted decrease, Yellow
nodes = predicted increase).
doi:10.1371/journal.pone.0027009.g004

Figure 3. Causal network shows the experimental gene expression changes enriched for the PPARG- hypothesis in the 15 mg/kg
group. 36 genes are consistent with the predicted decreased directionality (bottom), 14 are contradictory (top right) and 6 are ambiguous due to
contradictory literature (top left). (Blue nodes = predicted decrease, Red nodes = observed mRNA decrease, Green nodes = observed mRNA
increase).
doi:10.1371/journal.pone.0027009.g003

Causal Reasoning Network of DGAT1 Inhibition
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in more than one of the above 3 main effects (HNF4A-, FOXA2-

and PPARGC1A-).

Discussion

The objective of this study was to employ a novel computational

platform to gain mechanistic insight into the molecular changes

induced by pharmacological inhibition of DGAT1. Acute gene

expression changes were utilized to infer multiple overlapping

molecular regulators of lipid and carbohydrate metabolism

predictive of benefits of DGAT1 inhibition such as lipid lowering

and improved insulin sensitivity. Our analysis allows us to

postulate the molecular network conferring these metabolic

benefits to better understand the mechanism of action for

pharmacological inhibition of DGAT1.

Our understanding of the physiologic role of DGAT1 stems

largely from studies of genetically modified mice that lack DGAT1

from birth. It is noteworthy that this analysis focused on

transcriptomics in the jejunum elicited by the administration of

a pharmacological inhibitor of DGAT1 in an adult rat which

suggests similar molecular phenotype to DGAT1 knockout mice.

Recently, DGAT1 knockout mice were shown to have decreased

expression of PPARalpha, gamma and delta as well as target genes

suggestive of reduced lipid uptake and metabolism and increase

glucose uptake [28] which is consistent with our top ranking

hypotheses. Additionally, DGAT-1 deficient mice demonstrate

resistance to weight gain on high fat diet, improved insulin

sensitivity and a lower percentage of oleic acid in their skeletal

muscle and adipose tissue triglyceride [29]. Again, our CRE

generated hypotheses identified reversal of high fat diet, reduced

insulin resistance and decreased oleic acid. These data support the

notion that the intestine is an important tissue involved in whole

body insulin sensitivity diet-induced obesity. Insulin resistance in

the intestine has been associated with increased apolipoproteins,

chylomicrons, de novo lipogenesis, and increased fatty acid and

cholesterol uptake via CD36 and SCARB1 [30]. In our study not

only was triglyceride synthesis decreased via inhibition of the

target, but transcription of the key apolipoproteins for chylomi-

cron synthesis (ApoB, ApoA I, ApoA IV, and ApoC III) were

reduced. Of these Apo CIII was the most dramatic (see Table S1)

with greater that a 5 fold reduced expression at the high dose. The

expression and secretion of ApoC III is increased in insulin

resistant states and plasma circulating levels are higher in

metabolic syndrome and type II diabetes [31]. Finally, Lee et al

demonstrated that intestine specific expression of DGAT1 in the

DGAT1 deficient mice prevented the knockout mouse from being

resistant to diet induced obesity [6].

In contrast, DGAT1 knockout mice are hyperphagic [29,32];

whereas, administration of PF-04620110 results in a decrease in

food intake. Our working hypothesis is that elevated levels of

Figure 5. Merged causal graph showing potential positive reinforcing interactions between glucose- and SREBF1- supported by
evidence from studies on its role in mediating hyperlipidemia in response to high fat diet [27]. (Blue nodes = predicted decrease, Red
nodes = observed mRNA decrease, Green nodes = observed mRNA increase).
doi:10.1371/journal.pone.0027009.g005
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incretin hormones glucagon-like peptide-1 (GLP-1) and peptide

YY (PYY) are at least in part mediating this response (Figure 2). It

is our belief that decreased food intake is an integral part of the

mechanism of action driving a metabolically favorable profile

following pharmacological inhibition of DGAT1 and thereby did

not try to dissociate food intake dependent effects from food intake

independent effect in our analysis. Normal lipid absorption entails

the breakdown of dietary triglyceride into free fatty acids and 2-

monoacylglycerol by pancreatic lipases in the lumen of the small

intestine. This allows transport of the free fatty acids into the

enterocytes where they can be re-esterified and packaged into

chylomicrons for delivery to the circulation. Clearly the major role

of DGAT1 in triglyceride synthesis and intestinal lipid absorption

has been demonstrated [33] with DGAT1 accounting for 89% of

triglyceride synthesis in rat intestinal membranes. Theoretically,

DGAT1 inhibition would cause an immediate build up of its

substrates, diacylglycerol and free fatty acids. Polyunsaturated fatty

acids have been demonstrated to decrease the expression of

lipogenic genes via SREBP promoter elements (SRE) [34].

Therefore DGAT1 inhibition would result in decreased lipogenesis

in the intestine driven by an excess of free fatty acids. There has

been mounting evidence in high fat diet rodent models and

humans supporting a negative impact of de novo lipogenesis and

monounsaturated fatty acid synthesis on insulin sensitivity

[21,35,36]. Mice fed high fat western diet for one week

demonstrate a robust increase in the expression of intestinal

SREBF1 and SCD-1, and develop insulin resistance with little

change in hepatic gene expression [21,35,36]. Coincidentally,

SREBF1 and SCD1 where robustly down regulated in the

jejunum but unchanged in the liver with DGAT1 inhibition.

Furthermore CRE hypotheses for reduced SREBF1, PPARa,

RXR, MLX, and PGC1a all suggest a decrease in fatty acid

synthesis, while the decrease in SCD1 may be contributing to the

depletion of oleic acid, and secondary enrichment in arachidonic

acid (Figure 6). Recent evidence has indicated a benefit for a high

ratio of C20-C22 PUFAS to saturated and monounsaturated fatty

acids for improved glycemic control and insulin sensitivity [37].

Thus an additional effect of DGAT1 inhibition would be the

insulin sensitizing effect of enriched very long chain PUFA.

The Causal Reasoning approach has the advantage of providing

detailed molecular hypotheses on potential causal drivers of observed

expression changes. Each assertion can be followed back to the

primary literature providing confidence to the researcher to follow-

up on the computational predictions. In some cases the predicted

direction of the CRE hypothesis may conflict with the observed

direction of the transcript change. For example, a CRE hypothesis of

decreased CFTR protein and/or activity conflicts with the observed

increase in transcripts for CFTR as well as Annexin 2 and S100A10

that complex with CFTR enabling its function [38]. The literature

evidence supporting the CFTR hypothesis came from two studies in

CFTR knockout mice [39,40]. Regulated genes in this context may

include compensatory and/or regulatory feedback gene expression

changes which in turn may complicate the interpretation of some of

the CRE hypotheses. One possibility is that a CRE hypothesis may

represent protein level or activity which is not necessarily reflective of

the mRNA level or that the CRE hypothesis is based on gene

changes in response to an initial decrease in CFTR protein or

activity that led to feedback increase in transcript level hence

reflecting an earlier temporal event. Another example is the CRE

hypotheses for increased fatty acid oxidation enzymes Enoyl-CoA

hydratase (EHHADH), and hydroxysteroid (17-beta) dehydrogenase

4 (HSD17B4). Both of these hypotheses are supported by the same

transcript evidence from a single literature source [41]. Moreover,

the same transcript evidence is completely subsumed under the

much higher ranking hypothesis of decreased PPAR alpha, which

includes decreased transcription of EHHADH and HSD17B4 which

could be an effect of a feedback loop.

Clearly, the hypotheses as well as the resulting model can only

be as good as the underlying causal relationships. Consequently,

the method is unlikely to uncover completely novel areas of

biology. However, it can provide novel insights by reporting

upstream drivers to be relevant in a certain context. As efforts to

curate larger parts of the biomedical literature are underway, we

expect the power of the approach to increase.

We have employed the causal reasoning approach as a means of

visualizing an extensive and diverse set of gene expression changes to

generate high level molecular hypotheses that will enable a better

understanding of the anti-adipogenic and anti-diabetic benefits derived

following pharmacological inhibition of DGAT1. Additionally, this

analysis has allowed us to understand the advantages and limitations of

causal reasoning. The approach has allowed us to confirm in a

systematic fashion that pharmacological inhibition of DGAT1 in adult

rats generates molecular hypotheses that are consistent with the

metabolically beneficial phenotype of mice lacking DGAT1.
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Figure 6. Results from lipomics analysis showing effect of PF-
04620110 on tissue levels of two of the most abundant free
fatty acids: Oleic 18:1n9 and Arachidonic acid 20:4n6 in rat
jejunum. Represented in raw values (umol/g tissue, panel A) and
normalized values (% of total free fatty acids, panel B). Symbols indicate
significance from vehicle with P value thresholds of ,0.001 (*), ,0.005
(ˆ), ,0.01 (,), ,0.05 (+) for n = 8 rats per treatment group.
doi:10.1371/journal.pone.0027009.g006
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