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Sepsis remains a major problem for human health worldwide, thereby manifesting high
rates of morbidity and mortality. Sepsis, once understood as a monophasic sustained
hyperinflammation, is currently recognized as a dysregulated host response to infection,
with both hyperinflammation and immunoparalysis occurring simultaneously from the
earliest stages of sepsis, involving multiple organ dysfunctions. Despite the recent
progress in the understanding of the pathophysiology underlying sepsis, no specific
treatment to restore immune dysregulation in sepsis has been validated in clinical trials.
In recent years, treatment for immune checkpoints such as the programmed cell
death protein 1/programmed death ligand (PD-1/PD-L) pathway in tumor-infiltrating
T-lymphocytes has been successful in the field of cancer immune therapy. As immune-
paralysis in sepsis involves exhausted T-lymphocytes, future clinical applications of
checkpoint inhibitors for sepsis are expected. In addition, the functions of PD-1/PD-L
on innate lymphoid cells and the role of exosomal forms of PD-L1 warrant further research.
Looking back on the history of repeatedly failed clinical trials of immune modulatory
therapies for sepsis, sepsis must be recognized as a difficult disease entity for performing
clinical trials. A major obstacle that could prevent effective clinical trials of drug candidates
is the disease complexity and heterogeneities; clinically diagnosed sepsis could contain
multiple sepsis subgroups that suffer different levels of hyper-inflammation and immune-
suppression in distinct organs. Thus, the selection of appropriate more homogenous
sepsis subgroup is the key for testing the clinical efficacy of experimental therapies
targeting specific pathways in either hyperinflammation and/or immunoparalysis. An
emerging technology such as artificial intelligence (AI) may help to identify an immune
paralysis subgroup who would best be treated by PD-1/PD-L1 pathway inhibitors.
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INTRODUCTION

Sepsis remains an ongoing threat to human health worldwide.
Sepsis is one of the leading causes of death in intensive care units (1,
2). The World Health Organization (WHO) has recommended
that sepsis be recognized as a Global Health Priority (3). Although
there has been an overall improvement in clinical outcomes
globally, which seems due to improved treatment practices by
disseminating and complying with the Surviving Sepsis Campaign
guidelines (4) during the past few decades (5), mortality rates
remains unbearably high, reaching 25%–30% for sepsis, and up to
40%–50% in cases of septic shock, though there are some
differences depending on the country (6, 7). To put it simply, the
central pathophysiology of sepsis is dysregulated host response to
infection (8). The concept of dysregulation includes not only
excessive inflammation, but also immunosuppression. Moreover,
hyper-inflammation and immunoparalysis can exist concomitantly
from the very onset of sepsis. A previous biphasic concept that the
immunosuppressive late phase follows the hyperinflammatory
early phase has now been outdated (9). The purpose of this
review is to describe the underlying mechanisms of the immune
deregulation in sepsis, to summarize the failed history of clinical
trials testing therapeutic agents for host immune responses in
sepsis, and to specifically address treatments aimed to reverse the
immunosuppression, focusing in particular on the programmed
cell death protein 1/programmed death ligand (PD-1/PD-L)
pathway on T cells. In addition, the functions of the PD-1/PD-L
pathway on innate lymphoid cells and PD-L1 present on exosomes
are discussed as characteristic aspects of sepsis in this review. In the
last section, we discuss the application of artificial intelligence (AI)
for subgrouping of septic patients and selecting the appropriate
patients as the most promising approach for achieving a
breakthrough in new treatments for sepsis. If a revolution in
sepsis treatment is to be realized, new concepts and new
methods are absolutely essential. This means immunomodulation
and AI.
THE CLINICAL DEFINITION OF SEPSIS

Although the breadth and depth of our knowledge about the
pathophysiology underlying sepsis has increased dramatically in
recent years thanks to the expansion of biomedical research
publications, there has been only limited progress in treatment in
terms of interventions for the essential host response rather than
supportive care such as mechanical ventilation strategies,
nutrition, and PADIS (Pain, Agitation, Delirium, Immobility,
and Sleep) management. In addition, chronic persistent
inflammatory-immunosuppressive syndrome has emerged as a
new topic regarding survival in wake of acute phases of sepsis.
Quality of life after surviving initial septic insult and discharge
remains poor. Thus, sepsis ranks among today’s leading medical,
economic, and social issues.

Historically, the term “sepsis” has been used extensively,
although until about 1990 there was no clear definition. In
1991, the ACCP/SCCM (American College of Chest Physicians/
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Society of Critical Care Medicine) Consensus Conference defined
sepsis as Systemic Inflammatory Response Syndrome (SIRS),
which was caused by microbial infections (10). The SIRS case
must meet two or more of the following four criteria; tachypnoea,
tachycardia, abnormal body temperature and/or abnormal white
blood cell count or >10% presence of immature white blood cell
forms. This definition emphasizes the concept that systemic
inflammation is the key to sepsis, and therefore mandates
physical examinations or laboratory parameters that address
hyper inflammation. Until the advent of the Third International
Consensus Definitions for Sepsis and Septic Shock (Sepsis-3),
sepsis was largely understood as a systemic inflammatory
syndrome. In 2016, Sepsis-3 defined sepsis as life-threatening
organ dysfunction caused by a dysregulated host response to
infection (11). This new definition showed that the past
characterizations were excessively focused on inflammation.
Septic shock was defined as a condition requiring continuous
administration of vasopressors to maintain mean arterial blood
pressure, despite initial fluid resuscitation. In Sepsis 3, the term
“severe sepsis” was eliminated. This meant that the pathological
condition of sepsis, which causes organ damage as a result of
infection, was in itself a very serious pathology.
IMMUNE DEREGULATION; THE
CENTRAL PATHOPHYSIOLOGY
OF SEPSIS/SEPTIC SHOCK

Sepsis constitutes a dysregulated host response to infection. Hyper-
inflammationandtheimmunoparalysiscanexistconcomitantlyfrom
the onset of sepsis. In most cases, infections are contained and
eventually cured by the cooperations by the immune system,
antibiotics, andsource control/drainage, therebyrestoring tonormal
homeostasis. However, infection can progress to sepsis when a
dysregulated host response persists. The time course of sepsis was
previouslythoughttoconsistofaninitialhyperinflammatorystatethat
transitioned to a hypoinflammatory state, eventually leading to
prolonged and significant immunosuppression. In terms of paired
words, systemic inflammatory response syndrome (SIRS) and
compensatory anti-inflammatory response syndrome (CARS)
symbolize this paradigm(12).

Recent studies have shown that inflammation and
immunosuppression occur simultaneously but not sequentially.
Both pro-inflammatory and anti-inflammatory cytokine storms
occur during the earliest stages of infection, and the balance
between the two determines whether clinically over-inflammation
or immunosuppression then occurs (13). (Figure 1) Analyses of
leukocyte gene expression in patients with severe sepsis have
revealed that both the inflammatory response and the expression
of immunosuppression-related genes occur at the same time,
immediately after sepsis onset. In fact, the more severe a patient’s
case is, the higher the immunosuppression-related gene expression
level (14). Excessive inflammation is not the only cause of death
in sepsis. Similarly, immunosuppression is not the only cause of
sepsis-related death. A mixture of the two is responsible for the
difficulty of treating sepsis and its overall poor prognosis.
February 2021 | Volume 11 | Article 624279
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There is also a concept that sepsis constitutes what has
been termed Persistent Inflammation, Immunosuppression
and Catabolism Syndrome (PICS) (15). This is an
intriguing concept from the integrated point of view, which
contends that SIRS and its counterpart CARS do not exist
independently; rather, both are occurring simultaneously. To
summarize, in sepsis, hyper-inflammation and immunoparalysis
coexist from the early to the late stages of the pathological
condition, which is evident from recent basic researches and
clinical recognitions.

Sepsis Induced Hyper-Inflammation
Knowing that inflammation and immunosuppression occur
simultaneously from the earliest stages of infection,
hyperinflammation remains a hallmark of sepsis. During the
initial phases of sepsis, acute inflammation originating from the
Frontiers in Immunology | www.frontiersin.org 3
activation of the innate immune system is triggered and enhanced
by multiple pathways. Key pro-inflammatory responses contain
various biological systems including complement system,
coagulation system, platelet, vascular endothelium, neutrophil
extracellular traps (NETs), and many kinds of immunity-
oriented cells. These pro-inflammatory systems interact in a
highly intricate manner. The word “cytokine storm” is a
suitable description and well worth underscoring.

After infection, invading pathogens are immediately
recognized by the host innate immune system. Innate immune
cells such as neutrophils and macrophages, whose primary
function is immune surveillance, recognize pathogen-associated
molecular patterns (PAMPs) derived from microorganisms via
pattern recognition receptors (PRRs) (16). PRRs include Toll-
like receptors (TLRs), nucleotide-binding oligomerization
domain-like receptors (NLRs), retinoic acid-inducible gene-like
FIGURE 1 | Paradigm shift in sepsis. In 1991, sepsis was defined as Systemic Inflammatory Response Syndrome (SIRS), which was caused by microbial infections.
This definition emphasizes the concept that systemic inflammation is the key to sepsis. During the initial phases of sepsis, inflammation originating in the innate
immune system is enhanced by multiple pathways as “cytokine storm”. Then, a new theory has since emerged positing that immunosuppression following initial
hyperinflammation, eventually leading to prolonged and significant immunosuppression is the key pathophysiology. In terms of paired words, SIRS and
compensatory anti-inflammatory response syndrome (CARS) symbolize this paradigm. In 2016, The Third International Consensus Definitions for Sepsis and Septic
Shock (Sepsis-3) defined sepsis as life-threatening organ dysfunction caused by a dysregulated host response to infection. Both pro-inflammatory and anti-
inflammatory genomic storms occur beginning in the earliest stages of infection, and the balance between the two determines whether clinically over-inflammation or
immunosuppression then occurs. Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS) is an intriguing concept from the integrated point
of view, which contends that SIRS and its counterpart CARS do not exist independently; rather, both are occurring simultaneously. As shown in the Surviving Sepsis
Campaign guidelines, initial fluid resuscitation, earlier antibiotic administration and supportive care such as mechanical ventilation strategies, nutrition and PADIS
(Pain, Agitation, Delirium, Immobility, and Sleep) management are key of sepsis management. With the development of these conventional basic treatment, there is
an overall clinical outcome improvement, but mortality of sepsis still reaches high. Therefore, additional treatment method that targets the underlying essence of
sepsis has been expected. At first, as sepsis was essentially understood as hyperinflammation, many anti-inflammation approaches were tried. However, none have
demonstrated that those sepsis treatment strategies are effective. Then, focusing on the immunoparalytic aspect of sepsis, immune stimulation represents a new
strategy for targeting sepsis. There are some promising molecules, among them PD-1/PD-L inhibitors, which can not only reverse immuostimulation but act as
immunomodulation, are highly expected.
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receptors (RLRs) and C-type lectin receptors (CLRs) (8, 16).
PRRs recognize not only PAMPs derived from microorganisms,
but also damage-associated molecular pattern molecules
(DAMPs or Alarmin) (17). The latter are derived from the
host’s own cells. The fact that PRRs recognize various PAMPs
and DAMPs explains similar clinical appearances presented by
critically ill patients, regardless of the trigger infections caused by
various pathogens originating at various organs (18).

NF-kB and interferons (IFNs) pathways are two major
signaling cascades to activate innate immune systems. These
intracellular signaling cascades generate pro-inflammatory
mediators by promoting gene transcription beginning within a
few minutes of PRRs recognizing PAMPs or DAMPs. In the NF-
kB pathway, the binding of PAMPs to TLR4 triggers the
recruitment of the myeloid differentiation primary response
gene 88 (MyD88), which acts as an adopter protein, and
interleukin-1 receptor-associated kinases 1 and 4 (IRAK1, 4),
act as signaling molecules. Then these signaling molecules form a
complex with tumor necrosis factor (TNF) receptor-associated
factor 6 (TRAF6). This cascade further activates the downstream
TGF-b-activated kinase and inhibitor of nuclear factor kappa-B
kinase (IKK), which then regulate NF-kB. NF-kb, which is
usually present in the cytoplasm, migrates to the nucleus
where it activates targeted genes coding pro-inflammatory
cytokines like TNF and IL-1. These cytokines then re-initiate
signaling cascades to activate or produce other inflammatory
cytokines and chemokines inter- or intra-cells in the innate
immune response (19). IFNs are a group of signaling proteins
that have diverse effects on the innate immune system (20). By
binding its receptor, IFN starts the signaling cascade, leading to
the expression of interferon-stimulated genes (ISGs) and IFN
gamma-activated site (GAS) genes. In these inflammation
cascades, small ubiquitin-like modifier (SUMO) molecules play
an important role by binding to target proteins and modulating
their function. In the NF-kB pathway, SUMO proteins play a
dual role of promoting and limiting excessive activation of them.
That is, SUMO-1 binds to the TRAF family member-associated
NF-kappa-B activator while SUMO-3 binds to IKK-g, which is
one of the NF-kB essential modulators accelerating the NF-kB
pathway. On the other hand, sumoylation of IkBa by SUMO-1
limits excessive activation (21). This bidirectional effect of
SUMO can be observed in the IFN pathway, as well. For
example, SUMO has both promoting and inhibiting effects on
antiviral interferon regulatory transcription factor-3 (IRF-3)
activity, through sumoylation and desumoylation, via peptidyl-
prolyl cis/trans isomerase (Pin1) (21, 22).

Failures of Anti-Inflammatory Therapies
in Clinical Trials
Most basic and clinical research efforts on sepsis has focused on
suppressing hyperinflammation. Numerous experiments
involving animal sepsis models have shown that the
suppression of specific inflammatory cascades improved
outcomes (23–25). Over the last few decades more than one
hundred clinical studies have sought to suppress excessive
inflammation in sepsis by targeting PRRs, PAMPs, cytokines
Frontiers in Immunology | www.frontiersin.org 4
and various mediators, however, none have convincingly
proved the clinical effectiveness for the treatment of sepsis in
clinical settings. Here, we show representative clinical trials
focusing on adrenal insufficiency, pro-inflammatory cytokines
and immunothrombosis.

Relative adrenal insufficiency, also known as critical illness-
related corticosteroid insufficiency, occurs in critically ill
patients (26). Corticosteroids have been used for the purpose
of early recovery from shock, rather than for reducing
mortality, as indicated in the guideline published by the
Society of Critical Care Medicine (SCCM) and the European
Society of Intensive Care Medicine (ESICM) in 2017 (27).
Glucocorticoids affect both innate and adaptive immunity;
they inhibit the maturation, differentiation, and proliferation
of leukocytes, including myeloid cells and lymphocytes.
Glucocorticoids have an anti-inflammatory effect by producing
anti-inflammatory proteins and inhibiting pro-inflammatory
proteins. Glucocorticoids bind to glucocorticoid receptor (GR),
which is a transcription factors belonging to the nuclear
receptor superfamily, and GR translocates to the nucleus.
The GR-glucocorticoid complex inhibits the production of
pro-inflammatory proteins by sequestering NF-kB into the
cytoplasm. It also promotes the production of annexin
1, which inhibits the expression of phospholipase A2.
The functional differences between mineralocorticoid and
glucocorticoid are still under investigation, although there
are many overlapping aspects. It is worth noting that the
expression of GR is higher in the immune system than that of
mineralocorticoid receptor (MR), but MR and GR are similarly
expressed in the cardiovascular system (28). Corticosteroids also
have the disadvantages of elevating blood glucose levels and
increasing catabolism. Therefore, an investigation as to whether
or not corticosteroids can improve patient prognosis has long
been needed. However, two large randomized controlled trials
(RCTs) published in 2018 failed to produce consistent results.
The APROCCHS (Activated Protein C and Corticosteroid for
Human Septic Shock) trail, which compared activated protein C,
low does corticosteroid, their combination, and placebo,
demonstrated that sepsis patients treated with corticosteroid
showed a significantly improved 90-day mortality rate (29),
while the ADRENAL (Adjunctive corticosteroid treatment iN
critically ilL patients with septic shock) trial reported no
significant benefits at all (30). There are many points worth
discussing regarding these two trials; e.g., the differences in sepsis
severity between them and the different medication regimens
using fludrocortisone, in addition to hydrocortisone, or not.
In the end, however, the role of steroids in improving the
prognosis of sepsis patients remains inconclusive.

Another approach involves suppressing inflammatory cell
signaling proteins, which seems to have a direct effect on the
hyper-inflammatory states. Among inflammatory proteins,
TNF-a is a pro-inflammatory cytokine that has been shown to
increase in the blood after endotoxin administration (31).
Moreover, administration of TNF-a induces a biological
reaction similar to those of sepsis (32, 33). Therefore, it is
reasonable to hypothesize that inhibition of TNF-a represents
February 2021 | Volume 11 | Article 624279
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a potential treatment option for sepsis in patients. Preclinical
studies using animal model experiments have shown favorable
results: a protective effect against sepsis (34, 35). However, a
single dose of tumor necrosis factor receptor-Fc (TNFR-Fc),
which is a fusion protein comprised of the TNFR extracellular
domain and the Fc region of the human immunoglobulin heavy
chain, injected into 141 patients with septic shock generated no
improvements in patient prognosis. On the contrary, it
unexpectedly increased mortality in a dose-dependent manner
(36). Thus, this potential therapeutic agent can actually worsen
the prognosis. The usefulness of TNFR-Fc was demonstrated
later in rheumatoid arthritis (37). In both sepsis and rheumatoid
arthritis, the central role of TNF in dysregulation of the immune
system leading to hyperinflammation were assumed to be the
essence of the pathology. However, insights gained from this
clinical trial on TNF-a inhibition does not support a simple
concept of hyper-inflammation induced by TNF driving the
pathogenesis of sepsis.

Immunothrombosis refers to the crosstalk that occurs between
coagulation and the immune system (38, 39). Thrombus
formation may play an important role in preventing the spread
of infection from local sites to the entire body. However, excessive
coagulation and platelet activation can induce immune cell
recruitment and inflammation. Overactivated platelets cause
not only vascular occlusion in micro vessels, but also tissue
injury due to the release of platelet-derived microparticles (40).
Moreover, these platelets also cause excessive consumption of
coagulation factors, resulting in so-called disseminated
intravascular coagulation (DIC). Furthermore, inflammation
induced the expression of tissue factor on monocyte, thereby
triggering the coagulation cascades that lead to the platelet
activation (41). With this theoretical background, the
suppression of excessive coagulation related to sustained
inflammation can be an effective treatment. Activated protein
C, which is converted from protein C via a complex of thrombin
and thrombomodulin, promotes fibrinolysis and suppresses
thrombus and inflammation during inflammatory activation in
sepsis (42). In addition, activated protein C has been shown to
suppress inflammation by directly acting on neutrophils to inhibit
integrin activation and NETs formation (43, 44). Administration
of activated protein C might be useful for maintaining an
appropriate degree of immunothrombosis and preventing DIC.
This is due to the fact that in sepsis, after thrombomodulin has
been down-regulated by inflammatory cytokines, the conversion
of protein C to activated protein C is suppressed (45).

In the clinical trial lead by the Recombinant Human
Activated Protein C Woldwide Evaluation in Severe Sepsis
(PROWESS) Study group, recombinant human activated
protein C (rhAPC) was shown to reduce patient mortality
from sepsis (46). However, a subgroup analysis also revealed
that the administration of rhAPC was most effective in the severe
group (those with an APACHE (acute physiology and chronic
health evaluation) II score of 25 or higher). In fact, no reduction
in mortality was observed in patients with an APACHE II score
of less than 25, and the risk of serious bleeding increased in the
patient group with APACHE II scores less than 20. In a
Frontiers in Immunology | www.frontiersin.org 5
metanalysis of the four RCTs that compared activated protein
C versus placebo, the effectiveness of APC was not evident when
a 28-day mortality was set as primary endpoint. Moreover, this
metanalysis revealed the increased risk of bleeding associated
with rhAPC (47). A ROWESS-SHOCK trial that focused on
patient with septic shock found no significant beneficial effects
on either mortality or bleeding (48). Ultimately, rhAPC was
withdrawn from the market.

Thrombomodulin acts as dual regulator in coagulation
and inflammation, making it a promising target for
immunothrombosis in sepsis (49). In addition to generating
an anticoagulant effect by converting protein C to activated
protein C via the formation of a complex with thrombin,
thrombomodulin exerts an anti-inflammatory effect by
absorbing high-mobility group box 1 (HMGB-1) via the lectin-
like region (D1) located at the N-terminus and by inhibiting
leukocyte integrins via the serine/threonine domain (50, 51).
Moreover, thrombomodulin binds to C3b and factor H, thereby
negatively regulating the activation of C3b (52). Complement,
which recruits and activates leukocytes, endothelial cells and
platelets, is important to the innate immune system. However, its
uncontrolled activation during sepsis can injure organs (53).
Recombinant human soluble thrombomodulin (rhsTM) is an
active extracellular domain comprised of thrombomodulin. To
date, there have been many discussions regarding the clinical use
of thrombomodulin for the treatment of septic patients. The
SCARLET (Sepsis Coagulopathy Asahi Recombinant LE
Thrombomodulin) trial that utilized rhsTM to treat sepsis
failed to improve the 28-day all-cause mortality rate (54). At
the moment, there is little clinical evidence to support the use of
thrombomodulin to treat sepsis.

As discussed herein, many anti-inflammatory treatments
targeting various pathways that have proven effective in
animal studies have not yielded convincingly positive results
in human sepsis clinical trials. Meanwhile, acknowledging
that hyperinflammation is not the only key therapeutic target,
the focus of sepsis research is shifting from only suppressing
hyper-activated immune system to restoring paralyzed
immune system.

Paradoxical Immunoparalysis
Although sepsis has traditionally been characterized as
constituting an aberrantly augmented immune response,
the increasing prevalence of nosocomial infections in sepsis
patients suggests the presence of sustained immunosuppression
(55). The deregulations of the innate and adaptive immune
systems are linked to the pathogenesis of the immunosuppression
in sepsis (56).

Aberrantly induced cell death of immune cells represents a
primary cause of immunosuppression in sepsis. A previous in
vivo study utilizing Caspase-7 knockout mice have shown that
lymphocyte apoptosis in sepsis was suppressed, which lead to the
improved survival (57). Apoptosis is a highly regulated form of
programmed cell death without eliciting an inflammatory
response. Programed cell death and apoptosis are different
in their details; for example, the caspase-dependent form
February 2021 | Volume 11 | Article 624279
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constitutes apoptosis (58). There are classically at least two major
signaling pathways that lead to apoptosis: the extrinsic pathway
and the intrinsic pathway. The extrinsic pathway starts from
binding ligands to those receptors anchored to cell membrane.
Ligands are comprised of TNF, Fas ligand, and TRAIL (TNF-
related apoptosis-inducing ligand). Receptors are comprised of
TNFR-1, TNFR-2, Fas receptors (CD95), and TRAIL receptors.
The triggering of these receptors by ligands results in the
formation of a death-inducing signaling complex (DISC).
Caspase 8 dissociates from the DISC to start the caspase
activation cascade that lead to apoptosis (59). On the other
hand, the intrinsic pathway is non-receptor-mediated; rather, it
is driven by mitochondrias. Bax/Bak insertion into
mitochondrial membrane causes cytochrome c release from the
mitochondrial intermembrane space into the cytosol (60).
Cytochrome c forms an apoptosome with Apaf–1 and
procaspase-9. Apoptosome triggers caspase 9, which starts the
caspase-3 signaling cascade toward apoptosis (61). Both the
extrinsic and intrinsic pathways are activated and apoptosis-
induced lymphopenia is observed in sepsis (62). Patients with
sepsis exhibit apoptosis and/or suppressed functions of immune
cells such as CD4+ and CD8+ T cells, B cells and dendritic cells
(63) (64, 65). Among them, CD4+ helper T cells, which are
crucial for directing appropriate immune responses, are divided
into multiple subtypes: not only classically recognized Th1, Th2,
and Th17 effector T cells, but also unique sub-populations such
as regulatory T cells (Tregs) and Th9 (66). Th9 cells are an
abundant source of IL-9, which is a pleiotropic cytokine that acts
on many cell types. One immunological role played by IL-9 is the
production of IL-4-mediated IgE and IgG from B cells (67). The
Th1/Th2 paradigm cannot completely explain the role of current
known helper T cells (68). Immune function is intricately
suppressed by the apoptosis of various lymphocytes.

Unresponsive adaptive immunity caused by lymphocyte
exhaustion is another mechanism of immuno-suppression in
sepsis. In chronic viral infections and cancers, T cells are exposed
to persistent antigens and inflammatory signals. Continued
stimulation of T cells leads to gradual exhaustion. One of the
mechanisms of exhaustion is the expression of PD-1 on the
surface of T cells that function as immune checkpoints.
Exhausted T cells lose their effector function. Specifically, they
first lose IL-2 production and their high proliferative capacity,
followed by a decrease in the production of IFNg, TNF, and
chemokines (69). The immune system is unable to mount an
appropriate immune response against virus-infected cells or
cancer cells. T-cell exhaustion is involved in the immune-
paralysis in sepsis. T cells harvested from the spleen of patients
who died of sepsis have only a low capacity to produce IFNg and
TNF, suggesting a state ofT-cell exhaustion. This study also showed
the increased expression of PD-1 on T cells and increased
expression of PD-L1 on macrophages and endothelial cells (63).
These results indicate the importance of the PD-1/PD-L1 pathway
for lymphocyte exhaustion, eventually leading to poor outcomes in
patientswith sepsis.However, it is important tonote that theactivity
of exhausted T cells can be restored by interfering with the PD-1/
PD-L1 pathway, as described later.
Frontiers in Immunology | www.frontiersin.org 6
Suppressed activities of antigen presentation is also
responsible for immune suppression in sepsis. In sepsis, the
expression of major histocompatibility complex (MHC) class II
molecules and human leukocyte antigen DR isotype (HLADR)
on antigen-presenting cells (APCs), including dendritic cells and
macrophages, is reduced. In addition, the number of dendritic
cells that undergo apoptosis increases in patients with sepsis (70).
Decreased HLA-DR expression in monocytes is known to correlate
with poor outcomes in sepsis (71). In animal studies, the impact of
sepsis on tissue-resident dendritic cells differ in the systemic and
mucosal organs (72) and the prevention of dendritic cell apoptosis
improved the survival rate of sepsis (73). These facts support the
contention that the reprogramming of antigen-presenting cells
causes immunoparalysis in patients with sepsis.

The expansion of regulatory T cell and myeloid-derived
suppressor cell (MDSC) populations constitutes an important
mechanism to induce immunoparalysis in sepsis. Regulatory
T cells usually maintain self-tolerance by suppressing
the activation of auto-reactive effector T cells, thereby
preventing auto-immune diseases under physiologic
condition. Regulatory T cells increase during sepsis and
generate pathologic immunosuppression by suppressing not
only effector T cells, but also monocytes and neutrophil
functionality (74). Inhibition of regulatory T cells has been
reported to improve immunity and mortality rates in septic
animal models (75). MDSCs are heterogeneous immature
myeloid cells that are not normally detected, but which
reach increased levels in cancers and sepsis (76). MDSCs
suppress antigen-specific CD4+ and CD8+ T-cell activation
(77). In addition, increased MDSCs are associated with greater
numbers of regulatory T cells (78). Clinically, increased blood
MDSCs have been linked to the increased prevalence of
nosocomial infections in patients with sepsis (79).

Immunomodulation; Past Failures
and the Future Attempts
Recent progress in the sepsis research has revealed that
immunosuppression occurs from the onset, but not in the late
phase, of sepsis. The immune-suppression in sepsis results from
the paralyzed immune system. The key to the treatment of sepsis
is to restore the functions of the paralyzed immune system while
avoiding the exacerbation of the immune system, which could
induce unwanted hyperinflammation. In 1996, the restoration of
the anti-tumor activity of T cells by CTLA-4 blockade was
reported in a mouse model (80). A human lgG 1 kappa
monoclonal antibody, ipilimumab, has been developed that
binds to CTLA-4 (81). Therapeutic efficacy of Ipilimumab has
been reported to correlate with the ability of receptors binding to
Ipilimumab, indicating the importance of interaction between
ligand and receptor of immune check point pathway (82). The
clinical application of immunotherapy for cancer using
checkpoint inhibitors targeting CTLA-4 and PD-1/PD-L1
pathway has been expanding. Many reports have been
published on the safety of utilizing immunomodulation aiming
to restore chronically suppressed immune functions in patients
with malignant tumors (83). However, the immune suppression
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in patients with sepsis often occurs more acutely than in those
with cancer. Moreover, patients with sepsis are severely ill
requiring intensive care management compared with cancer
patients. Thus, one should be cautious in extrapolating from
the findings of the immune suppression in cancer patients to the
application for sepsis patients.

A few growth factors have been studied to restore the
impaired metabolism of the critical organ systems including
the immune system in severely ill patients. Growth hormone
administration has been reported to improve the balance of
nitrogen in patients with sepsis (84). In surgical patients, the
administration of growth hormones enhanced immunity by
maintaining immunoglobulin levels, which led to the reduction
of the postoperative surgical site infections (85). Growth
hormone may restore the paralyzed immune system by
maintaining protein synthesis in critically ill patients. However,
in contrast to the expectation, two RCTs comparing high doses
of growth hormone or placebo in critically ill patients showed
increased rates of mortality. Moreover, growth hormone
treatment was associated with prolonged mechanical
ventilation, ICU stays and in-hospital admission days (86).
These results fail to support the strategy of treating critically ill
patients by improving protein synthesis with growth hormone.
Similarly, Keratinocyte growth factor (KGF) aiming to restore
the alveolar epithelial damages in the lung injury was studied in a
Phase2 clinical trial for Acute Respiratory Distress Syndrome
(ARDS) patients, thereby failing to improve their clinical
outcomes. Moreover, KGF therapy was associated with the
adverse events stemming from pyrexia (87).

Administrations of cytokines have been studied to restore the
paralyzed immune system in sepsis. IFNg has been shown to
improve phagocytic capacity and HLA-DR expression on
monocytes in human sepsis and related to earlier recovery
from sepsis (88). Granulocyte-colony stimulating factor (G-
CSF) and granulocyte-macrophage colony stimulating factor
(GM-CSF) are also potential therapeutic agents for restoring
the paralyzed innate immune system in sepsis. The meta-analysis
performed in 2011 encompassing 12 RCTs revealed that G-CSF
and GM-CSF failed to improve the mortality of sepsis patients
(89). On the other hand, G-CSF and GM-CSF did not increase
the frequency of complications related to hyperinflammation
which was defined as life threatening organ dysfunctions like
acute respiratory distress syndrome.

IL-7 plays a major role in the proliferation of CD4 + and
CD8 + T cells, and also possesses antiapoptotic properties (90).
Significant improvements in lymphocyte function by IL-7 have
been observed in experiments involving an animal model of
sepsis and using the blood of septic patients (91). The safety of
IL-7 has been confirmed in clinical practice in patients with
malignant tumors and HIV. In 2018, the phase 2b clinical trial
studying the ability of recombinant human IL-7 to reverse the
immunosuppression in sepsis demonstrated that the IL-7
treatment increased the number of lymphocytes without
exacerbating inflammation (92). Future large-scale RCTs are
expected to address clinical effectiveness of IL-7 for the
treatment of sepsis.
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PD-1/PD-L AS A NOVEL THERAPEUTIC
TARGET TO REVERSE IMMUNE PARALYSIS

PD-1 represents a pivotal inhibitory checkpoint regulator that
acts to dampen the activation signals elicited by T-cell receptor
(93). PD-1 is a transmembrane protein widely expressed on
immune cells including dendritic cells, NK cells and monocytes,
which function as a costimulatory molecule (94). PD-L1 and PD-
L2 are the ligands to which PD-1 binds and are expressed on the
surface of various cells including tumor cells. PD-L2 binds to
PD-1 with a higher affinity than does PD-L1 (95). The binding of
PD-1 to PD-L suppresses T cell activation and cytokine
production due to T-effector cell exhaustion and conversion of
T-effector cells to regulatory T cells (96). By expressing the ligand
of PD-1, tumor cells suppress the immune activity towards
cancer cells, thereby escaping the elimination by immune cells.
Several inhibitors to perturb the interactions between PD-1 and
PD-L, thereby aiming to restore the paralyzed immunity against
cancer, have proved clinically effective and been approved for the
treatment of cancer (97). For example, Nivolumab, a human
monoclonal antibody to PD-1, is used for the treatment of
advanced melanoma (98). As a part of the mechanisms
underlying immunosuppression in sepsis and malignancies are
similar (99), the inhibition of the PD-1/PD-L1 interaction has
been studied for theoretically restoring the immune suppressive
states in sepsis.

PD-1/PD-L in Sepsis
The enhanced expression of PD-L1 on various types of cells in
sepsis has been documented. The expression of PD-L1 on both
stromal cells and dendritic cells increased during sepsis. Splenic
capillary endothelial cells from patients who died of sepsis
expressed more PD-L1 than spleens from patients with brain
death or trauma requiring emergent splenectomy (63). PD-1 is
upregulated on T lymphocytes whereas PD-L1 is upregulated on
monocytes in septic shock patients (100). The levels of PD-L1
expression on monocytes correlates with 28-day mortality rates
in patients with sepsis (101). These findings support the idea that
the aberrant activation of the PD-1/PD-L1 pathway constitutes a
major cause of the immuneparalysis in septic patients.

Clinical Trials Approaching for PD-1/PD-L
The significance of the PD-1/PD-L1 pathway in the pathogenesis
of sepsis-induced immune paralysis has been substantiated in
mouse sepsis models. Huang et al. have demonstrated that the
survival rates of PD-1 knockout mice improved in a sepsis
mouse model induced by the cecal ligation-and-puncture
procedure, which caused bacterial pan-peritonitis leading to
sepsis (102). Following up on this study, sepsis animal models
induced by both bacteria and fungi have been treated with PD-1
or PD-L antibodies, improving overall survival rates (103–105),
which support further evaluation in clinical trials. Nivolumab
is the anti-PD-1 antibody approved for the treatment of cancer
patients. The 2019 phase 1b clinical trial has studied the
safety and tolerability of nivolumab given to septic patients,
thereby showing that no adverse incidences including the
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aforementioned “cytokine storm”, were found (106). Another
2019 phase 1b clinical trial studying the safety of the anti-PD-L1
antibody BMS-936559 has also confirmed the safety in sepsis
patients , thereby showing no adverse incidence of
hypercytokinemia (107). Phase 2/3 clinical trials in the future
are required to validate the PD-1/PD-L1 pathway as the
therapeutic target for reversing the immune paralysis in sepsis.

PD-1/PD-L and Innate Lymphoid Cells;
Not Causing Immune-Paralysis But
Rather Hyperinflammation
PD-1 on T cells has been well characterized and validated for the
therapeutic target for cancer immunotherapy. A few recent
investigations have studied the roles of PD-1 expressed on
innate lymphoid cells (ILCs), emerging types of non-T, non-B
lymphocytes lacking the expression of antigen receptors (108).
ILCs play an important role both in homeostasis and in the
inflammatory response in the immune system (109). ILCs are
classified into at least three major subsets: type 1, type 2, and type
3 ILCs. ILC1, ILC2, and ILC3 execute the important immune
regulatory roles to counterpart with Th (CD4+ T helper) 1, Th2,
and Th17 T lymphocyte effector subsets, respectively. The roles
of ILC2s in the lung inflammation induced by sepsis have been
reported. ILC2, the most abundant ILC subset in the lungs,
secretes type 2 cytokines such as IL-5 and IL-13, thereby playing
the important roles in the regulation of type 2 immune
responses, which is required for resolving inflammation and
remodeling tissues (110). Insufficient resolution of inflammation
and aberrant regulation of tissue repair and remodeling causes
acute lung injury (ALI), and lung fibrosis, leading to the
irreversible destruction of pulmonary functions. Thus,
balanced regulation of ILC2 activation is critical for the
treatment of sepsis, especially sepsis-induced pulmonary
inflammation and ARDS.

Akama et al. investigated temporal changes in ILC2
functionality in the lungs of septic mice over time by
examining the relationship of the ILC2 functions and the levels
of lung injury in a cecum ligation and puncture (CLP) mouse
sepsis model (111). The authors studied how the activities of
ILC2s to produce the type 2 cytokine IL-13 correlated with the
expressions of the stimulatory receptor ST2 and inhibitory
receptor PD-1. IL-13 could exert a protective effect against
sepsis by suppressing local inflammation, as shown by the
previous study that antibody-mediated inhibition of IL-13 in
the sepsis model increased macrophage inflammatory protein-2,
macrophage inflammatory protein-1a and TNF-a levels (112).
IL-33 is known to activate ILC-2 via ST2 receptor, thereby
inducing the secretion of IL-13 that would promote the
differentiation of macrophages to the anti-inflammatory M2
phenotype (113). The study has revealed that down-regulation
of IL-13 in ILC2s correlated with the elevated expression of PD-1
on ILC2 in septic lungs, thereby suggesting that the PD-1/PD-L1
pathway in ILC2s functions as the inhibitory circuit to blunt type
2 immune response. IL-33 released from the injured pulmonary
epithelial cells is necessary for the activation of ILC2 via the ST2
receptor. The induction of the type 2 immune response in a
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timely manner is critical for the resolution of inflammation, as
shown by the experiment using IL-33 KOmice that lack the ILC2
activation (111). IL-33 KO mice showed delayed recovery from
sepsis-induced systemic inflammation and wasting condition.
Taken together, the perturbation of the PD-1/PD-L pathway in
ILC2 could inhibit the induction of type 2 immune response in
sepsis, thereby potentially compromising the resolution
of inflammation.

PD-1 and PD-L1 on Exosomes
The inhibitory signals through PD-1 on T cells are usually
elicited by the binding to PD-L1 present on the opposing cells.
Recent investigations have revealed that exosomes function not
only as an alternative vehicle of PD-L1 to induce signals through
PD-1, but also as a specialized platform to induce more robust
inhibitory signals. EVs are lipid bilayered nanoparticles that
contain RNA, DNA and proteins, thereby playing a role in
intracellular communication. It has been reported that the
depletion of exosomal PD-L1 by a genetic manipulation
reversed cancer-associated immune suppression despite the
intact presence of PD-L1 on the cell surface (114). The
depletion of exosomal PD-L1 also inhibits tumor growth and
achieve survival in a mouse model, supporting the idea that it is
exosomal but not cell surface PD-L1 that is responsible for PD-1-
mediated immune suppression. Of note, exosomal PD-L1
appears to be resistant to anti-PD-L1 antibody blockades
aimed to interfere with the interaction of PD-1 on T-cells with
exosomal PD-L1 (114). Although underlying mechanisms are
unclear, exosomes present deep in the core of the tumor
microenvironment might be sequestered and unreachable from
systemically administered antibodies.

The roles of exosomes in the pathogenesis of sepsis have
attracted much attention (115). PD-L1 and PD-L2 on exosomes
circulating in the plasma of sepsis patients have been investigated
by Kawamoto et al. who revealed that the beta2 integrin and PD-
L2 on exosomes increased levels during sepsis compared to non-
septic SIRS and health volunteers (116). Whereas the levels of
PD-L1 on exosomes did not change in sepsis, the amount of
circulating soluble PD-L1 including exosomal PD-L1 increased
in sepsis. The levels of soluble PD-L1 and the leukocytic beta2
integrin showed significant correlation to clinically defined organ
dysfunctions such as kidney injuries. The pathological roles of
exosomal PD-L1 and PD-L2 in sepsis-induced immune
suppression warrant further investigations in the future.
HETEROGENEITY OF SEPSIS SYNDROME:
HOW THE MAIN OBSTACLE FOR CLINICAL
TRIALS COULD BE SOLVED BY AI

As a deeper understanding of the pathology underlying sepsis is
being gained in the laboratories, many experimental therapeutic
(but not prophylactic) treatments for inflammation suppression
and immunomodulation have been successful in animal sepsis
models (23–25). However, none of such treatments have proven
effective in controlled clinical trials. The reason why they have
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not been successful in clinical trials could be animal models not
recapitulating human sepsis pathophysiology as well as the
diverse pathophysiology of human sepsis resulting in the
heterogenous patient populations. Most animal sepsis models
are developed in genetically homogenous laboratory animal
strains using relatively unified “ inducers” , such as
administration of an endotoxin or bacterial peritonitis by CLP.
In clinical practice, patients’ genetic and social backgrounds as
well as types of sepsis inducers vary vastly; individual medical
histories, the triggering infection, and the clinical course vary
greatly among patients. Nonetheless, because sepsis is in fact a
syndrome defined as a life-threatening organ dysfunction caused
by a dysregulated host response to infection, it is diagnosed based
on clinical symptoms and medical history, and not on the
underlying molecular mechanisms, which can involve a wide
variety of pathologies. At present, although sepsis has not been
formally classified based on the underlying type of pathology, the
identification of specific sepsis subgroups that could respond to a
certain treatment is under intense investigations using a new
enabling technology, AI. The drawback for classification is that
sepsis has a clinically rapid time course compared to malignant
tumors and chronic diseases. As the “Hour-1 Bundle” (117)
proposal sets forth, medical professionals need to formulate a
treatment policy as soon as a patient is diagnosed with sepsis. If
lifesaving is to be successful, it is particularly important to detect
sepsis using broad diagnostic criteria and not to miss those
patients who need intensive care resources. It is extremely
difficult for even a skilled clinician to classify sepsis based on
the limited information typically available at the beginning of
treatment. AI may make this possible.

Artificial Intelligence and Sepsis
Machine learning in big data analysis is a fast-growing area in recent
years (118). Unlike traditional statistical analysis, the process of the
optimized classification derived by machine learning, in particular
that by deep learning, is not transparent at first glance and is difficult
for humans to understand and interpret intuitively (119).
Furthermore, deep learning models, which form a part of
machine learning, use a deep neural network to create an optimal
model from raw data and require less human guidance. For
example, both the hypothesis and verification that low oxygen
saturation is related to the over-expression of PD-L1 on
monocytes, resulting in an impaired immune response during
sepsis, is easy to understand from our clinical standpoint (120). It
is assumed by many of us that these kinds of reasonable hypothesis-
based research paradigms are representing the mainstream science
and will continue to play some roles in the future. However, AI has
already begun to change the framework of research on sepsis in
various ways such as the realization of very early diagnosis and
disease subgroup classification.

A very early diagnosis based on the unbiased prediction is
where AI can surpass human physicians, thereby potentially
innovating the management of sepsis. As mentioned above, in
clinical practice, the injection of antibiotics cannot be delayed in
patients with suspected sepsis. Patients with suspected sepsis
must be given antibiotics that can adequately combat the
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causative organism and be collected blood cultures within 1 h
(117). On the other hand, excessive administration of broad-
spectrum antimicrobials can generate a hotbed for drug-resistant
bacteria, which should be avoided from a public health
perspective. A rapid, sensitive and specific diagnosis is
desirable. It has been shown that an algorithm constructed by
machine learning can recognize sepsis hours earlier than can be
done by humans in clinical practice (121). In fact, an algorithm
created by AI that can predict sepsis up to 48 h in advance has
been reported (122). Achieving early diagnoses using multiple
parameters is a capability unique to the innumerable calculations
made possible by machines.

Predicting the deterioration of specific organ functions at an
early stage is similarly a specialty of AI. Although early detection
of acute kidney injury is difficult to detect as a clinical symptom,
early detection of it reportedly leads to improved prognosis
(123). In 2019, with the growing demand for early diagnosis of
acute kidney injury, an AI was developed based on the data from
more than 700,000 cases that could predict the onset of acute
kidney injury requiring hemodialysis. Its reliability measured
90% or more (124). The AI algorithm developed by DeepMind, a
subsidiary of Google, known for its successful development of AI
capabilities AlphaGo and AlphaStar that exceed the human
world champion level of a strategy board game Go. With the
advent of deep learning, not only medical professionals and
medical researchers but also information technology specialists
and engineers/programmers/data scientists are becoming more
involved in the advancement of medicine.

As with kidney injuries, AI can also be used to predict the
onset of ARDS, which is a serious condition of the lungs (125,
126). Ventilation management is essential in severe ARDS and
requires significant medical resources. As this has emerged as a
major social problem with the COVID-19 (coronavirus disease
2019) pandemic, predicting the onset of ARDS is crucial to
determining policies aiming to properly allocate the limited
medical resources such as ventilators and ICU beds. In
addition, deep learning, which has led to treatment strategies
that can have made direct contributions to clinical practice,
continues to advance (127). This study showed that AI could
offer more reliable treatment strategies than human doctors. In
one validation cohort, the mortality rate was lowest when the
treatment strategy of the human clinician matched that proposed
by AI.

In addition to the very early unbiased diagnosis of sepsis and
organ failures, AI has made significant contributions to the
clinically significant sub-grouping of sepsis. This could lead to
the solution of the heterogeneity problem in sepsis, which
underlies the difficulty of achieving translational success in the
treatment of sepsis. In 2019, an innovative report was published
in JAMA that sorted sepsis into four clinical phenotypes based
on machine learning data analysis of 20,189 patients with sepsis
(128). The raw data incorporated into this machine learning
study were simply the parameters commonly collected through
usual clinical practice: demographic information, laboratory
abnormalities and organ dysfunctions. AI has achieved the
unprecedented classification consisting of 4 sepsis subgroups:
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a, b, g and d that physicians have been unable to formulate on
their own. The a phenotype shoewed neither abnormal blood
results nor organ damage in a phenotype, thereby indicating the
lowest in-hospital mortality rate. The b phenotype was older, had
more chronic diseases, and suffered from renal dysfunction. The
g phenotype was marked by fever and elevated blood collection
markers associated with inflammation and vascular endothelial
damage. The d phenotype showed the highest 28-day and 1-year
mortality and hypotension and elevated serum lactate levels.
Coagulation-related laboratory values were also notably elevated
in this d phenotype group. The four phenotypes of sepsis
reported in the JAMA paper were different from the
conventional classification system, which is based on the types
of primary disease, organ damage, and severity of systematic
conditions that are consistent with clinical impressions.
(Figure 2)

As described earlier in this article, therapeutic agents used for
immunothrombosis, such as activated protein C and
thrombomodulin, failed to prove effective for sepsis in clinical
trials (47, 48, 54). However, in the light of the AI-based new sub-
group classification of sepsis, [e.g., a, b, g, and d phenotypes
(128)], we may have to re-visit the experimental therapies. The
formation of NETs is known to be involved in septic DIC, and
the mechanism underlying neutrophil activation has been
divided, in terms of molecular pathology, into two types; that
by pathogen invasion and that by the indirect formation of
suicidal NETs as a result of cytokine overproduction (129). The
generation of NETs by the former mechanism can be suppressed
by rhsTM (130). Even when the mechanism is examined at the
molecular level, it remains impossible to recommend therapeutic
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agents based on the idea that sepsis is a singular condition. In
other words, if the pathogenesis of NET can be inferred from
clinical findings, clinical trials can be conducted only in those
patients for whom rhsTM is effective (131). In this manner,
results that might significantly improve patient prognosis could
be obtained. It is reasonable to expect that AI will become
capable of detecting cases of sepsis in which immunoparalysis
is the main pathological condition, too. Targeting only the
appropriate cases increases the likelihood that clinical trials
will succeed.

AI has proven a powerful enabling technology in the
management of sepsis, it is important to note that AI is not a
panacea. The black-box problem and the frame problem are two
major caveats that could potentially prevent the successful
applications of AI in the field of medicine. The black box
problem is that AI automatically makes an “optimized”
decision for us without showing the process of optimization in
such a way as human can understand intuitively. In the black-
box model, we don’t usually have a clue as to whether the
optimized decision made by AI is likely to be right or not. In
an extreme scenario, we may not even know whether AI
malfunctions as did HAL9000, a fictional AI in Arthur C
Clarke’s Space Odyssey. In fact, malfunctioning of AI is not
unreal in the face of the emergence of generative adversarial
networks. While it is a merit of AI to be able to perform
calculations that are not bound by human capacity and biases,
applications of AI in medicine would demand a white-box
aspect, in which the process of optimization is monitored and
interpreted by human. Balancing interpretability and accuracy is
an unresolved issue contemporarily. Further, the frame problem
FIGURE 2 | Subgrouping difference between human and Artificial Intelligence (AI). The reason why clinical trials have not been successful regardless of a deeper
understanding of the pathology underlying sepsis is the diverse pathophysiology of sepsis in humans compared to animal sepsis models which are developed using
relatively unified methods. Physicians usually classify septic patients by based on the types of primary disease, organ damage, and severity of systematic conditions
that are consistent with clinical impressions. However, it is extremely difficult for even a skilled clinician to classify sepsis based on the limited information typically
available at the beginning of treatment: medical history, vital signs, and few blood examinations. Thus, clinical trials could not have targeted specific patients. On the
other hands, AI may achieve new classification, which is not transparent at first glance and is difficult for humans to understand, by machine learning. Only patients
with immunoparalysis detected by AI should be treated with immune checkpoints inhibitors for successful clinical trials, for example.
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is an important one that has been pointed out for several decades
(132). A myriad of events can happen in the real world, most of
which have nothing to do with the immediate problem. A
machine with only a finite amount of information processing
power is not capable of dealing with all the possible real-world
problems. AI related to sepsis has the limitation that a human
must intervene, as it is necessary to specify which parameters
should be used for learning. Fortunately, in the clinical setting of
sepsis, the parameters available to the physician are limited to
some demographic data, laboratory results, and vital signs due to
time constraints. Therefore, realistically, almost all of these will
be invested in the machine learning. However, creativity of
adding more parameters, such as the addition of new blood
tests, will still depend on humans.
DISCUSSION AND SUMMARY

Numerous clinical trials, including translational research based
on animal experiments for sepsis, have been conducted.
Nonetheless, there is still no clinically established treatment
that targets the underlying essence of sepsis; i.e., the
deregulated immune response leading to the simultaneous co-
existence of hyperinflammation and immunosuppression.
Reversing sepsis-induced immune suppression by inhibiting the
PD-1/PD-L pathway could represent a promising therapeutic
approach, awaiting a validation in clinical trials. A new consensus
Frontiers in Immunology | www.frontiersin.org 11
has also emerged that PD-1/PD-L is not merely the cause of T-cell
exhaustion, but also affects ILCs. Moreover, rather than focusing on
the expression of PD-L1 on immune cells, tackling exosomal forms
of PD-L1 and soluble PD-L1 could lead to a breakthrough. The
essential treatment for sepsis in the future will likely involve
immunomodulation by inhibiting the PD-1/PD-L1 pathway in
immunoparalyzed patients. Even though the immunoparalyzed
subgroup of sepsis was not extracted in the previous machine
learning study (128), it is important to identify such subgroups of
immunoparalyzed. In the future, data-driven, AI-assisted
personalized sepsis treatment might become a reality.
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