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ABSTRACT

Methods: A new method was developed for identifying novel
transcription factor regulatory targets based on calculating Local
Affinity Density. Techniques from the signal-processing field were
used, in particular the Hann digital filter, to calculate the relative
binding affinity of different regions based on previously published in
vitro binding data. To illustrate this approach, the complete genomes
of Drosophila melanogaster and D.pseudoobscura were analyzed for
binding sites of the homeodomain proteinc Tinman, an essential
heart development gene in both Drosophila and Mouse. The
significant binding regions were identified relative to genomic
background and assigned to putative target genes. Valid candidates
common to both species of Drosophila were selected as a test of
conservation.

Results: The new method was more sensitive than cluster searches
for conserved binding motifs with respect to positive identification
of known Tinman targets. Our Local Affinity Density method also
identified a significantly greater proportion of Tinman-coexpressed
genes than equivalent, optimized cluster searching. In addition, this
new method predicted a significantly greater than expected number
of genes with previously published RNAi phenotypes in the heart.
Availability: Algorithms were implemented in Python, LISP, R
and maxima, using MySQL to access locally mirrored sequence
data from Ensembl (D.melanogaster release 4.3) and flybase
(D.pseudoobscura). All code is licensed under GPL and freely available
at http://www.ohsu.edu/cellbio/dev_biol_prog/affinitydensity/.
Contact: hazelett@ohsu.edu

1 INTRODUCTION

In coming years much effort will be expended to understand the
information encoded in the non-protein coding regions of DNA.
The physical recruitment of cellular factors to determine what
genes are transcribed into RNA is one of the most important
functions of these regions. These cellular factors include the class of
proteins called transcription factors. Most transcription factors bind
to short, degenerate oligonucleotide sequences of 4-5bp in length
and activate transcription directly or in conjunction with larger
protein complexes. To date, efforts to understand how genomic DNA
guides this process have focused on de novo motif discovery and
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known motif mapping (Ji and Wong, 2006). Our concern is with the
latter, in which previously characterized binding site motifs are used
to predict the genomic targets of a transcription factor. Successful
early attempts (Berman et al., 2002; Stathopoulos et al., 2002) at
experimentally verified regulatory target predictions have given rise
to a modular view of transcriptional regulation. Under this paradigm,
islands of regulatory sequences contain clusters of conserved
binding sites for two or more transcription factors required for a
given process. These sequences, known as cis-regulatory modules
(CRMs), are thought to direct the timely expression of downstream
target genes as part of a regulatory code. This conceptual advance
paved the way for searches for novel transcription factor targets of
Ftz-F1 (Bowler et al., 2006) and Tinman (Halfon et al., 2002).

In spite of these well-documented attempts at reading regulatory
DNA, an indepth analysis of the distribution of genomic binding
sites and its implications is lacking. The rules governing CRM
architecture have not been discoverable by current pattern
recognition approaches. As a proxy, functionality is typically
inferred from the direct conservation of sequence motifs in cross-
species alignments. This approach assumes that unconserved sites
play little or no role in transcriptional regulation. We decided to
take a fresh look at the distribution of binding sites across an entire
genome. Low-affinity sites may serve, for example, to increase
the local concentration of factors so that they are more available
for recruitment by binding partners, or to increase transcription
initiation rates by mass action when conditions allow. In order
to achieve this, we abandoned the typical search for short-range
clusters in favor of a density map representing the likely occupancy
of transcription factors along the sequence. Our approach bears
some resemblance to prior analyses (Frith et al., 2002; Ward and
Bussemaker, 2008).

One of the limitations of the most common approach (searching
for binding site clusters), is that varying parameters—window size,
number of sites, cutoff positional weight matrix score—often results
in widely divergent predictions. The quality of these predictions
forms the basis for optimization. The cycle of analysis, evaluation
and resetting of parameters leads to an arbitrary fitting of parameters
to match prior expectation. The process also produces multiple
valid prediction sets, whose individual meanings can be difficult to
interpret. For example, a smaller window results in higher sensitivity
to dense clusters of sites. If a larger cluster window is chosen,
specificity decreases but the search is more sensitive to targets whose
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binding sites are distributed more sparsely. Varying parameters
can be biologically revealing, as demonstrated by the example
of the dorso-ventral patterning transcription factor dorsal, where
lower numbers of binding sites were found to be correlated with
targets of dorsal repression in the lateral domains of the embryonic
blastoderm (Stathopoulos and Levine, 2004; Stathopoulos et al.,
2002). However, when only one or two binding sites are available
to map, competing optimizations are an impediment to discovery.
In light of the difficulty of separating signal from noise using
cluster search methods, a new approach is needed that takes into
account both the short-range spacing and regional distribution of
sites. We developed a method that addresses these requirements
using digital signal processing techniques. We describe here the
application of the Hann filter to this problem using the previously
characterized binding site for Tinman to illustrate our approach.

2 APPROACH

We designed a search algorithm that assigns a statistic to each region
of the genome and is a continuous function of both binding site
density and location. Digital signal processing techniques are best
suited to address these requirements (Hamming, 1998). The problem
of assigning an accurate measure of binding affinity to each locus of
the chromosome can be thought of as a special case of downsampling
a digital signal, and digital signal processing techniques for
downsampling are well established. This new approach allows us
to search for genes in regions containing either dense clusters of
sites or a high background of sites, or both, simultaneously in
a computationally efficient manner across the entire genome. In
addition, we used binding affinity data to assign scoring weights
for binding sites. Finally, to increase specificity, we compared
significant predictions from two species of Drosophila, effectively
treating binding affinity as a conserved property of chromatin.

3 METHODS
3.1 Scoring

We scored each genomic locus with a value proportional to the measured
dissociation constant for each known binding site. We chose this method over
a positional weight matrix to characterize the Tinman binding site in order to
leverage the wealth of biochemical data available for Tinman and other NK
homeodomain proteins. We normalized the sequence score by dividing by
the strongest Tinman-monomer/binding-site interaction. Watada ez al. (2000)
reported a 5-fold higher affinity of the NK homeodomain protein Nkx2.2, a
mammalian ortholog of Tinman, for the sequence ‘TCAAGTG’ than for an
alternative binding site, “TTAAGTG’. Thus, we assigned a relative affinity
of 1.0 to the sequence “TCAAGTG’. We therefore assigned a relative affinity
of 0.2 to the sequence ‘TTAAGTG’.

In order to account for cooperativity that has been reported for Tinman
homodimers (Kasahara et al, 2001; Zaffran and Frasch, 2005), we
incorporated data from electrophoretic mobility shift assays. Zaffran and
Frasch (2005) reported an 8-fold difference in binding affinity between the
monomer and dimer binding sites (Kd 430 nM versus 52 nM, respectively).
A dimer binding site consists of two binding sites in opposite orientation.
Dimer strength varied slightly with the number of intervening nucleotides
between the constituent monomers (Zaffran and Frasch, 2005), with the
strongest dissociation constant measured at 6 bp (52nM). We interpolated
the intermediate values from Obp to 15bp between binding sites and gave
a maximum weight of 8.27 to dimers 6 bp apart. The dimer function was
truncated to 2.0 for spacers sized at <3bp or >12bp, equivalent to no
cooperativity.

3.2 Signal processing

We calculated the intensity of binding at each nucleotide of the genome
based on a combination of binding affinity data and pattern matching of
nucleotide sequences. First, the genome was scanned by a scoring function,
which assigned a score ¢(S;) to each base of the chromosome. In our study,
this score was based on binding affinity information for fixed sequences
starting at the given base pair. Then, these data were reduced to a regional
density over a region of size 2N by filtering the sequence of scores with a
convolution filter, a weighted average of the scores at each base pair. Each
2N base pair window overlapped the adjacent windows on either side by N
bases. The particular weighting function (or kernel) that we chose is known
as the Hann window, a cosine curve [Hamming, 1998; see Equation( 1)]. The
advantage of this type of convolution kernel is that it is a function not only of
the number of binding sites within the window, but also how close together
the sites are within the window and where they occur. The resulting statistics
makes a reasonable tradeoff between measuring the density of sites, and
measuring the location where that density occurs. Thus, the affinity density
p, for the n-th genomic segment of length N, is given by
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N is a resolution factor in number of bases, meaning that the information
in chromosomes is reduced by a factor of N :1. The normalization constant
K is simply the sum of the weights, which ensures that the statistic does not
scale with different window sizes (N):
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For comparison and interpretability purposes the output was multiplied
by 1000 to get a value per kilo base.

Unless otherwise indicated, N =2'2 for this study, dividing the average
Drosophila gene (~10kb) into two or three overlapping regions. Although
we used a particular scoring function defined by a set of fixed patterns and
their associated binding affinities, ¢ represents any generic scoring function
that assigns a value to the nucleotide sequence S; beginning at position i
of the n-th segment for which density p is being calculated. Any suitable
function, such as a positional weight matrix could be substituted for ¢.

3.3 Significance predictions

In order to filter out the expected background noise in the binding site density
data, we multiplied each density by a sigmoidal function of the density [see
Equation (3)]. Since the weighted density is a continuous function of position
and number of sites, we used this continuous version of a threshold to reduce
irrelevant background rather than a hard cutoff. The sigmoid can be thought
of as a logistic regression curve with two important parameters, one for
the location of the 50% transition point, and one for the transition rate. We
set the 50% point of the sigmoid at a reference density prr selected to be
approximately three times the expected score, and the transition rate so that
the SD of the implied density was equal to the expected score for one binding
site in the region. The result is that high-scoring regions are reduced by a
negligible amount, whereas regions of lower than average density are reduced
to nearly zero all in a continuous manner (e.g. pref ~0.541, and s~0.110 for
D.melanogaster using the Tinman motif).
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This sigmoid was changed for each genome and binding site motif by
calculating appropriate expected density and transition rate. Due to the shape,
high scoring regions are not sensitive to the parameters of the sigmoid, but the
sigmoid parameters do affect how much of the low scoring regions contribute
to the score for each gene.

A plot of the sigmoidally filtered Affinity Density data reveals the variation
in binding affinity at the level of the whole genome (data not shown). At this
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Fig. 1. A region of interest demonstrates the physical location of several
predicted Tinman targets and other genes (arrows) relative to regions of
high Tinman binding affinity. A spline was fit to the individual affinity
data (‘cross’). Some of the displayed targets are not conserved between
D.pseudoobscura and D.melanogaster and are therefore not among our
predictions (Table 2).

resolution, peaks are clearly visible overlapping many known Tinman targets
and other mesodermally expressed genes, as might be expected. A detailed
view of a region of interest containing tin and Bap, both Tinman targets,
reveals clear peaks in the vicinity of these genes as well as other targets
from our prediction set, as expected (Fig. 1).

The next step is to assign a figure-of-merit to each gene by combining
the binding site affinity densities in the regions around the location of the
gene in the genome. Our figure of merit was the sum of the sigmoidally
filtered binding site affinity density scores for convolution windows that
overlap the flybase annotated gene or the region 1 kb to either side of the
annotation. We explored various buffer sizes for the regions around the gene,
and settled on 1 kb. We use this equally weighted centered window around
the gene to reflect the lack of prior information about where the regulatory
regions are located relative to genes. If better information were available
about the relative locations of regulatory regions across a sample of genes,
an unequally weighted sum that reflected these relative probabilities could
be used. However, since certain promotor sequences have been found far
downstream or upstream of their target genes, we were unwilling to use a
more narrow, or informed prior distribution at this time.

3.4 Conserved prediction sets

Most published accounts of genomic binding site searches to date have
leveraged sequence conservation with great success. Therefore, we chose
to incorporate a test of conservation between two Drosophilid species as a
further means of filtering our predictions.

We accomplished this by comparing two independently derived lists
of target predictions from parallel searches in two related genomes,
D.melanogaster and D.pseudoobscura. We examined various scoring
mechanisms that combine two independently derived scores such as adding
the scores, multiplying the scores and using the first principle component
of the two scores. We settled on making a list of genes for each organism
with a cutoff score of >0.7 and taking the intersection of the two lists. This
procedure captured the bulk of known Tinman targets (Fig. 2). This ad hoc
method was useful for our purposes, but should be replaced with a method
based on a systematic approach that optimizes the tradeoff between longer
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Fig. 2. Target predictions were selected on the basis of conservation in two
species of Drosophila. Each point (gray) represents the log of scores of a
single gene. Dotted lines reveal the cutoff values used for selection. The
points corresponding to known targets of Tinman from the literature are
highlighted with circles.

prediction sets, and the researcher’s perceived cost of missing an additional
valid prediction.

Our Affinity Density model assumes that the number of sites within a
region and their placement within the region are important for recruitment
of transcription factors, and therefore even as evolutionary distance increases
the affinity density should remain similar. Since affinity density is as much
a structural property of the chromosome as it is a function of the primary
sequence of the DNA, we selected common predictions made on this basis
instead of nucleotide-for-nucleotide sequence conservation (see Section 5).
Predictions were ranked by the average of the figure-of-merit statistic from
D.melanogaster and D.pseudoobscura.

4 RESULTS

4.1 Affinity density measurement increases sensitivity
to known Tinman targets

We found that affinity density measured by application of the
Hann filter to binding site data provided greater sensitivity than
searches for clusters of conserved motifs such as those produced in
Target Explorer (Sosinsky et al., 2003) or GenomeSurveyor (Noyes
et al., 2008) as a predictor of known Tinman regulatory targets
(Fig. 1). One method of measuring the sensitivity of target prediction
algorithms is to compare expression patterns between the predicted
target list and the transcription factor whose binding site motif was
used to derive it.

The Berkeley Drosophila Genome Project (BDGP; http://www.
fruitfly.org/) maintains a database of in situ patterns as gene names
annotated with a controlled vocabulary of expression terms, plus
the images used to assign terms. If our prediction list were valid,
we would expect to find associated with these genes the same
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Table 1. Coexpression of prediction sets with Tinman

Table 2. Comparison of motif-mapping methods

Algorithm Expression data  ovrlp tin expr pat (%)  P-value Tinman targets Annotation AD TE GS
Affinity Density 33 18 (54.5) 0.0071 tinman CG7895 2 11 11
TargetExplorer 6 2(33.8) 0.3291 bagpipe CG7902 4 291
GenomeSurveyor 20 10 (50.0) 0.0581 zfhl CG1322 23
pannier CG3978 36 14
Top 100 predicted Tinman targets with equivalent coexpression terms in the BDGP in Jjelly belly CG30040 67
situ expression database. midline CG6634 147
biniou CG18647 192
expression terms associated with finman to a greater degree than eve CG2328 266
would be expected for any random selection of genes of equivalent dMef2 CG1429
size from the database. Therefore, we compared the expression Hand CG18144
terms associated with tinman and our prediction set. We observed Sur CG5772
Six4 CG3871

a greater fraction of genes with tinman-associated expression terms
than would be expected in an equivalent-sized random selection of
genes from the fly genome (Table 1). Out of top 100 candidates,
33 had associated expression terms in BDGP, and of these 18
had terms equivalent to a subset of those assigned to the Tinman
expression pattern. This constituted an enrichment of 54.5% over
a background of 33.8% and was statistically significant using the
binomial distribution (P = 0.0071, Table 1).

Furthermore, we compared our binding affinity-derived target
predictions with the results of our optimized conserved-motif
cluster searches using TargetExplorer (Sosinsky et al., 2003) and
GenomeSurveyor (Noyes et al., 2008). We optimized our cluster
searches by varying window size and score-cutoff parameters until
we obtained a list with the greatest number of expected Tinman
targets and other genes whose expression overlapped with tinman.
We found greater enrichment of tinman coexpression in the affinity
density-derived prediction list than in the conserved-motif cluster list
derived from TargetExplorer output and GenomeSurveyor, which
uses a different algorithm that is also based on locating clusters
of statistically significant conserved binding sites, using a hidden
Markov model (Sinha et al., 2003) (Table 1).

Next we determined the sensitivity to known Tinman targets. We
identified in the literature all published accounts where the authors
present evidence for direct binding of Tinman to the promoter
or altered transcript or protein levels of the target gene (under
conditions of perturbed or misexpressed Tinman). We then compared
how well these genes were predicted by different algorithms.

To compare the approaches, we compared the relative rankings
assigned to the predictions by each algorithm. For Affinity Density,
genes were ranked by decreasing score, which is a function of the
predicted local affinity for the transcription factor around the target
gene. For conserved motif-cluster searches, the score reflects the
cumulative scores of the positional-weight matrix within a fixed
window relative to the gene of interest. Thus, ranking by score also
reflects the relative strength of the prediction from cluster-search
algorithms, because it is an expression of the likelihood of finding
transcription factors associated with that gene.

We therefore ranked the target lists derived by different methods
by decreasing score. We evaluated the ranked lists according to two
criteria: sensitivity to detect targets that were previously identified
by conventional means and relative strength of predictions as
determined by rank. Out of a total of 12 published Tinman target
genes, affinity density identified 7, including zfhl, biniou and jelly
belly. The conserved motif searches from TargetExplorer (Sosinsky
et al., 2003) produced only four (Table 2), only one of which

AD, Affinity Density; TE, TargetExplorer (Sosinsky ez al., 2003); GS, GenomeSurveyor
(Noyes et al., 2008); Lower rank (larger number) reflects decreasing score produced
by each algorithm. Absence of a rank indicates that the algorithm did not predict the
target.

(eve) was not predicted as a target by the affinity algorithm. The
GenomeSurveyor (Noyes et al., 2008) search likewise produced only
one of the known targets. Together these observations suggest that
the local affinity density measurement is more sensitive. In addition,
five of the affinity density predictions were ranked higher than 100,
compared with only two of the conserved motif cluster predictions
that were ranked higher than 200, suggesting higher specificity in
the affinity density algorithm.

4.2 Enrichment of target genes required for heart
development

The gene tinman is one of the earliest factors required for formation
of the visceral and heart mesoderm primordia (Azpiazu and Frasch,
1993; Bodmer, 1993). Downstream targets of Tinman would thus
be expected to affect processes required for the patterning and
morphogenesis of the heart.

In a screen for cardiogenic genes using an RNAi approach,
Kim et al. (2004) injected embryos with double-stranded RNA
representing a large proportion of individual genes in the Drosophila
genome. RNAI results in the partial or complete knock-down of
expression of the gene whose sequence or partial sequence is
contained in the double-stranded RNA. And therefore, embryos that
have been treated in this manner behave as functional hypomorphs
for the gene corresponding to the injected sequence (Misquitta and
Paterson, 1999). Kim er al. (2004) assayed for perturbed heart
development by scoring injected embryos as wild-type or mutant
with respect to the expression of the d-Mef2-lacZ transgene.

To assess our target list for enrichment of genes functionally
required for heart development, we cross-referenced our predictions
with these data, which are available from the Fly Embryo RNAi
project (http://flyembryo.nhlbi.nih.gov/). In this dataset, 126 out of
5730 genes had a phenotype visible in the embryonic heart. In our
study, out of 246 predicted target genes from the affinity density
algorithm, 105 were also screened in the RNAi mutation project
(Kim et al., 2004). Seven of these candidates were defective in
heart development (Table 3), a significant increase over background
(P=0.0064, binomial distance). In contrast, neither TargetExplorer
(Sosinsky et al., 2003) nor GenomeSurveyor (Noyes et al., 2008)
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Table 3. Predicted Tinman targets with heart phenotypes

RNA:I target Annotation Score Rank
zfhi CG1322 3.86 23
pannier CG3978 3.49 36
branchless CG4608 3.05 52
Traf2 CG10961 2.94 65
scribbled CG5462 2.73 76
polychaetoid CG31349 2.75 79
Pdpl CG17888 2.51 93

Out of 246, 105 predicted targets were also screened in the RNAi mutation project (Kim
et al., 2004). Seven were defective in heart development (P <0.01).

predicted a significant number of RNAi phenotypes. Out of
112 candidates from the TargetExplorer list, 1 had a phenotype
(P=0.2088). Out of 57 candidates that were tested from the
GenomeSurveyor predictions, 2 had a phenotype in the RNAi screen
(P=0.2271). This suggests that our algorithm efficiently identified
putative heart development genes with the Tinman binding motif,
consistent with Tinman’s requirement in heart development, whereas
prediction with clustering algorithms did not.

5 DISCUSSION

5.1 Advantages of affinity density measurement over
cluster searches.

Many methods exist for analysis of DNA sequence motifs and their
distribution. The practice of finding regulatory targets near regions
with statistically overrepresented transcription factor binding sites
has been referred to as ‘known motif mapping’ (Ji and Wong,
2006). Here, we demonstrated that measurement of regional affinity
density offers several advantages over traditional cluster searches.
In particular, the model for transcription factor activity that affinity
density addresses is that local recruitment of proteins to the
chromosome binding sites affects the rate of transcription from
nearby loci. Therefore, the greater the binding affinity, the greater
the likelihood of transcription when cellular conditions allow.

In order to address this model of regional recruitment, we needed
to score each point on the chromosome in a way that takes into
account the local density of binding sites, as well as their relative
strength of binding. The strength of binding of a site is related to
its sequence, whereas the density of sites is related simultaneously
to the number of sites, and how close together those sites are. The
convolution filter we employed gives a regional score in such a
way that the score is a function of the binding affinity of individual
sites, the aggregate number of sites and the spacing of sites within
the window. Because of the overlapping nature of the windows,
every site falls within the center region of one window and hence
contributes most strongly to that window.

Second, our method does not rely on sequence alignment
algorithms for assessment of conservation and functional specificity.
We observed the population of sites and their distribution relative to
each gene as a predictor of a regulatory relationship, and compared
this property between species (Fig. 2). By comparing the predictions
directly instead of aligning individual binding sites and subsequently
scoring clusters in which those sites were found, we introduced
different assumptions about the functional relevance of unconserved
sites. We speculate that the success of our technique relies at least

partly on these assumptions. If this view is correct, the benefits of
interspecies comparisons of affinity density outweigh the obvious
shortcomings from excluding alignments.

In contrast, an equivalent search method that chooses clusters
of sites using default parameters leads to an iterative and time-
consuming process of optimization. Because these windows are
uniformly weighted, the scores are very sensitive to small changes
in the window width, since even a single base change in width can
increase the total score by the amount associated with one binding
site. If we are looking for binding sites where the expected number
of sites in a region of interest is small (perhaps 2 or 3) then a single
extra score at the edge of our window can change the total score by
33-50%. This is the essence of the problem of aliasing (an artifact
that arises in digital signal processing). This problem can only be
addressed by using a convolution kernel designed to reduce the effect
of aliasing, such as the one we have used here.

The results from comparison of tinman coexpressed genes
(Table 1) suggest that Affinity Density predicted a greater proportion
of coexpressed genes than TargetExplorer (Sosinsky et al., 2003)
and GenomeSurveyor (Noyes et al., 2008) in an equivalent-sized
list of predictions. It is difficult to ascertain the performance
of TargetExplorer from this test because there were too limited
data available (six genes with in sifu expression patterns).
GenomeSurveyor performed comparably with Affinity Density by
this measure, however, although the result was not statistically
significant. GenomeSurveyor selects the two nearest genes to each
hit region and therefore likely benefits from coregulation. This
strikes us as a very reasonable assumption to make when assigning
significant regions to target genes. Although our method assigns
hit regions to multiple target genes, it relies upon the definition
of gene region in the annotations. Future modifications could be
made to include additional information about regulatory regions as
it becomes available. For example, there is a well-characterized
Tinman-enhancer region about 7 kb downstream of the eve locus
which effects the transcription of the even-skipped gene (Knirr and
Frasch, 2001). This would explain why Affinity Density failed to
predict eve as a Tinman target in our hands (Table 2).

In addition to missing certain targets due to overly stringent
relative location requirements, it is also known that large genes have
a bias towards being falsely predicted simply due to their greater
spatial extent and therefore greater chance of being near an unrelated
regulatory region (Taher and Ovcharenko, 2009). This is a factor we
observed during our analysis, and our initial attempt to subtract the
trend reduced sensitivity. Part of the reason for adopting the sigmoid
filter is to eliminate the effect of many small signals adding up over
a large region to something that compares to a strong signal over a
short region.

Even without these considerations, our findings demonstrated a
marked improvement of local affinity density over cluster searching
as amodule detection algorithm. Our method resulted in a significant
increase in the representation of known targets from the literature.
In addition, we predicted a significant number of genes for which
RNAI yields a relevant phenotype in embryos. In contrast, neither
TargetExplorer (Sosinsky ez al., 2003) nor GenomeSurveyor (Noyes
et al., 2008) predicted a significant number of RNAi genes. These
data give us increased confidence that our prediction set includes
a large number of novel true targets of Tinman (Table 4). Many of
these genes are coexpressed with Tinman or in tissues derived from
Tinman-expressing precursors.
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Table 4. Tinman regulatory target predictions

I 1l 111 v
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pk CG32048 CG30387 CG6296
hbn nau” olf413 CG6295
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CG18262™ CG10300 Btk29A”" CG6271
sm pnr’”™t knrl UGP
rols™ Sox21b/ CG13862 CG32040
ed™ mspo” CG5391 Irk2
CG33100 cnc” CG14559 nuf"™"
Lmpt” Sulf1™ Traf2 CG3599
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dip Src64B jeb™ CG8475
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Aats-asn Fas2™ CG18769 CG7918
CG15336 Dh31 beat-VI™ ErolL
CG10959 CG3502™ Mdr50 wb¥
zfh1™" Doc3™" CG10882 CG31221
baz Argk™ unc-5 Ggamma30A
Sema-la CheB93a 1gf™" CheA7a

The top 100 predicted targets from Affinity Density algorithm. Superscripts indicate
expression data from all available flybase sources; 'foregut/clypeolabrum primordium,
Mmesoderm or somatic muscle, ¥ visceral mesoderm, "heart (dorsal vessel). Known
targets (Table 2) are highlighted in boldface.

Ultimately, the goal is to apply this approach to the targets of other
transcription factors or groups of factors. As a first-order attempt to
determine whether this method is likely to be generally applicable,
we conducted a cursory survey with simple regular expressions to
represent various other transcription factors with well-characterized
binding sites, and without any sigmoidal filtering. Out of nine
transcription factors, we were able to enrich coexpressed genes as
in Table 1 for five factors including Kriippel, gooseberry, paired,
snail and Ultrabithorax, with the remaining four factors, serpent,
twin-of-eyeless, twist and HLHmS5, showing enrichment but not
statistical significance. This suggests that the method is broadly
applicable even with a very crude motif-recognition algorithm and
no background filter. Ward and Bussemaker (2008) successfully
used a similar affinity based approach, and compared their affinity
score across yeast genomes. Our method differs in that we measure
affinity across entire gene regions instead of narrowly defined
promoter sequences, and take advantage of an anti-aliasing kernel
procedure to reduce artifacts. Together these results support the
use of affinity-density based calculations for the identification of
regulatory targets.

5.2 Disadvantages of motif mapping in general

All motif-mapping studies face several challenges that are not
addressed by our method. First, among these is that they treat
a 3D object, the genome of interest, as 2D. Linear distances in
DNA sequence do not accurately represent spatial distances between

sites on transcriptionally active DNA. Another limitation is lack of
information about transcription factor/DNA interactions for many
transcription factors. Also, many transcription factors—especially
those with short, frequently occurring binding sites—are not by
themselves sufficient to predict gene expression. In such cases,
a search for enrichment of binding sites will not yield a specific
list of predictions. The comparison of techniques presented in this
study were facilitated by the high information content of the Tinman
binding site. Tinman motifs occur relatively infrequently (<1 motif
per kilo base in the fly genome), ideal for separation of signal from
noise.

In addition, many transcription factor binding sites are shared
among families of transcription factors, complicating analysis. For
example, our choice of Tinman potentially overlaps homeodomain
proteins that share the core NK binding motif. Three of the most
important NK homeodomain proteins in development, Tinman,
Bagpipe and Vnd, are known to bind the consensus sequence
‘TCAAGTG’ (Gehring, 1987; Zaffran and Frasch, 2005) with high
affinity. Since Bagpipe acts in concert with Tinman to induce visceral
mesoderm (Azpiazu and Frasch, 1993), we assume that its targets
are a subset of Tinman’s. However, Vnd is required for cell-fate
specification in the developing CNS (Skeath er al., 1994; White
et al., 1983). We anticipate that any prediction set exemplified
by the one produced in this study necessarily includes targets of
other transcription factors in addition to false positives. Indeed, our
predictions for Tinman include a number of genes known to be
involved in the nervous system development such as Semaphorin-1a
(Yu et al., 1998) and robo3 (Simpson et al., 2000) (4), consistent with
the expression of Vnd in the central nervous system. To complicate
matters further, we cannot rule out overlap of Tinman and Vnd
target sets. For example, the NK homeodomain gene ladybird early
is involved in both cardiac development (Jagla et al., 1997, 2002;
Zikova et al., 2003) and neuronal specification (De Graeve et al.,
2004), making it a potential candidate target of either Tinman or
Vnd. An additional complication is that some homeobox genes act
as repressors. It is almost surprising, given these caveats, that there
is any specificity to these computational predictions at all.

Studies of well-characterized pathways in which the authors
analyzed several transcription factors simultaneously (Berman ez al.,
2002; Stathopoulos et al., 2002) have been able to profitably sidestep
around these issues. More recently (Segal et al., 2008) predicted
the spatial distribution of segmentation genes from the distribution
of transcription factors along the antero-posterior axis of the
Drosophila embryo by calculating the free energy of transcription
factor binding in enhancer regions. This ‘thermodynamic’ model
for expression of gene regulation is conceptually related to our
approach, but the emphasis on spatial prediction and the analysis of
promoter regions of preselected genes make it difficult to compare.
To identify enhancers, we experimented with different window sizes
and relative positioning. We tried scoring only the 5’ or 3’ regions
of genes, excluding coding regions, widening the gene region or
using fixed windows at the center of the gene. None of these
alterations in protocol enriched for known targets, in fact in some
cases they resulted in loss of specificity (data not shown), suggesting
that functional enhancer sequences are found anywhere within a
gene, and the probability of binding sites affecting gene expression
decreases with distance from the coding region.

In our study, we used binding-affinity weighted pattern matching,
however the signal processing approach used here may theoretically

1622



Regulatory sequence prediction

be used in combination with any of the available motif-detection
scoring algorithms, represented as ¢ in Equation (1). If we were
to investigate two or more transcription factor binding motifs using
this approach, it would be necessary to know more about the relative
binding affinities of each, or to assume equal affinity, for better or
worse.

5.3 Implications for sequence analysis

For any motif-scanning exercise it is necessary to determine which
motifs are likely to be biologically functional. To gauge this property
researchers have focused on direct nucleotide conservation because
it is one of the most well-researched fields in bioinformatics (Kumar
and Filipski, 2007). However, intergenic sequences tend to diverge
faster than transcript-encoding sequences, so the study of direct
conservation of motifs in non-coding DNA is limited to comparisons
among closely related species. Still, since some binding sites are
always conserved in closely related species, it makes sense that
preselection of conserved sites increases specificity. We submit
that regional enrichment of binding sites is a better predictor of
regulatory targeting than clusters of individually conserved sites.
When such conservation is observable, it is likely the result of strong
selection pressures from which the majority of functioning binding
sites are exempted.

A test for conservation of aligned nucleotide sequence motifs
acts as a filter to remove all other functional binding sites. But
factors may bind any reasonably high-affinity site regardless of
its conservation between any arbitrary two species. Bowler et al.
(2006) described pervasive low-level, non-specific transcription
from low affinity sites of the transcription factor Ftz-F1, although
the biological significance of this activity remains unclear. Perhaps
more significantly, Berman er al. (2004) proposed the existence
of ‘preserved’ binding sites, close enough in one genome to the
analogous position in a sister genome to substitute functionally, but
not close enough in a DNA sequence alignment to be considered
conserved. Such sites are critical in distinguishing true cis-regulatory
modules from false positive ones (Berman et al., 2004). These
observations led us to consider binding affinity as a thermodynamic
and spatial property of the chromosome and to try to measure it
using signal processing, in a manner similar to the one that inspired
(Segal et al., 2008).

By assigning a statistic to binding affinity and selecting shared
predictions between D.melanogaster and D.pseudoobscura, we
treated this feature as a potentially conserved structural character
of chromatin. If this view is correct it implies that using binding
site affinity to approximate the target set of a transcription
factor might aid in revealing the evolutionary relationships of
regulatory networks amongst closely related families of organisms
that are otherwise too distantly related to be analyzed by sequence
alignment. We would like to see the application of this principle
within Drosophilidae. In conclusion, the measurement and analysis
of the distribution of transcription factor affinities is a promising
novel approach for analyzing the distribution of transcription factor
binding sites and their targets.
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