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Abstract

Background: Although cervico-vaginal epithelial cells of the female lower genital tract provide the initial defense system
against HIV-1 infection, the protection is sometimes incomplete. Thus, enhancing anti-HIV-1 humoral immunity at the
mucosal cell surface by local expression of anti-HIV-1 broadly neutralizing antibodies (BnAb) that block HIV-1 entry would
provide an important new intervention that could slow the spread of HIV/AIDS.

Methods and Findings: This study tested the hypothesis that adeno-associated virus (AAV)-BnAb gene transfer to cervico-
vaginal epithelial cells will lead to protection against HIV-1. Accordingly, a recombinant AAV vector that encodes human
b12 anti-HIV gp120 BnAb as a single-chain variable fragment Fc fusion (scFvFc), or ‘‘minibody’’ was constructed. The
secreted b12 minibody was shown to be biologically functional in binding to virus envelope protein, neutralizing HIV-1 and
importantly, blocking transfer and infectivity of HIV-1bal in an organotypic human vaginal epithelial cell (VEC) model.
Furthermore, cervico-vaginal epithelial stem cells were found to be efficiently transduced by the optimal AAV serotype
mediated expression of GFP.

Conclusion: This study provides the foundation for a novel microbicide strategy to protect against sexual transmission of
HIV-1 by AAV transfer of broadly neutralizing antibody genes to cervico-vaginal epithelial stem cells that could replenish
b12 BnAb secreting cells through multiple menstrual cycles.
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Introduction

The mechanisms of HIV-1 transmission through the vaginal

route in women are still poorly understood. Epithelial cells lining

the mucosal surfaces of the female genital tract provide the first

line of defense against sexually transmitted pathogens such as

HIV-1 [1,2]. The multilayer squamous cell epithelia lining the

vagina and ectocervix provide a more substantial barrier against

HIV-1 invasion than the single layer columnar epithelium that

lines the endocervix [3]. Epithelial cells also produce several

biological factors, such as defensin, lactoferrin and secretory

leukocyte protease inhibitor (SLPI) that have anti-HIV properties

[1,3,4,5,6]. However, any damage or disruption to the epithelial

layer, which can occur as a result of inflammation from sexually

transmitted diseases (STDs) or even mild trauma during sexual

intercourse may increase the ability of HIV-1 to penetrate the

mucosal epithelial barrier. In addition, several cell surface

receptors and molecules have been reported to facilitate HIV-1

entry into epithelial cells allowing passage through the mucosal

barrier. Syndecans (expressed on the vaginal epithelial cells), for

example, were found to be exploited by HIV-1 to cross the

mucosal epithelium by transcytosis [7,8,9,10]. It has been reported

that the Arg298 in gp120 mediates HIV-1 binding to syndecans,

and the human b12 anti-HIV gp120 BnAb can block this

interaction [8,11,12,13].

The b12 molecule is one of a growing number of human BnAbs

including, 2G12, 2F5, 4E10, Z13e1, VRC01, HJ16, PG9 and

PG16 that are capable of potently neutralizing a broad range of

primary HIV-1 isolates [12,14]. B12 was originally isolated as an

antibody fragment (Fab), which recognizes a highly conserved

epitope on the viral gp120 envelope protein involved in binding to

CD4 on host cells [12]. In addition, b12 IgG1 can inhibit transfer

of cell-free HIV-1 to the ME-180 human cervical epithelial cell

line and block viral attachment to and uptake by epithelial cells

[15]. Macaques treated with b12 IgG1 by intravenous or

intravaginal (topical) application were shown to be protected

against simian human immunodeficiency virus (SHIV) infection by

the vaginal route [16]. These studies support the choice of b12

mAb to investigate the hypothesis that genetic transfer of a BnAb

to cervico-vaginal cells can confer protection from viral infection

at the mucosal surface.
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Adeno-associated viral (AAV) vectors are capable of transducing

a variety of tissues and cell types [17,18,19,20,21,22] with the

potential of directing long-term expression from months to years

since the vector persists predominantly in episomal form

[17,19,21,23]. However, the upper layer of the cervico-vaginal

mucosa continuously sheds. In contrast, the basal layer of the

mucosa including the epithelial stem cells is maintained as a

replenishing source of squamous epithelial cells. Accordingly,

targeting the genital epithelial stem cells for transduction by AAV

would be ideal for stable and durable gene transfer in vivo.

Therefore, a major aim of this study was to investigate the

possibility of transducing female genital epithelial stem cells.

In the present study, an AAV vector was utilized for transfer of

the b12 antibody gene to cervico-vaginal epithelial cells. In

particular, a recombinant AAV-6 expressing b12 minibody was

produced and the minibodies secreted from transduced cells in an

organotypic vaginal epithelial cell (VEC) model demonstrated

their ability to inhibit transfer and infectivity of HIV-1 at levels

comparable to full-length b12 IgG1 MAb. Transduction of

primary genital-epithelial stem cells was also demonstrated. The

findings of this study demonstrate that use of the AAV vector to

express neutralizing human anti-gp120 minibodies is a promising

strategy for developing an effective durable microbicide against

HIV-1 infection.

Materials and Methods

Growth media
Human cervical and VEC lines and huPGECs used in this study

were cultured in keratinocyte serum-free medium provided with

supplementary bovine pituitary extract and recombinant human

Epidermal Growth Factor (EGF). The medium was further

supplemented with 100 units/ml penicillin, 100 mg/ml strepto-

mycin and CaC12 to a final calcium concentration of 0.4 mM.

DMEM/F12 medium was supplemented with 10% fetal bovine

serum (FBS). All media and supplements were obtained from

Invitrogen Corp. (Carlsbad, CA).

Cell lines and viruses
The human cell lines VK2/E6E7, Ectl/E6E7 and Endl/E6E7,

originally constructed in the laboratory of Deborah Anderson [24]

and obtained from the American Type Culture Collection

(ATCC, Manassas, VA), were cultured in calcium-supplemented

(0.4 mM) keratinocyte serum-free medium. TZM-bl cells were

acquired from the National Institutes of Health AIDS Research

and Reference Reagent Program (NIH-ARRRP, Germantown,

MD). TZM-b1 cells are a CXCR4-positive HeLa cell line that

expresses the cellular receptor (CD4) and co-receptor (CCR5) for

HIV-1. The cell line also contains integrated reporter genes for

luciferase and E. coli beta-galactosidase, under the control of an

HIV long-terminal repeat sequence (tat gene) which allows for

quantification of HIV infection. 293T cells and COS-1 (both from

ATCC) and TZM-bl cells were cultured in DMEM medium

supplemented with 10% FBS and 1% penicillin/streptomycin

(Invitrogen). All cells and cultures were maintained at 37uC in a

5% CO2 humidified incubator. The R-tropic HIV-1bal strain

(NIH-ARRRP) used for the transwell studies were only passaged

in human PBMCs and titered by the standard Reed and Muench

method [25].

Organotypic VEC culture and HIV-1 transmission model
Organotypic EpiVaginalTM tissues (VEC-100: NuncTM single

well tissue culture plate inserts; pore size = 0.4 mm; inner

diameter = 0.80 cm) were purchased from MatTek Corp. (Ash-

land, MA) and maintained with proprietary growth medium

according to the company’s instructions. Fully differentiated

stratified squamous epithelial layers were maintained on the cell

culture insert membranes to allow growth at the air–liquid

interface. The integrity of the VEC tissues on the transwell filters

were verified using Trans Epithelial Electric Resistance (TEER)

readings (.300 ohm) and permeability to 70 kDa Dextran-

Rhodamine B (Sigma Corp., St. Louis, MO) applied to the apical

layer of the tissue and measuring paracellular passage of the dye

into the lower transwell chamber. We adapted the procedure by

Bobardt et al., 2007 to examine the effects of the b12 minibodies or

of AAV-6 expressing b12 minibody transduction on HIV-1

transfer through the multilayered VEC tissue. The b12 minibodies

or full-length b12 IgG1 (10 mg/ml) were pre-incubated with or

without HIV-1bal virus (50 ng of p24) in a total of 100 ml VEC

tissue growth media for 1 h before applying to the apical surface of

the EpiVaginalTM tissues in the transwell inserts. The media from

the lower chamber were then collected at different time points to

determine infectivity of HIV-1bal virions that have crossed the

vaginal epithelial tissues by incubation of the samples with TZM-

bl cells as described below.

Production of AAV serotypes expressing GFP and b12
minibody

AAV serotypes 1, 2, 5, 6, 8, and 9 expressing GFP were

produced at Harvard Gene Therapy Initiative (Harvard Institute

of Medicine, Boston, MA), whereas AAV serotypes 3 and 4

expressing GFP were obtained from the AAV core at the

University of North Carolina, Chapel Hill. AAV-6 expressing

b12 minibody was obtained commercially (Virapur LLC, San

Diego, CA).

Construction of pTR-b12scFvFc expression vector
To construct the b12 minibody expression cassette, the b12scFv

sequence was PCR amplified from a DNA plasmid kindly

provided by Dennis Burton (The Scripps Research Institute, La

Jolla, CA) using primers to add flanking SfiI and NotI restriction

sites for insertion into the pTRUF hingestuffer vector (described

below) to yield pTR-scFvFc b12. The pTRUF hingestuffer vector

was created by our laboratory as follows. The IgG1 Fc sequence

(AF150959) was cloned into the pTRUF20 vector at NotI and ClaI

sites. The resulting pTRUF hingestuffer vector therefore could be

used to insert scFv sequences at the SfiI-NotI sites for expression

and secretion of scFvFc fusion proteins (directed by the leader

sequence of the human IgG VH4 gene family) when transfected in

mammalian cells alone or for production of recombinant AAV

expressing the scFvFc.

The pTR-b12scFvFc vector, constructed as described, readily

expressed b12 minibodies proteins which are secreted from

transfected 293T cells. Typical yields of secreted protein after 3

days of transfection ranged between 10–15 mg/ml (data not

shown). By SDS-PAGE gel analysis, the b12 minibody monomer

was shown to be approximately 55 kDa in reducing conditions

and at 110 kDa under non-reducing conditions, as expected (data

not shown).

Transduction of cells, flow cytometry analysis and
fluorescence microscopy

For AAV transduction, 56104 cells were incubated in 24 well

plates with AAV (1, 2, 3, 4, 5, 6, 8, 9)-GFP (1010 genomic copies)

for 4 h with the VK2/E6E7, Ectl/E6E7 and Endl/E6E7 cells or

overnight for primary cells. Subsequently, the medium was

replaced, and the cells were examined on day 3. Expression of

HIV Antibody Gene Transfer as Vaginal Microbicide
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GFP protein was detected by flow cytometry (FACS Calibur,

Becton Dickinson) and represented as percentage of GFP positive

cells, as well as visually assessed by fluorescence microscopy. To

evaluate transduction of the stem cell population in huPGECs with

AAV-6-GFP, the dissociated cells were immunostained for surface

Ck17 (Dako, CA) and nuclear p63 (Santa Cruz Biotechnology,

CA) cervical stem cell markers [26]. The GFP positive cells were

sorted using a FACSAria (Becton Dickinson) instrument after

gating on Ck17+p63+double positive cells, and images were

captured under a fluorescence microscope.

Immunohistochemical staining of paraffin-embedded
human vaginal, ectocervical and endocervical tissues

This study was approved by the Institutional Review Boards of

Boston University Medical School and Brigham and Women’s

Hospital Boston MA. All tissue samples were fixed in a solution of

95% ethanol and 5% acetic acid and processed for embedding in

wax. For immunohistochemical staining 5micron sections were

cut, mounted on glass slides then de-waxed and rehydrated

followed by a blocking step with a serum –free protein solution

(Dako, Carpinteria, CA,USA) for 30 min.This was drained from

the sections and then they were incubated with the rabbit primary

antibody p63 (Santa Cruz, CA, USA) at a dilution of 1:50 for

60 mins.Sections were then washed in Tris-buffered saline

containing 0.1% Tween 20 (TBST).The primary antibody was

detected by incubating the sections with a proprietary secondary

reagent (alkaline phosphatase Envision Dako) for 30 mins.followed

by 265 min. washes in TBST. Finally the antibody was visualized

by treating the sections with a substrate for alkaline phosphatase

(Fast Red Dako) that stains positive cells a bright red. After

washing the sections were counterstained with aqueous hematox-

ylin mounted in a glycerin-based medium and cover slipped.

Isolation of huPGECs
Human cervical tissue samples were obtained from patients who

had undergone hysterectomies. These tissues were procured with

informed consent by the National Disease Research Interchange

(NDRI, Philadelphia, PA). All tissues were placed in cold DMEM

medium with gentamicin (Invitrogen), and epithelial cells were

isolated within 24 h of surgical removal. The procedure for

isolation of epithelial cells was based on a previously described

protocol [24] with modifications. Briefly, each tissue was minced

into 1- to 2-mm pieces, digested in 1 mg/mL of collagenase-

dispase containing 1 mg/mL of DNase (Sigma) for 3 h at 37uC
with gentle stirring. Following digestion, the mixture was passed

through a 40 mm cell strainer, centrifuged (1006g for 20 min) and

resuspended in DMEM 10% FCS. After an additional centrifu-

gation step, the pellet was resuspended in keratinocyte serum-free

medium in T-25 flasks. The huPGECs were passaged twice prior

to use or frozen in aliquots to be thawed when needed.

Production of b12 minibodies and gp120 ELISA binding
assay

To produce the b12 minibodies, 293T cells were transfected

with pTR-b12scFvFc using Lipofectamine 2000 (Invitrogen)

according to the manufacturer’s instructions. Sixteen hours after

transfection, the media was replaced, and the cells were further

incubated for another 48 h. The supernatant was then harvested,

sterile filtered and purified after overnight incubation at 4uC with

Protein A agarose beads (GE Healthcare, Piscataway, NJ)

according to the manufacturer’s instructions. The b12 minibodies

proteins were eluted with IgG elution buffer (Thermo Scientific,

Waltham, MA) and buffer exchanged in PBS using Amicon Ultra-

15 centrifugal filtration units (30 kDa molecular weight cut-off;

Millipore, New Bedford, MA).

The concentrations of the purified b12 minibodies and the full-

length b12 IgG1 (NIH-ARRRP) were measured using a human

IgG ELISA kit (Bethyl Laboratories, Montgomery, TX), and both

proteins were tested at equimolar concentrations for the capacity

to bind to HIV-1 bal gp120 (NIH-ARRRP) by ELISA. Ninety-six-

well microtiter plates were coated overnight at 4uC with 20 ng/

well of HIV-1 bal gp120 in 0.05 M carbonate-bicarbonate buffer

(pH 9.6, Sigma) and then blocked in PBS (1% BSA) for 1 h. Serial

dilutions of equimolar amounts of b12 IgG or b12 minibodies

were added to the plate for 1 h at room temperature. After

washing, HRP-conjugated, affinity-purified goat anti-human IgG

(Bethyl Laboratories, Montgomery, TX) was added (1:50,000) for

1 h. After extensive washing, the plate was developed by addition

of TMB substrate (Kirkegaard & Perry Laboratories, Gaithers-

burg, MD) and detected by reading the absorbance (OD) at

450 nm.

HIV-1 neutralization assay
Neutralization assays were performed by pre-incubation of

serially diluted IgG/minibodies with virus (100 TCID50) for 1 h in

100 ml of culture media (DMEM 10% FBS) prior to addition to

TZM-bl cells (approximately 50% confluent) in a final volume of

200 ml in 96-well plates. After 48 h, the cells were lysed in 50 ml

passive lysis buffer (Promega, Madison, WI) per well, and

luciferase activity was measured using the Luciferase Assay System

(Promega) on an automated luminometer (Berthold Technologies,

Bad Wildbad, Germany). The percent neutralization of a given

antibody concentration was calculated by: (Relative luciferase

activity in the absence of antibody – luciferase activity in the

presence of a given antibody concentration/luciferase activity in

the absence of antibody)6100.

Measurement of viral infectivity
TZM-bl cells, containing a luciferase gene under the control of

the HIV-1 LTR promoter, were seeded in 96-well plates

(4000 cells/well) and grown overnight. The next day, the medium

was removed, and the cells were incubated with 100 ml of either

neat or diluted media collected at different time points up to 24 h

from the lower chambers of the human vaginal organotypic VEC

transwell cultures. After 48 h of incubation, the cells were then

washed, lysed, and luciferase activity was measured as described

above for HIV-1 neutralization assays.

Results

Identification of the optimal AAV serotype for
transduction of immortalized human female genital
epithelial cell lines

To identify the most optimal AAV serotype for transduction of

female genital cells, the efficiencies of AAV 1, 2, 3, 4, 5, 6, 8 and 9

expressing GFP were evaluated by transducing immortalized

human endocervical (Endl/E6E7), ectocervical (Ectl/E6E7) and

vaginal (VK2/E6E7) epithelial cell lines. Relative transduction

efficiencies were evaluated by flow cytometry (Fig. 1A) as well as

visual assessment by fluorescence microscopy (Fig. 1D). AAV-1,

AAV-2, AAV-5 and AAV-6 were found to transduce the

endocervical, ectocervical and vaginal epithelial cell lines with

AAV-2 and AAV6 being the most efficient. By contrast, the

transduction efficiencies of AAV-3, AAV-4, AAV-8 and AAV-9

serotypes were low in these lines. In a dose dilution experiment

using AAV-6-GFP vector, transduction efficiencies of the three

genital epithelial cell lines were compared over a 100-fold range

HIV Antibody Gene Transfer as Vaginal Microbicide
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from 161010 to 16108 genomic copies (Fig. 1B); 161010 genomic

copies gave the highest gene transfer efficiency and showed no

evidence of cytotoxicity (data not shown) and was chosen as the

optimal transducing units for our study. To confirm that the

inability of AAV-8 and AAV-9 to transduce the female genital cell

lines was due to their tropism for the specific cell type and not to a

defect in the vectors themselves, COS-1 cells were tested for

transduction. As shown in Fig. 1C, AAV-8-GFP and AAV-9-GFP

were able to transduce COS-1 cells effectively, indicating that both

vectors were functional.

Transduction of human primary genital-epithelial cells
(huPGEC) using AAV-6GFP

Based on the experiments above (Fig. 1A, B), AAV-6-GFP was

chosen as the most efficient serotype to test transduction of huPGEC.

Single cell suspensions of huPGEC were prepared from discarded

cervical tissues from anonymous hysterectomy patients and cultured

in serum-free keratinocyte medium as described in Materials and

Methods. Only low passage (2–3 passages) huPGEC were used for

transduction. Cells were exposed to AAV-6-GFP and found to be

efficiently transduced as determined from flow cytometric analysis of

total primary cervico-vaginal cells (Fig. 2A-B) and visual assessment

by fluorescence microscopy (data not shown).

Transduction of female human primary genital epithelial
stem cells with AAV-6-GFP

Since terminally-differentiated apical vaginal epithelial cells

continuously shed, targeting the genital epithelial stem cells for

transduction by AAV would be ideal for stable and durable gene

transfer in vivo. Accordingly, we examined whether human genital

epithelial stem cells could be transduced by AAV-6-GFP in vitro.

The isolated huPGECs were exposed to AAV-6-GFP overnight

and then stained with antibodies against the epithelial stem cell

markers, anti-CK17 and nuclear anti-p63 [25]. The stained cells

were analyzed by flow cytometry by gating first on CK17/p63

double positive cells (4.47%) (Fig. 3A) and then on the GFP-

positive cells within this population (Fig. 3B). The AAV-6-GFP

transduced cells were then sorted for further examination by

fluorescence microscopy (Fig. 3C-F). Representative images of

cells displaying the epithelial cell marker CK17 (blue), stem cell

marker p63 (red) and GFP (green) are shown in Figure 3C-E

(individual signals) and Figure 3D (merged image). These data

demonstrate that AAV-6-GFP can successfully transduce cells with

reported epithelial stem cell characteristics.

The vaginal and ectocervical stratified epithelial layers are on

average about 40 cells thick (Fig. 3G-I), and it would be

challenging for the AAV vector to reach the epithelial stem cells

in the basal layer. Therefore, AAV vector access to this stem cell

population could be enhanced by synchronous delivery timed to

the secretory phase of the menstrual cycle when thinning of the

ecto/vaginal epithelium is most evident [27]. Fortunately, the

endocervix is only one cell layer thick above the epithelial stem

cells (Fig. 3I), which is more accessible to the AAV vector during

the entire menstrual cycle.

Expression and functional evaluation of b12 minibodies
To evaluate the biological activity of b12 minibody in

comparison to that of full-length b12 IgG1, the minibodies were

produced by transient transfection of pTR-b12scFvFc into 293T

Figure 1. Transduction of human endocervical, ectocervical and vaginal epithelial cells by various AAV serotypes expressing GFP.
(A) Expressions of GFP protein by transduced cells were detected by FACS and presented as percentages of GFP positive cells. Note that AAV-2 and
AAV-6 yielded the highest transduction rates. (B) A dose dilution of AAV-6-GFP vector. (C) AAV-8-GFP and AAV-9-GFP transduction of COS-1 cells. (D)
Visual assessment of AAV-6-GFP transduction by fluorescence microscopy of vaginal, ectocervical and endocervicel cell lines.
doi:10.1371/journal.pone.0026473.g001
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Figure 2. AAV-6-GFP transduction of human primary genital epithelial cells was assessed by flow cytometry to detect GFP
expression. (A) untreated cells. (B) transduced with AAV-6-GFP.
doi:10.1371/journal.pone.0026473.g002

Figure 3. Transduction of human genital epithelial stem cells by AAV-6-GFP. At 3 days after exposure to AAV-6-GFP, cells were
stained with anti-Ck17 and anti-p63 antibodies. (A) The stained cells were analyzed by flow cytometry by gating first on CK17/p63 double
positive cells (A) and then on the GFP-positive cells within this population (B). The AAV-6-GFP transduced cells were then sorted for further
examination by fluorescence microscopy. A representative cluster of cells displaying all three distinct colors are shown: (C) blue (anti-ck17), (D) red
(anti-p63) and (E) green (GFP). (F) Merged image of C, D and E. (G-I) Immunohistochemical staining of epithelial stem cells in vaginal, ectocervical and
endocervical tissues. The p63 positively stained cells are mainly located in the basal epithelial cell layer. Note that in the endocervix (I), the epithelium
is composed of a single cell thick layer under which the epithelial stem cells are located.
doi:10.1371/journal.pone.0026473.g003

HIV Antibody Gene Transfer as Vaginal Microbicide
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cells and affinity-purified from the cell culture supernatants using

Protein A. Both proteins were tested at equimolar concentrations

for the capacity to bind to HIV-1bal gp120. Figure 4A shows that

b12 IgG and the b12 minibody have very similar ELISA binding

curves at the concentrations used in this assay.

The capacity of b12 minibodies to neutralize HIV-1 infection in

comparison to full-length b12 IgG1 was also evaluated. Briefly,

serially diluted antibodies and 100 TCID50 HIV-1bal were mixed

in 100 ml total volumes in culture media (quadruplicate samples

for each dilution) and pre-incubated for 1 h at 37uC. The Ab-virus

mixtures were then incubated with TZM-BL cells containing a

luciferase gene under the control of the HIV-1 LTR promoter, in

96-well plates and incubated for 2 days before measuring reporter

activity of cell lysates. As shown in Figure 4B, b12 minibody

displayed identical virus neutralization activity compared with the

full-length b12 IgG1. For both antibodies, the calculated IC90

(90% Inhibitory Concentration) was 2 mg/ml, and the IC50 (50%

Inhibitory Concentration) was 0.4 mg/ml in this assay against the

HIV-1bal strain. These data confirm that the b12 minibodies can

neutralize HIV-1 similarly to the full-length b12 antibodies.

b12 minibodies interfere with HIV-1 transfer and
infectivity in the VEC tissue model

As the b12 minibody was confirmed to have the same capacity

as full-length b12 IgG1 to neutralize HIV-1 infectivity (Fig. 4B), its

activity was further compared with the full-length b12 IgG1 in

preventing HIV-1 transfer and subsequent infectivity. An

organotypic vaginal epithelial cells transwell tissue model (VEC

tissue) was used as described in Materials and Methods. After

confirming the integrity of the VEC tissues using exclusion of

70 kDa Dextran-Rhodamine from the lower chamber, b12

minibodies, full-length b12 IgG1 or irrelevant control minibodies

(each 10 mg/ml) were incubated with or without HIV-1bal virus

(50 ng) and then added to the apical surface of the organotypic

VEC tissue in transwell inserts. The media from the lower

chambers were then collected at different time points to measure

the amounts of viral particles that have crossed the VEC tissues

and to determine if they were infectious. The amounts of viral

particles were measured by p24 ELISA (Fig. 5A), and infectivity

was tested by incubation of the samples with the TZM-bl cells and

measuring luciferase gene activity as discussed previously (Fig. 5B).

In the absence of an HIV-1-specific Ab or in the presence of an

irrelevant Ab, HIV-1bal was capable of penetrating the transwell

system, as measured by p24 ELISA (Fig. 5A), and remained

infective after crossing the VEC tissues (Figure 5B). By contrast, in

the presence of either b12 minibodies or full-length b12 IgG1,

HIV-1 transfer and infectivity were inhibited (Figure 5 A-B), which

is in agreement with published data on the ability of b12 to block

early HIV-1 transfer by blocking HIV-1 viral particle binding to

syndecans expressed on the vaginal epithelial cell surface [12,15].

Interestingly, samples collected after 24 h from the control samples

had detectable amounts of p24, but failed to show infectivity in

TZM-bl cells, which is likely due to the presence of antimicrobial

peptides in epithelial cell secretions [3,7] and/or shortened half-

life of cell-free virus when they fail to rapidly encounter target cells

[9]. These findings demonstrate that b12 minibodies are

comparable to full-length b12 IgG1 in their ability to inhibit

HIV-1 transfer through vaginal epithelial cells Student’s t test was

performed and the results were found statistically significant (P-

value ,0.001).

Inhibition of HIV-1 transfer through VEC tissues and
infectivity following transduction with AAV-6 expressing
b12 minibody

In assessing the AAV-6 vectors, we first wanted to determine the

levels of b12 minibodies that could be secreted from AAV

transduced cells in the VEC model. For these studies, we obtained

commercially produced and CsCl purified AAV-6-b12minibody

and control AAV-6-11A minibody The human VEC tissues in

transwells were transduced by applying AAV-6 encoding b12

minibody or the negative control 11A minibody (561010 genomic

copies) to the apical surface of the tissues. Twenty-four hours later,

the tissues were washed and cultured for four days before use in

the blocking assay. Using a quantitative IgG ELISA, we confirmed

that .12 mg/ml of b12 minibody was secreted into the upper

chamber of the transwell at day 5 after transduction (data not

shown). Cell-free virus transfer and in vitro infectivity after virus

challenge were examined in the AAV transduced VEC tissue

model. HIV-1bal virus (50 ng) was applied to the apical layer, and

media from the bottom chamber was sampled at 1 h, 3 h, 6 h and

overnight. The AAV-6-b12 minibody transduced tissue effectively

blocked transfer of virus to the lower chamber, while the level of

virus transferred in the AAV-6-negative control transduced tissues

were not significantly different from that of the untreated control

(no AAV transduction) (Fig. 6A). Importantly, the supernatants in

the lower chamber of the tissues transduced with AAV-6- -b12

minibody contained little or no virus particles and were not

infectious, while those of the tissues that were untreated or

transduced with the negative control AAV had high levels of

infectious virus in the lower chambers at the 3 and 6 h time points

(Fig. 6B). This data demonstrates that recombinant AAV-6 can be

used to deliver bNAb/minibodies to primary cervical and vaginal

epithelial cells and protect against HIV-1 challenge in vitro.

Student’s t test was performed and the results were found

statistically significant (P-value ,0.001).

Figure 4. Functional comparison of b12 minibodies and full-
length b12 IgG. Both b12 minibodies and full-length b12 IgG proteins
were tested at equimolar concentrations for their capacity to (A) bind to
HIV-1 gp120 by ELISA, and (B) to neutralize HIV-1bal virus.
doi:10.1371/journal.pone.0026473.g004

HIV Antibody Gene Transfer as Vaginal Microbicide

PLoS ONE | www.plosone.org 6 October 2011 | Volume 6 | Issue 10 | e26473



Discussion

This study provides evidence that AAV-mediated gene transfer of

the human anti-gp120 b12 minibody to primary cervical and

vaginal epithelial cells can protect against virus challenge in vitro. To

date, there is no highly effective microbicide against HIV-1

infection. Although a recent trial showed that a tenofovir containing

vaginal gel could reduce HIV-1 infection rates by 39% [28], daily

application of the gel or before and after sexual acts was impractical

for many users and adherence to the use of the gel dropped over

time. Such behavior-related issues may be avoided by delivering

anti-HIV agents with more durable activity. This present study

provides proof-of-principle for a novel microbicide strategy against

HIV-1 utilizing an AAV vector, that potentially offers long-term

stable transduction of cervico-vaginal stem cells with secretion of a

potent and broadly neutralizing anti-HIV gp120 minibody.

In preclinical animal models of human disease, AAV vectors

have emerged as a favored gene transfer system due to their safety

profile and the potential to transduce non-dividing cells. To date

there have been 12 different serotypes of AAV isolated from

human and non-human primates [29]. Different AAV serotypes

are capable of transducing a wide variety of tissue types, including

muscle, lung, brain and eye [17,18,19,20,21,22]. However,

specific AAV transduction of mucosal tissues in the female genital

tract has not yet, to our knowledge, been published. In the present

study, AAV-GFP gene transfer studies were performed on

immortalized human endocervical, ectocervical and vaginal

epithelial cell lines as well as huPGEC. Among the 8 serotypes

tested, AAV-2 and 6 were the most efficient for transduction of

these cells (Figure 1A). In this study, AAV-6 was chosen over

AAV-2 serotype because AAV-6 (a hybrid of AAV-1 and AAV-2)

has shown lower immunogenicity than AAV-2 [30], and so may

provide significant advantages over AAV-2 for gene transfer to

female genital epithelial stem cells.

The choice of utilizing the b12 mAb in this study was based on

evidence from both in vitro and in vivo studies. The in vitro studies

demonstrated that both b12 IgG1and IgA2 are able to inhibit

transfer of cell-free HIV-1 to ME-180 cells and are able to block

viral attachment to and uptake by epithelial cells [15]. Additional

evidence from macaque models indicate that the broadly

neutralizing antibody b12 IgG1 is capable of conferring protection

against SHIV infection when administered by intravenous or

Figure 5. Inhibition of HIV-1 transfer and activity by b12 minibodies in the human VEC organotypic model tissues. After a 1 h pre-
incubation of b12 minibodies or full-length b12 IgG (10 mg/ml) with HIV-1bal (50 ng), medium from the basal chambers were collected at different
time points and tested for inhibition of HIV-1bal transfer by measuring p24 content by ELISA (A) and for inhibition of virus infectivity by incubation on
TZM-bl target cells (B). Note that media collected at 3 and 6 h from tissue samples treated with HIV-1bal and b12 IgG1 antibodies or with b12
minibodies had almost completely lost their ability to infect TZM-bl cells. Irrelevant 11 A minibodies served as negative controls.
doi:10.1371/journal.pone.0026473.g005
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intravaginal (topical) routes [16,31]. In the present study b12

antibody was produced in the scFvFc (minibody) format as

opposed to full-length IgG for AAV gene transfer for several

reasons. First, as AAV vectors do not package more than ,5 kb of

foreign DNA efficiently, the AAV vector cannot accommodate

conventional antibody expression cassettes to drive the mAb heavy

chains and light chains from two individual promoters [32,33]

although, 2A sequences have been used successfully to express full-

length IgG [34,35]. Second, the minibodies are generally

expressed at high levels in mammalian cells, and third, the smaller

size of the minibodies may allow greater tissue penetration and

targeting of neutralizing epitopes that may be inaccessible or

sterically hindered as a whole IgG [36,37].

The generated b12 minibodies were confirmed to be as potent

as the full-length b12 IgG both in their capacity to bind to HIV-1

gp120 and to neutralize HIV-1bal virus (Fig. 4A, B). Furthermore,

b12 minibodies were able to block HIV-1 transfer and infectivity

of cell-free virus transferred through VEC tissues (Figs. 5 and 6).

These data are in agreement with previously published studies

[15], which showed that b12 IgG inhibited the transfer of cell free

HIV-1 through the human cervical epithelial cell line ME-180 and

that inhibition was due to the ability of IgG b12 to block both viral

attachment to and uptake by epithelial cells. In addition, studies on

rhesus macaques [16,31] demonstrated that b12 IgG applied

vaginally can afford protection against SHIV challenge. Thus, the

data clearly demonstrate that the activity of b12 minibodies is

comparable to the full-length b12 antibodies in their capacity to

inhibit in vitro transfer of cell free HIV-1 through human VEC

tissues. The findings also strongly suggest that b12 minibodies

should protect the vaginal mucosa of rhesus macaque against

SHIV challenge in planned future studies.

The present study also demonstrates that primary genital

epithelial stem cells could be transduced in vitro. This same strategy

should work effectively in vivo if the AAV vector has ready access

and sufficient time to transduce the epithelial stem cell

populations. There are two distinct epithelial stem cell populations

that differ in morphology and location. The endocervix is

naturally thin, and there is only a one cell thick layer above the

epithelial stem cells (Fig. 3I). We propose that this population of

columnar epithelial stem cells may be the most straightforward

and efficient to transduce in vivo. In contrast, the in vivo

transduction of squamous epithelial stem cells of the vaginal and

ectocervix could be less efficient due to their thick layers (Fig. 3G-

I), numerous tight junctions [38] and their continuous shedding. It

could be challenging for the AAV vectors to reach the ectocervical

and vaginal epithelial stem cells located in the basal layer. To

overcome this, AAV vectors could be applied during the secretory

phase of the menstrual cycle when mucosa is dominated by

progesterone and the cervico-vaginal layer is at its thinnest [25] or

alternatively the vector could be applied with a gene gun [39], or

on gently abraided tissue. These approaches could facilitate AAV

vector penetration and transduction of epithelial stem cells in the

basal layer. To achieve stable and durable gene transfer in vivo and

to create a milieu rich in BnAbs, transduction of the genital

epithelial stem cells in both endocervical and ectocervical/vaginal

locations may be essential for replenishing a clinically relevant

number of b12 BnAb secreting cells.

In summary, this study represents a novel HIV-1 microbicide

strategy that is both feasible and attractive in light of the absence

of a highly effective prophylactic HIV-1 vaccine. The results

provide proof of concept that AAV-BnAb gene transfer to primary

cervical and vaginal epithelial cells can protect against HIV-1

Figure 6. Inhibition of HIV-1 transfer and activity in the human VEC organotypic model tissues transduced with AAV-6 expressing
b12 minibodies. AAV-6-b12 minibodies or AAV-6-11A minibodies (control) at 561010 particles was applied to the upper layers of the VEC tissues for
24 h for transduction. Four days after the transduction, HIV-1bal (50 ng) was applied to the upper layers of the tissues, and medium from the basal
chambers were collected at various timepoints and tested for inhibition of viral transfer (A) and infectivity (B) as in Fig. 5.
doi:10.1371/journal.pone.0026473.g006
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challenge in vitro. Importantly, demonstration of AAV mediated

transduction of cervico-vaginal epithelial stem cells highlights the

potential of this work as a means to convey durable and long-

lasting expression of BnAbs against HIV-1 in the female genital

tract. Further studies are required to examine the effectiveness of

this strategy in primate models, including testing additional BnAbs

and syndecan decoys such as those recently reported [7,14] before

moving this approach into human clinical trials. If clinically

relevant levels of anti-HIV biological agents can be achieved in

vivo, this approach may not only provide protection against HIV-1

infection but a means by which local neutralization escape, a

hallmark of HIV-1 pathogenesis, can be inhibited.
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