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Marcel Dickmann,4 Werner Egger,5 Ivo Vankelecom,5 Jan Post,1 Emile Cornelissen,2,6 Karel Keesman,1,7

and Arne Verliefde2

SUMMARY

There is no efficient wastewater treatment solution for removing organic micro-
pollutants (OMPs), which, therefore, are continuously introduced to the Earth’s
surface waters. This creates a severe risk to aquatic ecosystems and human
health. In emerging water treatment processes based on ion-exchange mem-
branes (IEM), transport of OMPs through membranes remains unknown. We per-
formed a comprehensive investigation of theOMP transport through a single IEM
under non-steady-state conditions. For the first time, positron annihilation life-
time spectroscopy was used to study differences in the free volume element
radius between anion- and cation-exchangemembranes, and between their thick-
nesses. The dynamic diffusion-adsorption model was used to calculate the
adsorption and diffusion coefficients of OMPs. Remarkably, diffusion coefficients
increased with the membrane thickness, where its surface resistance was more
evident in thinner membranes. Presented results will contribute to the improved
design of next-generation IEMs with higher selectivity toward multiple types of
organic compounds.

INTRODUCTION

The presence of organic micropollutants (OMPs) in diverse ecosystems is a direct consequence of the

growing consumption of a vast amount of chemicals. OMPs comprise a broad spectrum of daily-used

chemicals, e.g., pharmaceuticals, pesticides, personal care products, and plasticizers. Because of the enor-

mous variety of their physicochemical properties, an efficient wastewater treatment solution for OMPs has

not yet been developed, where the diversity of OMPs detected in waste water treatment plants effluents

was widely reported (Deblonde et al., 2011; Sui et al., 2015). As a consequence of discarding treated waste-

water to the environment, sewer exfiltration, and urban stormwater recharge, OMPs are continuously being

introduced to aquatic environments (Bolong et al., 2009; Sirés and Brillas, 2012; Gabarrón et al., 2016;

Jones et al., 2003; Osenbrück et al., 2007), where they have been detected at ng L�1 up to mg L�1 concen-

tration range (Jobling et al., 1998; Verliefde, 2008; Tang et al., 2013; Sui et al., 2015). The global occurrence

of OMPs in different water resources has raised a serious concern about their harmful effects on aquatic

ecosystems and human health, and numerous investigations have reported their environmental hazard

(Schwarzenbach et al., 2006; Richardson and Ternes, 2014; Murray et al., 2010; McKinlay et al., 2008; Daugh-

ton and Ternes, 1999; Ohe et al., 2004).

Increasing population, environmental changes, and uneven distribution of freshwater have affected the

balance between water demand and availability worldwide. Based on the United Nations and the World

Health Organization reports, 0.7–1.2 billion people suffer from water scarcity, and another 500 million

will experience this in the near future. It has been predicted that in 2030 around 50% of the world popula-

tion will be affected by water stress (Water, 2009). The global water scarcity issue has created enormous

pressure to search for alternative drinking water resources, such as treated wastewater. Current water man-

agement strategies in many regions (e.g., Singapore, California, and Australia) have highlighted the impor-

tance of wastewater reuse (Grant et al., 2012; Vanoppen et al., 2016; Bixio et al., 2006; Tang et al., 2018).

Unfortunately, the direct production of drinking water from wastewater is currently beyond reach due to
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OMPs, legal regulations, and social acceptance. Still, the inherent chemical potential of wastewater can be

used in drinking water treatment. For example, the reuse of treated wastewater as a low-salinity stream in

ion-exchange membrane (IEM) processes, where wastewater does not mix with the produced drinking wa-

ter stream, is a promising approach. Treated wastewater can be used as an ion sink in electrodialysis-based

pre-desalination of seawater (i.e., as a hybrid seawater desalination process) (Vanoppen et al., 2018; La

Cerva et al., 2019) or in reverse electrodialysis (i.e., for green energy generation) (Vermaas et al., 2013; Ci-

pollina and Micale, 2016; Długołecki et al., 2009). The abovementioned use of treated wastewater allows

lowering the energy demand of the desalination step. However, in these cases, the potential transport

of OMPs through IEMs may pose a risk. This transport is not yet fully understood and requires fundamental

investigation.

Previous studies on organics transport in IEM focused mainly on the investigation of the transport of OMPs

in a complete IEM stack consisting of alternating cation-exchange membranes (CEM) and anion-exchange

membranes (AEM). Thus, only the net transport over the entire stack (i.e., combined transport through AEM

and CEM) is reported (Roman et al., 2019; Vanoppen et al., 2015; Banasiak and Schäfer, 2009). On a single-

membrane level (i.e., more fundamental study), the ratio of OMP radius to membrane pore radius (and thus

diffusive hindrance factors) has been found as themost influential transport parameter of OMPs in IEMs (Ma

et al., 2018). However, the experimental fluxes determined on a single-membrane level could not be suc-

cessfully predicted by the solution-diffusion model (Wijmans and Baker, 2006). Also, a detailed study of the

differences between the permeability of AEMs and CEMs toward OMPs is missing. A comprehensive inves-

tigation of OMP transport at the single-IEM level is essential to understand the behavior of OMP in an IEM

stack. Furthermore, the few existing single-IEM level studies mainly describe the OMP transport in IEMs at

high concentrations, where steady-state transport is achieved (Ma et al., 2018; Han et al., 2016). In real-life

situations, when using treated wastewater as a source for low-salinity water/ion sink, steady-state condi-

tions may not be achieved at all due to variations in the OMP concentration. These variations are mainly

due to weather conditions leading to daily or even hourly disturbance in wastewater composition (Gao

et al., 2016; Arola et al., 2017; Zhu and Chen, 2014). In addition, although steric hindrance is described

as one of the most significant mechanisms for the partitioning of OMPs in IEMs (Ma et al., 2018; Pronk

et al., 2006), it has not been well investigated, because the pore size of IEMs, which can be reflected as

the free volume element (FVE) radius of IEMs, has never been reported.

Therefore, the non-steady-state diffusive transport and adsorption kinetics of OMPs in IEMs were investi-

gated in this study. A group of 19 OMPs of different physicochemical characteristics representing major

anthropogenic activities (i.e., pesticides, pharmaceuticals, herbicides, food industry, and organic acids)

was selected and tested at environmentally relevant concentrations. This group contained six non-

charged, seven negatively charged, and six positively charged OMPs. Customized CEMs and AEMs, man-

ufactured from the same polymer but of different thicknesses, were used as a control parameter to describe

the transport of OMPs. The dynamic diffusion-adsorption model was used to estimate the adsorption and

diffusion coefficients of the OMPs in IEMs. For the first time, positron annihilation lifetime spectroscopy

(PALS) was applied to study the FVE radius differences not only between AEMs and CEMs but also as a

function of their thicknesses. Thus, this investigation represents a new approach in IEM studies and fills

the research gaps in solute transport mechanisms in IEMs. The presented results will contribute to the

improved design of next-generation IEMs with more selectivity toward different types of OMPs, and or-

ganics in general.

RESULTS AND DISCUSSION

Unraveling similarities in FVE of AEMs and CEMs indicating that differences in their transport

are based on interactions developed with OMPs

Wet membrane thickness was selected as a control parameter in the non-steady-state adsorption-diffusion

model. Thus, wet thickness values of all membranes used in the experiments were measured. Subse-

quently, these thickness values were compared with the measured dry membrane thickness values and

the membrane swelling degree was calculated. Detailed results are presented in Table S1. The swelling

degree of AEMs and CEMs was below 9% for all membrane thicknesses. A clear negative linear depen-

dency between thickness and the swelling degree was found for CEMs (R2 = 0.97), where thinner mem-

branes were characterized by a higher swelling degree. On the contrary, no visible trend was found for

the swelling degree data of AEMs.
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The size and abundance of the FVE of dry IEMs were characterized using PALS (Figure 1). The average den-

sities of AEMs and CEMs were measured as 1.2 and 0.96 g/cm3, respectively, and were further used to

calculate the mean implantation depths, i.e., depth inside the membrane where the measurement is per-

formed (detailed information is included in the section Characterization of the membrane polymer struc-

ture using PALS in Transparent methods section of the Supplemental information). PALS analysis was per-

formed at a maximum depth of 4 mm to the membrane surface, i.e., approximately 26.7% and 4.7% of the

thickness of AEM5/CEM5 and AEM1/CEM1, respectively. Abbreviations AEMX and CEMX are explained in

the section Selection of ion exchange membranes in Transparent methods section of the Supplemental in-

formation. The analysis of positron annihilation lifetime spectra revealed that the size distribution of FVEs in

IEMs is unimodal, meaning that one main family of FVEs exists in the materials. Their average size (calcu-

lated over all measured implementation depths) is not significantly different between AEMs (average

FVEAEM1 = 0.25 G 0.007 nm; average FVEAEM5 = 0.25 G 0.008 nm) and CEMs (average FVECEM1 =

0.25 G 0.01 nm; average FVECEM5 = 0.25 G 0.01 nm). Furthermore, FVE size was also not dependent on

the measurement penetration percentage. The similar swelling degree (below 9%) of AEMs and CEMs in-

dicates that the effect of swelling on their inner structure is comparable between AEMs and CEMs. Thus, in

wet membranes (i.e., under the experimental conditions), differences in permeability between AEMs and

CEMs towardOMPs result from different IEM-OMP interactions, not from the steric hindrance effect. To the

best of our knowledge, the abovementioned results and their scientific relevance have never been

reported.

The o-Ps intensity was significantly higher for the CEMs (average intensityCEM1 = 14.6% G 0.01%; average

intensityCEM5 = 13.9% G 0.02%) than for the AEMs (average intensityAEM1 = 3.4% G 0.01%; average inten-

sityAEM5 = 3.8% G 0.02%) (Figure 1A). This may indicate that more FVEs are present inside the CEMs,

compared with the AEMs. Yet, it should be noted that the o-Ps intensity is a function of the abundance

of FVEs inside the material and the o-Ps annihilation probability. The latter is probably different for

AEMs and CEMs as they contain different functional groups (Geise et al., 2014; Xie et al., 2011; Pethrick,

1997). When comparing the o-Ps intensity obtained for the same membrane type of different thickness,

no significant difference was observed. PALS results suggest that the FVE abundance does not change

with increased membrane thickness for both AEM and CEM (Figure 1A). When comparing the FVE radii

measured at the different implantation depths, AEMs (of both thicknesses, AEM1 and AEM5) were charac-

terized by a slightly larger FVE size at the membrane surface than deeper in the membrane structure (Fig-

ure 1B). A clear and negative correlation was found between the FVE radius and the implantation depth for

both AEM1 and AEM5, with coefficients of determination of 0.86 and 0.93, respectively. The larger FVEs

near the membrane surface could partially reduce the surface resistance of AEMs toward OMP transport.

Furthermore, this effect would be more pronounced for thinner AEMs containing a lower quantity of the

Figure 1. Results of PALS measurements

Intensity (A) and free-volume elements (FVE) radius of AEM (B) and CEM (C) measured at different membrane depths. Error bars indicate standard deviation

of the measurement. The presented data correspond to the thinnest and thickest AEMs (AEM1dry = 15.4 G 0.2 mm, AEM5dry = 87.6 G 0.3 mm) and CEMs

(CEM1dry = 17.7 G 0.6 mm, CEM5dry = 84.1 G 3.5 mm).
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denser inner membrane structure. However, those influences are expected to be minor, and their potential

impact on the non-steady state transport of OMPs will be further discussed in section Transport and

adsorption of non-charged OMPs. Contrary to AEMs, CEMs showed a more uniform depth distribution

of the FVE radii (Figure 1C).

Remarkably, the FVE radius and intensity of IEMs of the same type but different thickness was similar in

magnitude (AEM1 versus AEM5 and CEM1 versus CEM5) (Figures 1B and 1C). The membrane thickness in-

fluences neither the size of the FVEs nor their abundance inside themembrane, whenmeasured at the same

implantation depth. Furthermore, this suggests that the average degree of polymer crosslinking is compa-

rable between used AEMs and CEMs. This shows how similar thosemembranes are in their backbone struc-

ture and demonstrate that their preparation technique does not significantly influence the membrane poly-

mer density.

Electroneutrality overcomes the diffusive potential of charged OMPs, leading to their

complete adsorption in the counter-charged membrane

The behavior of a mixture of 13 chargedOMPs of different physicochemical properties in the two-compart-

ment cell was investigated. The list of all OMPs used in the experiment is included in the section Organic

micropollutants used in experiments (Table S13), and the details of the experimental procedure can be

found in the sections Organic micropollutants and chemical analysis, Selection of ion exchange mem-

branes (including Table S14), and OMP diffusion experiments in the Transparent methods section of the

Supplemental information. Experiments were performed after verifying the potential risk of OMP losses

due to adsorption in the glass cell (not the membrane) and possible daylight UV degradation. Details of

the control experiment are included in the sectionOMPs natural degradation and glass adsorption control

experiment (including Figure S7) in Transparent methods section of the Supplemental information.

Charged OMPs were not transported through IEMs but adsorbed onto the membranes (OMPs with an

opposite charge compared with the charge of active groups on the membrane) or rejected by membranes

(OMPs with the same charge as active groups on the membrane). Atenolol and clofibric acid were selected

as model compounds to represent the typical behavior of positively and negatively chargedOMPs, respec-

tively (Figure 2). As the trend was the same for all charged OMPs, it was decided to present the results for

atenolol and clofibric acid only.

As indicated in our former work, electrostatic interactions are the primary force governing the adsorption of

charged OMPs in IEMs (Roman et al., 2019). This type of interaction is long-range, develops fast, and is

characterized by the highest strength among non-covalent interactions (Hobza and Müller-Dethlefs,

2010). Adsorption of charged OMPs occurred significantly faster than for non-charged OMPs (discussed

further in the section Transport and adsorption of non-charged OMPs). Moreover, in contrast to non-

charged OMPs, charged OMPs were fully adsorbed by AEMs and CEMs (100% adsorption). It can be

concluded that the adsorption of charged OMPs was entirely based on electrostatic interactions between

solute charges and membrane functional groups. Adsorption was observed to be independent of mem-

brane thickness (Figure 2), and membrane capacity (�charge density) was high enough to completely up-

take the charged OMPs from the feed solution, including the thinnest membranes (AEM1/CEM1).

It should be noted that at the start of each experiment, OMPs were only present in the feed, whereas the

permeate solution contained MilliQ water solely. In such conditions, the membrane free-ions (also referred

to as co-ions) are released toward the permeate (Galama et al., 2013). Thus, due to the electroneutrality

limitation, the maximum concentration of OMPs in the membranes is equal to the membrane charge den-

sity. Owing to the lack of membrane free-ions, OMPs were trapped in the membranes, and their transport

toward permeate was below the detection limit. Clearly, electroneutrality overcomes the diffusive potential

of charged OMPs, despite their high concentration difference across the membranes.

Transport and adsorption of non-charged OMPs

Type of interactions between the membrane and non-charged OMPs that determine their
adsorption and transport

The effect of themembrane thickness on the transport and adsorption of neutralOMPs in IEMswas investigated.

The list of all OMPs used in the experiment is included in the section Organic micropollutants used in experi-

ments (Table S13), and the details of the experimental procedure can be found in Organic micropollutants
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and chemical analysis, Selection of ion exchange membranes (including Table S14), and OMP diffusion exper-

iments in the Transparentmethods section of the Supplemental information. Experiments were performed after

verifying the potential risk of OMP losses due to adsorption in the glass cell (not the membrane) and possible

daylight UV degradation. Details of the control experiment are included in the sectionOMPs natural degrada-

tion and glass adsorption control experiment (including Figure S7) in Transparent methods section of the Sup-

plemental information. Diffusion experiments were conducted with AEMs, and CEMs were used as a semiper-

meable barrier between the feed and permeate solutions. Normalized adsorption and transport data of neutral

OMPs in AEMs and CEMs are shown in Figures S1 and S2.

In experiments with AEMs and CEMs, the adsorption of OMPs increased with increasing membrane thick-

ness, likely because of the increase in membrane volume and, therefore, the accessible interfacial area be-

tween the membrane fibers and OMPs (Figure 3). The adsorption of neutral OMPs was not dependent on

the presence of membrane charged groups (i.e., as opposed to chargedOMPs). As the adsorption is based

on other non-covalent bonds, it depends on the presence of, e.g., hydrogen donor/acceptor sites, hydro-

carbon rings, or hydrophobic tails (Faust and Aly, 2013). Figure 3A shows that the predominant type of

interaction governing the adsorption of non-charged OMPs onto tested AEMs was the hydrophobic

bonding because adsorption increased with the LogD value of OMPs. Adsorption of the strongly hydro-

phobic diuron was the highest; in contrast, the adsorption of rather hydrophilic caffeine was the lowest.

Figure 2. Concentration changes in the experimental time of selected charged organic micropollutants (OMP),

shown as the ratio of the number of moles (n) of OMPs measured in the feed solution over the total number of

mols (n0) used

(A) Clofibric acid in experiments with the anion-exchange membrane (AEM).

(B) Clofibric acid in experiments with the cation-exchange membrane (CEM).

(C) Atenolol in experiments with AEM.

(D) Atenolol in experiments with CEM. MilliQ water was used as a permeate. Membrane thicknesses were as follows:

AEM1wet = 15.9 G 3.1 mm, AEM2wet = 33.4 G 3.8 mm, AEM3wet = 42.3 G 3.5 mm, AEM4wet = 71 G 2.8 mm, AEM5wet =

89.6G 5.7 mm and CEM1wet = 19G 1 mm, CEM2wet = 36.3G 1.5 mm, CEM3wet = 51.3G 0.6 mm, CEM4wet = 76.7G 1.2 mm,

CEM5wet = 84.4 G 3.8 mm. Error bars indicate standard deviation of three independent measurements.
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For CEMs, where the adsorption was generally lower than in AEMs, this trend was not observed. However,

similar to AEMs, the amount of OMPs adsorbed in CEMs increased with the membrane thickness (Fig-

ure 3B). Previous results also emphasized the importance of hydrophobic interactions in the adsorption

of non-charged OMPs in IEMs (Roman et al., 2019). However, this is the first study investigating this phe-

nomenon in AEMs and CEMs individually. Remarkably, even in the same type of commercial membranes,

interactions between OMPs in AEMs and CEMs can be different, showing the importance of the functional

groups.

We also found that the higher the adsorption rate, the faster OMP achieves themembrane equilibrium con-

centration (Ceq), i.e., the membrane reaches its sorptive capacity for a certain OMP (Figures S1 and S2).

Also, the faster OMP achieves Ceq, the shorter is the time needed to detect OMP in the permeate. This

time is hereafter referred to as the diffusion lag time. Beside OMP diffusivity in the membrane, the main

reason for the diffusion lag time is the interaction of the OMP with a membrane. In the systems where

the adsorption was dependent on the local concentration of solute, i.e., the mass of the solute (OMP)

per unit of themembrane was variable, the diffusion lag time was proportional to the thickness and sorptive

capacity of the membrane/adsorbent (Flynn and Roseman, 1971; Cooper, 1974; Paul, 1969; Frisch, 1957). In

the current work, only diuron in AEM followed this relationship, indicating that only diuron reached Ceq in

AEM, and thus was further detected in the permeate (Figures S1 and S2). For all other OMPs and IEMs, the

diffusion lag time was solely determined by the membrane thickness (Figures S1 and S2). This behavior can

be caused by the physicochemical properties of OMPs, i.e., hydrophobicity and size, discussed in detail

further in this section.

The total amount of OMP transported through the membrane during the experiment was lower for thicker

membranes (Figure 4), likely due to longer diffusion lag time. The transport of OMPs was lower through

CEMs compared with AEMs except for caffeine, which was the least transported OMP through AEMs

and the most transported through CEMs (Figure 4). According to PALS results, the AEMs and CEMs

used in the current study have a comparable FVE. Therefore, the difference between the transport of

OMPs in CEMs and AEMs is based on the affinity of OMPs toward the membrane and its functional groups.

Based on the presented data, it can be concluded that the adsorption and transport process of neutral

OMPs in IEMs are strongly connected, i.e., adsorption influences diffusion lag time. Furthermore, the

more easily OMP establishes membrane saturation (reflected by reaching Ceq), the more it is transported

(e.g., transport of diuron in AEMs and transport of caffeine in CEMs). Small and hydrophilic caffeine was

easily transported through CEMs (less hydrophobic than AEMs). Caffeine is the least hydrophobic com-

pound among the tested OMPs (LogD = -0.55), and CEMs are more hydrophilic than AEMs, which was

confirmed by contact angle measurements (Figure S3 and Table S6). Also, higher hydrophobicity of the

investigated CEMs is in agreement with the literature, where a higher water transference coefficient was

found for the Fumasep CEMs than AEMs (Zlotorowicz et al., 2017). Thus the adsorption rate of caffeine

in CEMs was approximately 1,700% higher than in AEMs and quickly achieved Ceq (Figures S1 and S2).

Figure 3. Surface plot representation of the planar regression of normalized adsorption function parameters

Dependency between the normalized adsorption of organic micropollutants (OMP) at 117 h of experiment, membrane

thickness, and the hydrophobicity (Log D) of OMPs in anion-exchange membranes (A) and cation-exchange membranes

(B) in two-compartment cell experiments. The surface plot represents planar regression of data from Tables S2–S5, with

coefficients of determination of 0.59 and 0.75 for (A and B), respectively.
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As a result, caffeine was the most intensively transported OMP through CEMs (n/n0 = 3.8310-3 - 5.1310-3,

Figure 4), in contrast to AEMs, wherein it was practically the least transported (n/n0 = 0.1310-3- 0.4310-3,

Figure 4). Unlike caffeine, diuron is most hydrophobic (LogD = 2.53) among the tested OMPs, and its

adsorption rate in CEMs was approximately 65% lower than in AEMs. Thus, hydrophobicity significantly

increased the diffusion lag time of diuron in CEMs (Figures S1 and S2), preventing its transport through

the two thickest membranes (CEM4 and CEM5) (Figure 4).

Next to the hydrophobicity of OMPs, steric hindrance had a major impact on the OMP transport. As we aim

to compare the molecular dimension (steric hindrance) with FVE size, we found that the molecular radius is

themost suitable parameter to use. The averagemolecular radius of testedOMPs calculated from their van

der Waals volumes are as follows: rdiuron = 0.36 nm, rdimethoate = 0.35 nm, ratrazine = 0.36 nm, rsimazine =

0.35 nm, rcaffeine = 0.34 nm, and rparacetamol = 0.32 nm. Noticeably, the studied OMPs were characterized

by a similar estimated molecular dimension. Interestingly, the FVE (�0.25 nm) determined with PALS is

smaller than the above-presented molecular dimensions. However, after considering the swelling degree

to be below 9% (Table S1) for all membranes and their thicknesses, the calculated FVE radius was approx-

imately 0.28 nm. Also, this value is an average value over the whole implantation depth measurements.

Therefore, this result indicates that the dimensions of OMPs are in the same order of magnitude as the

FVE size of the selected IEMs. Considering this, even minor differences in the geometry of OMPs might

have an impact on their transport properties. Therefore, this would be a plausible reason why paracetamol

penetrates membranes more easily in AEMs than other OMPs. PALS results show that AEMs were charac-

terized by a slightly more open structure at the membrane surface. Possibly these open-ended FVEs could

slightly decrease AEM surface resistance, as also reported elsewhere (Sarapulova et al., 2019). However,

these differences are small, and further confirmation would require more research effort, including exper-

iments with asymmetric membranes.

Simazine and atrazine behaved differently than the OMPs explained earlier. Both compounds were the

least transported through IEMs (Figure 4), although showing relatively high hydrophobicity (LogD be-

tween 1.78 and 2.2). Atrazine and simazine are characterized by the highest hydrogen donor/acceptor

count (both 7), which is significantly higher compared with the other tested OMPs (between 2 and 4).

Possibly, the adsorption of atrazine and simazine was assisted by strong hydrogen bonds, which were

even more significant in the more hydrophilic CEMs. Therefore, despite the fast adsorption of simazine

and atrazine and achieving Ceq, the adsorption was strong enough to significantly decrease their trans-

port (Figure 4).

Figure 4. Normalized transport of neutral organic micropollutants in anion-exchange membranes (AEMs) and

cation-exchange membranes (CEMs)

Presented data are for all membrane thicknesses, where AEM1wet = 15.9 G 3.1 mm, AEM2wet = 33.4 G 3.8 mm, AEM3wet =

42.3G 3.5 mm, AEM4wet = 71G 2.8 mm, AEM5wet = 89.6 G 5.7 mm and CEM1wet = 19G 1 mm, CEM2wet = 36.3 G 1.5 [mm],

CEM3wet = 51.3 G 0.6 [mm], CEM4wet = 76.7G 1.2 mm, CEM5wet = 84.4 G 3.8 mm. For the clarity of the plot, error bars are

omitted, as their values are below 4% of the average values.
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The identification of adsorption-transport mechanisms of neutral OMPs, and learning about exceptions

such as atrazine and simazine, creates the possibility to reconsider potential membrane design to limit

membrane permeability toward OMPs. It was shown that thicker and denser membranes might contribute

to limiting the transport of OMPs. However, increasing membrane thickness would also increase mem-

brane electrical resistance. The proper selection of those membrane parameters would be a trade-off so-

lution, evaluated based on the needs of the specific IEMs system.

Surface resistance increases the diffusion coefficient along with membrane thickness in the
dynamic diffusion-adsorption model

Diffusion and adsorption coefficients describing the transport of neutral OMPs through AEMs and CEMs

(all thicknesses) were estimated with the non-steady-state diffusion-adsorption model. Details of model

description and determination of diffusion and adsorption coefficients are included in the sectionDynamic

diffusion-adsorption model for determination of transport coefficients of organic micropollutants in IEM

(including Figures S8 and S9) in the Transparent methods section of the Supplemental information. The ob-

tained coefficients are presented in Figure 5, while the detailed values of the coefficients with their uncer-

tainties are in Tables S7–S10.

An exponential dependency (y = a$exp(b$x)) between the diffusion coefficient and membrane thickness was

found for AEMs and CEMs (Figure 5). In CEMs, caffeine did not follow the exponential trend probably because

of its hydrophilicity, which significantly changed the nature of caffeine-CEMsurface interactions. Dataof simazine

and atrazine are not included due to lack of transport of these compounds through the CEMs. The lack of trans-

port can be explained by the pH drop in parts of the experiments (Tables S11 and S12). This change in pH led to

the ionization of simazine and atrazine (not affecting any other OMPs) and resulted in the adsorption of these

compounds onto CEMs (section Electroneutrality overcomes the diffusive potential of charged OMPs, leading

to their complete adsorption in the counter-charged membrane).

Figure 5. Diffusion and adsorption coefficients for the transport of organic micropollutants through anion-

exchange membranes (AEMs) and cation-exchange membranes (CEMs) at different membrane thicknesses.

For figure clarity, standard errors are shown for the estimated coefficients only, whereas error on measured thicknesses is

omitted. Dashed lines indicate the regression (exponential) fit.
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From the results presented in Figure 5, the diffusion coefficient increased with AEM and CEM membrane

thickness. By definition, the diffusion coefficient is a measure of rate at which molecule transports in a

certain material or media (Crank, 1979; Cooper, 1974). Therefore, it can be expected that in IEMs, made

from the same polymer, the diffusion coefficient will be constant for all thicknesses. The potential effect

of the microstructural differences between different thicknesses of the membranes was validated using

PALS, which indicated that membranes of different thicknesses were considerably similar in FVE radius

and intensity (Figure 1). Thus, the increase in the diffusion coefficient for the thicker membranes is not

an effect of such differences, e.g., a more open structure of thicker membranes. The most probable reason

why the determined diffusion coefficients are thickness-dependent is different interactions between spe-

cies at the surface and in the bulk of the layer. It is known that surfaces are characterized by higher energy

than the bulk of the material (Packham, 2003). Thus, surfaces create a barrier of high resistance. This phe-

nomenon is more prominent in a thinner membrane, as the ratio between bulk and surface energies is the

lowest. These findings are in agreement with other previous studies mentioning the influence of the layer

thickness of diffusive material on the diffusion coefficient of transported species (Buss et al., 2015; Nath,

2014; Park and Aluru, 2010). Another potential mechanism responsible for the dependency of the diffusion

coefficient on the membrane thickness is the double transport mechanism (Galama et al., 2013, 2016b),

which covers the surface diffusion along with the membrane polymers and transport through the solvent

in the FVE. As the diffusion along the polymer surface could occur faster than the diffusion in the solvent

in the FVEs, the contribution of the surface polymer diffusion increases along with the membrane thickness.

Therefore, the measured diffusion coefficients could be higher in thicker membranes. More thorough

research, specifically with more extended experimental duration to study the transition from non-equilib-

rium to steady state, is necessary to confirm these key observations.

The regression parameter b, describing the growth of the diffusion coefficient versus thickness (Figure 5),

was found as independent of the OMPs, but dependent on the type of membrane (Figures S4–S6). A 2-fold

higher growth of diffusion coefficient was observed in AEMs (b = 18.393G 1536) than in CEMs (b = 8394G

879). Most likely, the differences between the parameter b in AEMs and CEMs are due to their different

chemical compositions, and thus polymer structure (described in the section Type of interactions between

the membrane and non-charged OMPs that determine their adsorption and transport). Nevertheless, this

hypothesis could not be confirmed with PALS results.

The second regression parameter a describes the diffusion coefficient for a hypothetical infinitely thin

membrane. In theory, this parameter corresponds to the diffusion coefficient in water; however, it is found

to be substantially lower. For example, the diffusion coefficient of paracetamol in water is around 140-fold

higher than the estimated parameter a (759 3 10�12 versus 6.5 3 10�12 m2 s�1, Figures S4–S6). Thus, it can

be concluded that the difference between the value of the diffusion coefficient in water and the estimated

parameter a is a measure of the surface effect on the diffusion. The difference between estimated param-

eter a and diffusion coefficient in water is different for each OMP (Figures S4–S6). In AEMs, the correlation

analysis indicated that the hydrophobicity of OMPs is the responsible parameter for the surface resistance

(Pearson’s R =�0.993, p values < 0.05). This confirms that hydrophobic interactions play a significant role in

the adsorption of OMPs in AEMs and is in agreement with the description of adsorption and transport

mechanisms described in the section Type of interactions between the membrane and non-charged

OMPs that determine their adsorption and transport. In CEMs, the correlation analysis indicated that

the topological polar surface of OMPs is the responsible parameter for the surface resistance (Pearson’s

R = 0.970, p value < 0.05). The topological polar surface area is the area of its van der Waals surface arising

from oxygen or nitrogen atoms, or hydrogen atoms attached to oxygen or nitrogen atoms. As such, it is a

measure of the compound’s capacity to form hydrogen bonds (Roman et al., 2019; Clark, 1999). Probably,

the formation of hydrogen bonds at themembrane surface is responsible for limiting the transport of OMPs

in the investigated CEMs.

In contrast to diffusion coefficients, adsorption coefficients were found independent of the membrane

thickness in AEMs and CEMs (Figure 5). The adsorption coefficient corresponds to the rate of surface in-

teractions between OMP and the membrane; thus, it is similar in physical meaning to the rates described

in the section Type of interactions between the membrane and non-charged OMPs that determine their

adsorption and transport. A strong correlation between the average adsorption coefficient and LogD

was found (Pearson’s R = 0.904, p-values < 0.05), which reflects a strong dependency of OMPs’ adsorption

in AEMs on the hydrophobic bonding.
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Limitations of the study

In this study, we performed a comprehensive investigation of OMPs’ transport through a single IEM under non-

steady-state conditions. As so little is known about the fundamentals of the behavior of OMPs in IEMs, it was

decided todesign experimentswherein the transport was investigated at a single-membrane level, with onema-

jor driving force, i.e., diffusion. Thus, to limit the influence of the convection and electromigration, no inorganic

salts were added and no external electrical potential was applied. This created an opportunity for a detailed

study of the transport of the non-charged OMPs, although only adsorption of charged OMPs was observed.

That is why the fundamental study of the transport of charged OMPs still requires further research, e.g., exper-

iments involving the application of different, monovalent and multivalent, inorganic salts in two-compartment

cells. Inorganic salts’ presence eliminates the limiting effect of electroneutrality in the transport of charged

OMPs through IEMs. Furthermore, due to the lack of transport of charged OMPs, a detailed investigation of

ion-exchange capacity (IEC) for each membrane thickness was not performed. As explained in the section Elec-

troneutrality overcomes the diffusive potential of charged OMPs, leading to their complete adsorption in the

counter-charged membrane, the adsorption of charged OMPs was entirely based on electrostatic interactions

between solute charges andmembrane functional groups. Thus, a comparison of the chargedOMPs’ transport

data with IECs could verify the effect of membrane saturation on the transport of charged OMPs. However, re-

sults obtainedusing PALS verified that different thicknesses ofmembranes from the samepolymer are uniform in

their properties. PALS signal intensity is also dependent on the membrane chemistry, i.e., the presence of the

ion-exchange groups. Based on the presented results (Figure 1A), we concluded that chemical properties are

the same for different membranes’ thicknesses, as the intensity does not vary between AEM1/AEM5 and

CEM1/CEM5. Thus, we can expect that IECs also do not vary significantly between membranes. Unlike IECs,

we expect that membrane electrical resistance increases with membrane thickness. Next to the internal mem-

brane parameters, we think that the membrane’s surface resistances also determine the electrical resistance.

A commonly used method to measure the membrane’s electrical resistance, i.e., applying a six-compartment

cell, is not suitable to measure thin membranes (Długołęcki et al., 2010; Galama et al., 2016a). A high error is

caused by the imprecise alignment of Haber-Luggin capillaries, the fluctuation of membranes caused by the

electrolytes’ flow inside the cell, and a lack of differentiation in resistance between the investigated membrane

and the surrounding solution. Developing a precisemethod tomeasuremembrane resistance is crucial to report

the membrane’s resistance thickness.

In this study, we investigated one type of membrane at different thicknesses (S10) manufactured from the same

polymer (stock) solution. We evidenced that the interactions betweenOMPs and the membranematerial deter-

mine the OMP transport, whereas the interaction depends on the physicochemical parameters of OMPs. We

found that the adsorption and transport process of neutral OMPs in IEMs are strongly dependent on each other,

i.e., adsorption influences the diffusion lag time. Furthermore, the easier OMPs reach membrane saturation (re-

flected by obtaining Ceq), the more OMPs are transported. We strongly believe that the presented conclusions

are universal and valid also for different types ofmembranes. Of course, certain differences, e.g., the time of ob-

taining membrane saturation, are different depending on the membrane parameters.
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Petrovic, M., and Rodrı́guez-Roda, I. (2016).
Evaluation of emerging contaminants in a
drinking water treatment plant using
electrodialysis reversal technology. J. Hazard.
Mater. 309, 192–201.

Galama, A., Hoog, N., and Yntema, D. (2016a).
Method for determining ion exchange
membrane resistance for electrodialysis systems.
Desalination 380, 1–11.

Galama, A., Post, J., Hamelers, H., Nikonenko, V.,
and Biesheuvel, P. (2016b). On the origin of the
membrane potential arising across densely
charged ion exchange membranes: how well
does the Teorell-Meyer-Sievers theory work?
J. Membr. Sci. Res. 2, 128–140.

Galama, A., Post, J., Stuart, M.C., and Biesheuvel,
P. (2013). Validity of the Boltzmann equation to
describe Donnan equilibrium at the membrane–
solution interface. J. Membr. Sci. 442, 131–139.

Gao, J., Huang, J., Chen, W., Wang, B., Wang, Y.,
Deng, S., and Yu, G. (2016). Fate and removal of
typical pharmaceutical and personal care
products in a wastewater treatment plant from
Beijing: a mass balance study. Front. Environ. Sci.
Eng. 10, 491–501.

Geise, G.M., Doherty, C.M., Hill, A.J., Freeman,
B.D., and Paul, D.R. (2014). Free volume
characterization of sulfonated styrenic
pentablock copolymers using positron

ll
OPEN ACCESS

iScience 24, 102095, February 19, 2021 11

iScience
Article

http://www.wetsus.eu
http://www.revivedwater.eu
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref1
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref1
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref1
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref1
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref1
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref2
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref2
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref2
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref2
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref3
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref3
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref3
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref3
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref4
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref4
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref4
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref4
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref5
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref5
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref5
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref5
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref5
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref6
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref6
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref6
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref7
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref7
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref7
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref7
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref7
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref8
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref8
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref8
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref9
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref9
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref10
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref10
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref10
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref10
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref11
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref11
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref11
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref11
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref12
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref12
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref12
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref12
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref13
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref13
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref13
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref13
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref13
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref13
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref13
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref14
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref14
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref15
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref15
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref15
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref15
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref15
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref16
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref16
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref17
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref17
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref17
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref17
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref17
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref17
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref18
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref18
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref18
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref18
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref19
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref19
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref19
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref19
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref19
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref19
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref20
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref20
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref20
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref20
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref21
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref21
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref21
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref21
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref21
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref21
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref22
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref22
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref22
http://refhub.elsevier.com/S2589-0042(21)00063-8/sref22


annihilation lifetime spectroscopy. J. Membr. Sci.
453, 425–434.

Grant, S.B., Saphores, J.-D., Feldman, D.L.,
Hamilton, A.J., Fletcher, T.D., Cook, P.L.,
Stewardson, M., Sanders, B.F., Levin, L.A., and
Ambrose, R.F. (2012). Taking the ‘‘waste’’ out of
‘‘wastewater’’ for human water security and
ecosystem sustainability. Science 337, 681–686.

Han, L., Galier, S., and Roux-De Balmann, H.
(2016). Transfer of neutral organic solutes during
desalination by electrodialysis: influence of the
salt composition. J. Membr. Sci. 511, 207–218.

Hobza, P., and Müller-Dethlefs, K. (2010). Non-
covalent Interactions: Theory and Experiment
(Royal Society of Chemistry).

Jobling, S., Nolan, M., Tyler, C.R., Brighty, G., and
Sumpter, J.P. (1998). Widespread sexual
disruption in wild fish. Environ. Sci. Technol. 32,
2498–2506.

Jones, O.A., Voulvoulis, N., and Lester, J.N.
(2003). Potential impact of pharmaceuticals on
environmental health. Bull. World Health Organ.
81, 768–769.

La Cerva, M., Gurreri, L., Cipollina, A., Tamburini,
A., Ciofalo, M., and Micale, G. (2019). Modelling
and cost analysis of hybrid systems for seawater
desalination: electromembrane pre-treatments
for Reverse Osmosis. Desalination 467, 175–195.

Ma, L., Gutierrez, L., Vanoppen, M., Aubry, C.,
and Verliefde, A. (2018). Transport of uncharged
organics in ion-exchange membranes:
experimental validation of the solution-diffusion
model. J. Membr. Sci. 564, 773–781.

McKinlay, R., Plant, J., Bell, J., and Voulvoulis, N.
(2008). Endocrine disrupting pesticides:
implications for risk assessment. Environ. Int. 34,
168–183.

Murray, K.E., Thomas, S.M., and Bodour, A.A.
(2010). Prioritizing research for trace pollutants
and emerging contaminants in the freshwater
environment. Environ. Pollut. 158, 3462–3471.

Nath, S.D. (2014). On the thickness-dependent
diffusion coefficient of perfluoropolyether
lubricants on a thin diamond-like film. Appl. Phys.
A 117, 857–870.

Ohe, T., Watanabe, T., and Wakabayashi, K.
(2004). Mutagens in surface waters: a review.
Mutat. Res./Rev. Mutat. Res. 567, 109–149.
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Supplemental data items 
 
 
Wet and dry membrane thicknesses measured by an optical microscope 
 
Table S1. Average thicknesses of wet and dry IEMs used in experiments, with calculated membrane 
swelling. Related to Figure 1-5 and discussed in the manuscript’s 2.1. section. 

Membrane 
Average dry 

thickness 
[µm] 

StDev [-] 
Average wet 

thickness 
[µm] 

StDev [-] % swelling 
swelling 

error 

AEM 1 15.4 0.2 15.9 3.1 3.2 0.111 

AEM 2 30.9 1.8 33.4 3.8 8.1 0.082 

AEM 3 41.4 0.2 42.3 3.5 2.2 0.044 

AEM 4 70.7 0.8 71 2.8 0.4 0.026 

AEM 5 87.6 0.3 89.6 5.7 2.3 0.027 

CEM 1 17.7 0.6 19 1 7.5 0.063 

CEM 2 34.7 1.2 36.3 1.5 4.8 0.048 

CEM 3 49.7 0.6 51.3 0.6 3.4 0.019 

CEM 4 75.3 1.2 76.7 1.2 1.8 0.021 

CEM 5 84.1 3.5 84.4 3.8 0.4 0.048 

 
  



Results of diffusion experiments with AEMs and CEMs used as a semipermeable barrier between 
feed and permeate solutions  
 

 
Figure S1. Normalized adsorption and transport of non-charged organic micropollutants in diffusion 
experiments with anion exchange membranes. Presented data are for all membrane thicknesses, where 
AEM1wet = 15.9 ± 3.1 [µm], AEM2wet = 33.4 ± 3.8 [µm], AEM3wet = 42.3 ± 3.5 [µm], AEM4wet = 71 ± 2.8 
[µm], AEM5wet = 89.6 ± 5.7 [µm]. Each point represents an average of measurements from three 
independent experiments. Lines indicate best-fitting function, where adsorption follows first-order 
kinetics. The coefficient of determination for each fit is included in Table S2–S5. Related to Figure 3 and 
4 and discussed in the manuscript’s 2.3.1 section. 

 
Figure S2. Normalized adsorption and transport of neutral organic micropollutants in diffusion 
experiments with cation exchange membranes. Presented data are for all membrane thicknesses, 
where CEM1wet = 19 ± 1 [µm], CEM2wet = 36.3 ± 1.5 [µm], CEM3wet = 51.3 ± 0.6 [µm], CEM4wet = 76.7 ± 
1.2 [µm], CEM5wet = 84.4 ± 3.8 [µm]. Each point represents an average of measurements from three 
independent experiments. Lines indicate best-fitting function, where adsorption follows first-order 
kinetics. The coefficient of determination for each fit is included in Table S2–S5. Related to Figure 3 and 
4 and discussed in the manuscript’s 2.3.1 section. 



Fitting parameters of normalized adsorption and transport function 
 
Table S2. Normalized adsorption function parameters and their coefficients of determination for anion 
exchange membranes. Related to Figure 3. 

    R2 a b c 

Diuron AEM 1  0.977 -0.311 0.097 0.312 

Diuron AEM 2 0.972 -0.459 0.059 0.461 

Diuron AEM 3 0.986 -0.656 0.036 0.658 

Diuron AEM 4 0.989 -0.624 0.046 0.625 

Diuron AEM 5 0.988 -0.734 0.046 0.736 

Dimethoate AEM 1  0.847 -0.193 0.011 0.194 

Dimethoate AEM 2 0.978 -0.295 0.009 0.295 

Dimethoate AEM 3 0.966 -0.347 0.010 0.348 

Dimethoate AEM 4 0.943 -0.289 0.014 0.291 

Dimethoate AEM 5 0.983 -0.963 0.003 0.964 

Atrazine AEM 1  0.886 -0.098 0.109 0.098 

Atrazine AEM 2 0.930 -0.272 0.012 0.273 

Atrazine AEM 3 0.931 -0.374 0.017 0.375 

Atrazine AEM 4 0.989 -0.337 0.037 0.338 

Atrazine AEM 5 0.966 -0.364 0.030 0.365 

Simazine AEM 1  0.868 -0.101 0.092 0.101 

Simazine AEM 2 0.900 -0.139 0.034 0.140 

Simazine AEM 3 0.964 -0.266 0.013 0.266 

Simazine AEM 4 0.976 -0.297 0.035 0.298 

Simazine AEM 5 0.973 -0.307 0.039 0.308 

Caffeine AEM 1  0.748 -0.067 0.027 0.067 

Caffeine AEM 2 0.954 -0.279 0.005 0.279 

Caffeine AEM 3 0.959 -0.167 0.007 0.167 

Caffeine AEM 4 0.961 -0.220 0.006 0.220 

Caffeine AEM 5 0.935 -0.120 0.017 0.121 

Paracetamol AEM 1  0.743 -0.074 0.088 0.074 

Paracetamol AEM 2 0.981 -0.207 0.017 0.207 

Paracetamol AEM 3 0.934 -0.197 0.029 0.198 

Paracetamol AEM 4 0.957 -0.199 0.018 0.200 

Paracetamol AEM 5 0.972 -0.326 0.009 0.327 

 
  



Table S3. Normalized adsorption function parameters and their coefficients of determination for cation 
exchange membranes. Related to Figure 3. 
 

    R2 a b c 

Diuron CEM 1 0.943 -0.406 0.015 0.406 

Diuron CEM 2 0.971 -0.499 0.014 0.499 

Diuron CEM 3 0.978 -0.592 0.028 0.594 

Diuron CEM 4 0.975 -0.730 0.011 0.733 

Diuron CEM 5 0.965 -0.762 0.014 0.763 

Dimethoate CEM 1 0.886 -0.105 0.051 0.105 

Dimethoate CEM 2 0.977 -0.169 0.013 0.169 

Dimethoate CEM 3 0.989 -0.388 0.003 0.388 

Dimethoate CEM 4 0.970 -0.237 0.014 0.238 

Dimethoate CEM 5 0.968 -0.714 0.003 0.714 

Atrazine CEM 1 0.828 -0.212 0.018 0.210 

Atrazine CEM 2 0.983 -0.359 0.024 0.358 

Atrazine CEM 3 0.997 -0.590 0.025 0.590 

Atrazine CEM 4 0.999 -0.601 0.024 0.601 

Simazine CEM 1 0.858 -0.121 0.064 0.120 

Simazine CEM 2 0.974 -0.365 0.028 0.364 

Simazine CEM 3 0.995 -0.550 0.033 0.551 

Simazine CEM 4 1.000 -0.590 0.029 0.590 

Caffeine CEM 1 0.938 -0.066 0.391 0.066 

Caffeine CEM 2 0.969 -0.152 0.135 0.152 

Caffeine CEM 3 0.921 -0.100 0.132 0.100 

Caffeine CEM 4 0.384 -0.057 0.510 0.057 

Caffeine CEM 5 0.986 -0.243 0.062 0.243 

Paracetamol CEM 1 0.964 -0.065 0.143 0.065 

Paracetamol CEM 2 0.994 -0.114 0.024 0.114 

Paracetamol CEM 3 0.886 -0.174 0.036 0.174 

Paracetamol CEM 4 0.949 -0.135 0.032 0.135 

Paracetamol CEM 5 0.919 -0.141 0.030 0.141 

 
  



Table S4. Normalized transport function parameters and their coefficients of determination for anion 
exchange membranes. Related to Figure 3. 
 

    R2 a b c 

Diuron AEM 1  0.877 -0.345 0.026 0.303 

Diuron AEM 2 0.890 -0.446 0.055 0.139 

Diuron AEM 3 0.853 -1.089 0.002 1.000 

Diuron AEM 4 0.413 -0.126 0.036 0.038 

Diuron AEM 5 0.130 -19.077 0.248 0.010 

Dimethoate AEM 1  0.863 -0.189 0.016 0.183 

Dimethoate AEM 2 0.816 -0.181 0.007 0.145 

Dimethoate AEM 3 0.903 -0.556 0.002 0.514 

Dimethoate AEM 4 0.617 -45.498 0.170 0.031 

Dimethoate AEM 5 0.904 -0.155 0.007 0.121 

Atrazine AEM 1  0.621 -0.117 0.024 0.099 

Atrazine AEM 2 0.848 -55.161 0.123 0.012 

Atrazine AEM 3 0.793 -0.110 0.006 0.068 

Atrazine AEM 4 0.362 -48.246 0.155 0.001 

Atrazine AEM 5 0.147 -0.020 0.013 0.016 

Simazine AEM 1  0.853 -0.239 0.013 0.229 

Simazine AEM 2 0.852 -0.286 0.005 0.229 

Simazine AEM 3 0.756 -0.809 0.001 0.759 

Simazine AEM 4 0.921 -0.180 0.004 0.151 

Simazine AEM 5 0.217 -39.545 0.179 0.021 

Caffeine AEM 1  0.925 -0.057 0.009 0.059 

Caffeine AEM 2 0.830 -0.048 0.003 0.048 

Caffeine AEM 3 0.814 -0.143 0.001 0.141 

Caffeine AEM 4 0.073 -34.343 0.180 0.015 

Caffeine AEM 5 0.803 -47.310 0.119 0.021 

Paracetamol AEM 1  0.933 -0.423 0.029 0.416 

Paracetamol AEM 2 0.943 -1.013 0.003 1.000 

Paracetamol AEM 3 0.895 -1.025 0.002 1.000 

Paracetamol AEM 4 0.941 -1.012 0.003 1.000 

Paracetamol AEM 5 0.830 -1.060 0.002 1.000 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S5. Normalized transport function parameters and their coefficients of determination for cation 
exchange membranes. Related to Figure 3. 
 

    R2 a b c 

Diuron CEM 1 0.939 -1.010 0.003 0.950 

Diuron CEM 2 0.822 -0.481 0.005 0.382 

Diuron CEM 3 0.845 -49.683 0.111 0.023 

Diuron CEM 4 0.143 0.000 0.139 0.000 

Diuron CEM 5 0.001 0.000 0.568 0.000 

Dimethoate CEM 1 0.836 -1.023 0.001 0.986 

Dimethoate CEM 2 0.924 -0.506 0.002 0.465 

Dimethoate CEM 3 0.854 -0.669 0.001 0.660 

Dimethoate CEM 4 0.053 -0.053 0.518 0.003 

Dimethoate CEM 5 0.172 -26.498 0.360 0.014 

Atrazine CEM 1 0.582 -42.056 0.153 0.028 

Atrazine CEM 2  -46.536 0.214 0.001 

Atrazine CEM 3 0.092 0.000 0.657 0.000 

Atrazine CEM 4 0.208 0.000 0.033 0.000 

Simazine CEM 1 0.883 -0.658 0.005 0.600 

Simazine CEM 2 0.608 -37.469 0.143 0.035 

Simazine CEM 3 0.282 0.000 0.557 0.000 

Simazine CEM 4 0.438 0.000 0.511 0.000 

Caffeine CEM 1 0.995 -0.494 0.037 0.477 

Caffeine CEM 2 0.999 -0.463 0.029 0.435 

Caffeine CEM 3 0.751 -1.052 0.005 1.000 

Caffeine CEM 4 0.983 -0.409 0.020 0.454 

Caffeine CEM 5 0.910 -0.704 0.008 0.635 

Paracetamol CEM 1 0.810 -1.053 0.003 1.000 

Paracetamol CEM 2 0.750 -0.507 0.008 0.445 

Paracetamol CEM 3 0.543 -0.632 0.002 0.590 

Paracetamol CEM 4 0.873 -0.542 0.002 0.503 

Paracetamol CEM 5 0.837 -1.039 0.001 0.993 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Contact angle measurements 
 

  
Figure S3. Example of contact angle measurement for (A) anion-exchange membranes (AEM1dry = 
15.4 ± 0.2 [µm]) and (B) cation-exchange membranes (CEM1dry = 17.7 ± 0.6 [µm]). Related to Figure 
4 and discussed in the manuscript’s 2.3.1 section. 

 
Table S6. Values of contact angle measured on anion-exchange (AEM1dry = 15.4 ± 0.2 [µm]) and 
cation-exchange membranes (CEM1dry = 17.7 ± 0.6 [µm]). Related to Figure 4 and discussed in the 
manuscript’s 2.3.1 section. 

AEM contact angle [°] AEM Droplet volume [µL] CEM contact angle [°] CEM Droplet volume [µL] 

84.095 2.127 68.290 2.087 

76.655 1.785 73.900 1.629 

82.541 1.672 70.050 1.539 

78.443 1.525 71.224 1.661 

80.631 1.893 67.517 1.544 

79.293 1.834 74.194 1.673 

85.507 2.061 71.520 1.618 

 
 
 
 

A B 



Diffusion and adsorption coefficients determined by non-steady diffusion-adsorption model 
 
Table S7. Diffusion coefficients with standard errors in anion-exchange membranes. Related to Figure 5. 

AEM thickness 
[µm] 

DDiuron 

 [m2 s-1] 
Standard 

error 
DDimethoate  
[m2 s-1] 

Standard 
error 

DAtrazine 

 [m2 s-1] 
Standard 

error 
DSimazine  
[m2 s-1] 

Standard 
error 

DCaffeine 
[m2 s-1] 

Standard 
error 

DParacetamol 
[m2 s-1] 

Standard 
error 

15.9 1.02E-11 2.97E-12 3.41E-12 1.55E-12 2.03E-12 7.21E-13 3.18E-12 1.03E-12 8.70E-13 1.88E-13 7.76E-12 2.42E-12 

33.4 1.26E-11 2.11E-12 4.57E-12 1.69E-12 1.93E-12 4.11E-13 3.31E-12 5.74E-13 1.53E-12 5.36E-13 8.59E-12 2.82E-12 

42.3 1.21E-11 1.27E-12 3.72E-12 5.75E-13 2.33E-12 4.03E-13 3.85E-12 5.83E-13 1.44E-12 3.49E-13 1.11E-11 8.52E-13 

71 2.18E-11 2.59E-12 7.64E-12 1.83E-12 4.61E-12 6.62E-13 6.80E-12 7.42E-13 2.74E-12 4.85E-13 2.08E-11 2.33E-12 

89.6 3.00E-11 4.86E-12 8.81E-12 1.03E-12 8.41E-12 2.38E-12 1.11E-11 3.71E-12 4.57E-12 1.45E-12 2.08E-11 2.91E-12 

 
Table S8. Adsorption coefficients with standard errors in anion-exchange membranes. Related to Figure 5. 

AEM thickness 
[µm] 

kDiuron  
[s-1] 

Standard 
error 

kDimethoate  
[s-1] 

Standard 
error 

kAtrazine  
[s-1] 

Standard 
error 

kSimazine  
[ s-1] 

Standard 
error 

kCaffeine  
[ s-1] 

Standard 
error 

kParacetamol 
[s-1] 

Standard 
error 

15.9 5.10E-02 7.41E-03 1.68E-02 7.27E-03 2.35E-02 1.97E-03 2.34E-02 2.37E-03 1.17E-02 6.66E-03 5.55E-03 4.83E-03 

33.4 4.64E-02 2.43E-03 1.02E-02 1.17E-03 1.22E-02 1.37E-03 8.31E-03 4.83E-04 9.26E-03 3.66E-03 1.19E-02 3.17E-03 

42.3 5.01E-02 7.22E-03 1.07E-02 2.91E-03 1.74E-02 3.92E-03 1.23E-02 2.91E-03 6.10E-03 2.32E-03 8.52E-03 8.86E-04 

71 3.91E-02 3.21E-03 7.57E-03 1.05E-03 1.33E-02 1.93E-03 8.99E-03 1.98E-03 2.99E-03 5.52E-04 3.05E-03 1.42E-03 

89.6 4.78E-02 2.10E-03 7.99E-03 1.61E-03 1.14E-02 5.39E-03 7.64E-03 3.13E-03 2.53E-03 4.14E-04 3.05E-03 1.99E-03 

 
Table S9. Diffusion coefficients with standard errors in cation-exchange membranes. Related to Figure 5. 

CEM thickness 
[µm] 

DDiuron 
[m2 s-1] 

Standard 
error 

DDimethoate 
[m2 s-1] 

Standard 
error 

DCaffeine 
[m2 s-1] 

Standard 
error 

DParacetamol 
[m2 s-1] 

Standard 
error 

19 6.12E-12 3.77E-12 2.48E-12 6.18E-13 2.42E-11 2.90E-11 5.51E-12 2.18E-12 

36.3 8.36E-12 2.19E-12 3.90E-12 2.73E-13 5.35E-12 1.72E-12 7.85E-12 1.98E-12 

51.3 9.56E-12 2.56E-12 3.96E-12 1.28E-12 1.04E-11 7.54E-12 8.38E-12 2.56E-12 

76.7 9.76E-12 3.25E-12 4.25E-12 9.14E-13 4.62E-12 6.84E-13 8.05E-12 2.26E-12 

84.4 1.24E-11 1.60E-12 4.66E-12 5.50E-13 2.40E-11 1.69E-11 8.24E-12 8.33E-13 

 
 
 
 
 
 



Table S10. Adsorption coefficients with standard errors in cation-exchange membranes. Related to Figure 5. 

CEM thickness 
[µm] 

kDiuron  
[s-1] 

Standard 
error 

kDimethoate 

 [s-1] 
Standard 

error 
kCaffeine  

[s-1] 
Standard 

error 
kParacetamol 

 [s-1] 
Standard 

error 

19 2.80E-02 7.70E-03 1.51E-02 8.61E-03 1.01E-02 1.12E-02 1.14E-02 6.22E-03 

36.3 2.47E-02 2.14E-03 1.23E-02 7.79E-03 1.95E-02 7.70E-03 8.37E-03 4.72E-03 

51.3 2.86E-02 3.59E-03 6.74E-03 2.57E-03 5.60E-03 2.21E-03 9.50E-03 4.12E-03 

76.7 2.41E-02 3.99E-03 7.58E-03 2.53E-03 1.93E-03 1.93E-03 3.77E-03 6.17E-04 

84.4 2.46E-02 3.79E-03 6.66E-03 2.35E-03 4.13E-03 5.48E-04 6.90E-03 3.28E-03 

 



pH measurements in performed experiments 
 
Table S11. pH measured during experiments containing anion exchange membranes. Related to Figure 
5 and discussed in the manuscript’s 2.3.2 section. 

AEM 1 

Exp 1 

Time [h] 0 6 24 48 72 117   

pH Feed 5.61 5.67 5.75 5.79 5.98 5.63   

pH Permeate 6.24 5.82 5.72 5.76 5.69 5.48   

Exp 2 

Time [h] 0 12 24 48 52 55.5   

pH Feed 5.78 5.35 5.57 5.66 5.54 5.87   

pH Permeate 5.34 5.49 5.49 5.35 5.36 5.64   

AEM 2 

Exp 1 

Time [h] 0 8 24 48 72 93   

pH Feed 5.64 5.57 5.53 5.59 5.65 5.11   

pH Permeate 5.89 5.52 5.48 5.66 5.7 5.06   

Exp 2 

Time [h] 0 10 24 48 50 55.5   

pH Feed 5.59 6.61 5.34 5 4.79 5.1   

pH Permeate 5.66 5.76 5.67 5.31 5.28 5.39   

AEM 3 

Exp 1 

Time [h] 0 21 93 117       

pH Feed 5.9 5.24 4.9 4.92       

pH Permeate 5.81 5 4.98 4.84       

Exp 2 

Time [h] 0 8 25 30 56 79   

pH Feed 5.57 5.4 5.34 5.57 5.63 5.6   

pH Permeate 5.62 6.67 5.44 5.52 5.76 5.73   

AEM 4 

Exp 1 

Time [h] 0 8 25 30 56 79   

pH Feed 5.63 5.94 5.68 5.76 5.84 5.7   

pH Permeate 5.84 5.87 5.72 5.81 5.78 5.83   

Exp 2 

Time [h] 0 4 21 45 69 93 117 

pH Feed 5.38 4.47 5.54 5.6 5.62 5.55 5.62 

pH Permeate 5.48 5.53 5.55 5.67 5.6 5.48 5.5 

AEM 5 

Exp 1 

Time [h] 0 21 45 69 93 117   

pH Feed 5.78 5.72 5.69 5.72 5.64 5.79   

pH Permeate 5.74 5.75 5.78 5.75 5.8 5.73   

Exp 2 

Time [h] 0 6 9 24 56 79   

pH Feed 5.9 5.92 5.94 5.88 5.95 5.96   

pH Permeate 5.84 5.88 5.9 5.9 5.87 5.88   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S12. pH measured during experiments containing cation exchange membranes. Related to Figure 
5 and discussed in the manuscript’s 2.3.2 section. 

CEM 1 

Exp 1 

Time [h] 0 6 24 48 72 120   

pH Feed 6 6.05 5.93 5.94 5.95 6.3   

pH Permeate 6.3 6.01 6.08 6.05 5.93 5.95   

Exp 2 

Time [h] 0 12 24 48 52 55.5   

pH Feed 4.82 3.78 3.74 3.72 3.75 3.73   

pH Permeate 4.75 3.89 3.88 3.85 3.8 3.81   

CEM 2 

Exp 1 

Time [h] 0 6 24 48 72 120   

pH Feed 5.92 6.08 6.09 6.05 5.94 6.1   

pH Permeate 6.15 6.12 6.15 6.08 5.77 5.75   

Exp 2 

Time [h] 0 10 24 48 50 55.5   

pH Feed 4.85 3.72 3.69 3.72 3.73 3.85 3.74 

pH Permeate 4.35 3.68 3.73 3.75 3.81 3.8 3.77 

CEM 3 

Exp 1 

Time [h] 0 21 93 117       

pH Feed 5.9 5.24 4.9 3.76       

pH Permeate 5.81 5 4.76 3.8       

Exp 2 

Time [h] 0 8 25 30 56 79   

pH Feed 4.63 4.29 3.92 3.78 3.52 3.49   

pH Permeate 4.98 4.13 4 3.82 3.65 3.14   

CEM 4 

Exp 1 

Time [h] 0 4 21 45 69 93 117 

pH Feed 6 6.02 6.1 6.15 6.21 6.19 6.26 

pH Permeate 6.58 6.49 6.37 6.44 6.46 6.47 6.41 

Exp 2 

Time [h] 0 4 21 45 69 93 117 

pH Feed 4.37 4.23 3.88 3.78 3.52 3.41 3.47 

pH Permeate 4.29 4.13 3.76 3.82 3.65 3.55 3.61 

CEM 5 

Exp 1 

Time [h] 0 21 45 69 93 117   

pH Feed 5.98 5.99 5.88 5.91 5.99 5.99   

pH Permeate 6.04 6.11 6.19 6.15 6.13 6.11   

Exp 2 

Time [h] 0 6 9 24 56 79   

pH Feed 4.51 4.23 3.4 3.61 3.55 3.61   

pH Permeate 4.82 4.59 4.05 3.67 3.59 3.55   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Regression parameters of exponential fit between diffusion coefficient and membrane thickness.  
 

 
Figure S4. Regression parameters of exponential fit between diffusion coefficient and membrane 
thickness in anion-exchange membranes. Related to Figure 5 and discussed in the manuscript’s 2.3.2 
section. 

 
Figure S5. Regression parameters of exponential fit between diffusion coefficient and membrane 
thickness in cation-exchange membranes. Related to Figure 5 and discussed in the manuscript’s 2.3.2 
section. 



 
Figure S6. Difference between regression parameter a and diffusion coefficients of OMPs in water in 
AEMs (A) and CEMs (B). The diffusion coefficients for diuron, dimethoate, atrazine, simazine, caffeine, 
and paracetamol were found in (GSI Environmental, 2020c, GSI Environmental, 2020b, GSI 
Environmental, 2020a, GSI Environmental, 2020d, Bichsel, 1979, Ma et al., 2018), respectively. Related 
to Figure 5 and discussed in the manuscript’s 2.3.2 section. 

 
 



Transparent Methods 
 
 
Organic micropollutants used in experiments 
 
Table S13. Physio-chemical properties of organic micropollutants (https://chemicalize.com, 2019). Related to Figure 1-5.  

Compound LogP  
LogD 

(6.5 pH) 
M  

Formal 
charge  
(6.5 pH)  

 Molar 
refractiviy  

Polarizability  
Atom 
count 

Heavy 
atom 
count 

Asymmetric 
atom count 

Rotatable 
bond 
count 

Ring 
count 

Aromatic 
ring count 

Hetero 
ring 

count 

 Hydrogen 
donor/accep

tor count 

Van der 
Waals 

volume 

Van der 
Waals 

surface  

Topological 
polar surface 

area  

Solvent 
accessibl
e surface 

area  

Min 
projection 

area  

Max 
projection 

area  

Min 
projection 

radius 

Max 
projection 

radius   

  [-] [-] [g/mol] [-] [cm3/mol]  [Å3] [-] [-] [-] [-] [-] [-] [-] [-]  [Å3]  [Å2]  [Å2]  [Å2]  [Å2]  [Å2]  [Å]  [Å] 

lincomycin 0.2 -1.8 406.5 0.97 102.67 41.49 66 29 9 7 2 0 2 12 384.93 625.68 122.49 627.54 64.29 105.56 5.34 8.31 

metoprolol 1.76 -1.14 267.4 1 76.76 30.34 44 19 1 9 1 1 0 6 274.25 474.8 50.72 602.12 37.99 93.27 4.39 10.07 

atenolol 0.43 -2.48 266.3 1 73.51 29.09 41 19 1 8 1 1 0 7 261.34 440.22 84.58 534.33 36.85 87.58 4.19 9.12 

propanolol 2.58 -0.32 259.3 1 76.83 31.77 40 19 1 6 2 2 0 5 257.56 427.55 41.49 504.57 41.97 85.55 4.66 7.41 

pirimicarb 1.8 1.78 238.3 0.24 66.65 24.34 35 17 0 3 1 1 1 4 227.99 398.25 58.56 542 44.01 73.22 4.99 6.49 

salbutamol 0.34 -2.01 239.3 1 67.87 26.58 38 17 1 5 1 1 0 8 239.15 406.23 72.72 463.93 41.28 74.32 4.32 6.96 

terbutaline 0.44 -1.45 225.3 0.99 63.04 24.73 35 16 1 4 1 1 0 8 222.28 375.48 72.72 436.62 39.07 69.95 4.18 6.47 

diclofenac 4.26 1.79 296.2 -1 75.46 29.03 30 19 0 4 2 2 0 5 236.85 360.28 49.33 424.95 40.96 78.63 4.62 6.34 

triclopyr 2.7 -0.75 256.5 -1 52.24 20.43 18 14 0 3 1 1 1 5 173.35 262.07 59.42 391.34 30.91 65.22 4.15 6.19 

ketoprofen 3.61 1.05 254.3 -1 72.52 28.01 33 19 1 4 2 2 0 4 233.68 367.5 54.37 452.27 41.68 72.81 4.37 6.58 

fenoprofen 3.65 1.15 243.3 -1 68.18 26.68 32 18 1 4 2 2 0 3 223.44 356.95 46.53 446.28 40.56 71.3 4.28 6.49 

clof acid 2.9 -0.08 214.7 -1 52.62 20.8 25 14 0 3 1 1 0 4 184.05 302 46.53 372.83 30.34 58.91 3.5 6.2 

ibuprofen 3.84 2.19 206.3 -0.98 60.73 23.65 33 15 1 4 1 1 0 3 211.8 356.4 37.3 430.24 35.44 64.57 3.78 6.59 

diuron 2.53 2.53 233.1 0 59 22.02 24 14 0 1 1 1 0 2 187.06 295.9 32.34 402.13 28.58 69.92 3.93 6.5 

dimethoate 0.34 0.34 229.3 0 55.34 22.38 24 12 0 5 0 0 0 2 184.48 308.11 47.56 439.77 35.75 61.36 4.09 6.04 

atrazine 2.2 2.2 215.7 0 62.22 21.19 28 14 0 4 1 1 1 7 190.9 324.67 62.73 471.23 39.04 66.08 4.79 6.36 

simazine 1.78 1.78 201.7 0 57.8 19.37 25 13 0 4 1 1 1 7 173.73 294.95 62.73 454.65 35.92 65 5.14 6.4 

caffeine -0.55 -0.55 194.2 0 49.83 17.87 24 14 0 0 2 2 2 3 164.25 269.12 58.44 368.37 30.68 62.2 4.34 5.03 

paracetamol 0.91 0.91 151.2 0 42.9 15.82 20 11 0 1 1 1 0 4 138.08 222.91 49.33 331.99 21.65 54.37 3.49 5.67 

 



Organic micropollutants and chemical analysis 
 

A 2 mg L-1 stock solution of nineteen OMPs (analytical grade, Sigma-Aldrich, >98%) was prepared 
and stored at 4 °C. A complete list of used OMPs with their chemical formula and physicochemical 
properties is included in Table S13 and S14. The primary reasoning behind the OMPs’ selection was to 
work with relatively large group, representing known chemicals of different usage, such as 
pharmaceuticals (e.g., paracetamol), beverages (e.g., caffeine), and herbicides (e.g., diuron). 
Furthermore, as the group should vary in charge, 6 positively-, 7 negatively- and 6 non-charged OMPs 
were selected. Besides charge, selected OMPs were characterized by a variety of other 
physicochemical parameters, i.e., hydrophobicity, size, presence of specific groups.  

The concentration of OMPs in solution was analyzed by a liquid chromatography-mass 
spectrometry (Agilent 6420 LC-MS/MS) with a selective electrospray triple quad LC-MS/MS MRM 
transition. A Phenomenex phenyl-hexyl column (150 mm×3 mm, 3 µm pore size) equipped with a guard 
column was used for chromatography separation. The aqueous neutral mobile phase was prepared with 
2.5 L Milli-Q water, 5 mL ammonia 5 M, 1 mL formic acid (99%), and 0.1 mL oxalic acid (1M). Acetonitrile 
was used as an organic mobile phase. The samples (1 mL) were spiked with a matrix modifier (50 µL) 
and an internal standard (50 µL) prior to analysis. For data analysis, the Agilent Mass Hunter Quant 
software was used to integrate and quantitate the peaks in the data files. 

 
 

Selection of Ion Exchange Membranes  
 

To mimic the average IEMs system, experiments were performed on tailored AEMs and CEMs 
designed for ED and RED processes. Fumasep FAS (anion-exchange) and FKS (cation-exchange) 
membranes (FumaTech GmbH, Germany) were selected as homogenous membranes. Standard grade 
Fumasep FAS and FKS membranes data, given by Fumatech can be found in Table S15.  

 
Table S14. Properties of standard grade Fumasep FAS and FKS membranes. Related to Figure 1-5 
and Table S1.  

 Type Reinforcement 
Thickness 

µm 
IEC 

meq g-1 
Selectivity 

% 

Specific area 
resistance 

Ω cm2 

Stability 
pH 

FAS anion none 10 - 50 1.6 - 1.8 94 - 97 0.4 - 0.8 1 - 14 

FKS cation none 10 - 50 1.3 - 1.4 98 - 99 0.9 - 1.9 1 - 14 

 
For this study, membrane thickness was a key control parameter. On a special request, 

membranes were prepared in five different thicknesses of each type (AEMs and CEMs), further denoted 
as an AEM1, AEM2, AEM3, AEM4, AEM5, and CEM1, CEM2, CEM3, CEM4, CEM5. Thicknesses varied 
between 15 and 85 µm and increased in the following order: AEM1/CEM1 < AEM2/CEM2 < 
AEM3/CEM3 < AEM4/CEM4 < AEM5/CEM5. Wet and dry membrane thicknesses were measured using 
optical microscopy. Measurements were conducted thirty times for each thickness of both AEMs and 
CEMs at different membrane locations. The swelling degree of the membranes was calculated 
according to (1): 

𝑠𝑤𝑒𝑙𝑙𝑖𝑛𝑔 𝑑𝑒𝑔𝑟𝑒𝑒 =  
𝑥𝑤𝑒𝑡− 𝑥𝑑𝑟𝑦

𝑥𝑑𝑟𝑦
 ∙ 100%   (1) 

Where, xwet and xdry are wet and dry membrane thicknesses, respectively [µm].  
Each type of membranes was prepared with the same polymer solution (i.e., the same polymer 

batch); thus, providing the same chemical properties to each membrane sheet. AEMs and CEMs were 
received in a dry form. Prior to the experiments, membranes were pretreated according to the 
manufacturer instructions, i.e., soaked in MilliQ water for 48h to remove any preservatives, whereby 
MilliQ was refreshed after the first 24h. Additionally, CEMs were protonated for one hour in a 0.1 M 
H2SO4 solution.  
 
 
 
 
 
 
 



Characterization of the membrane polymer structure using PALS 
 

Positron annihilation lifetime spectroscopy allows the measurement of FVEs inside polymeric 
membranes and was used in this work to characterize the size and abundance of FVEs inside dry IEMs.  
Positron annihilation lifetime spectroscopy (PALS) is based on the interaction of positrons (e+), the 
antiparticle of electrons (e-), with the matter. Upon implantation of a e+ in material here, the ion-exchange 
membranes (IEM), the e+ will undergo different deceleration processes, mainly the scattering with optical 
phonons, until reaching thermal equilibrium. Subsequent diffusion through the material leads to the 
annihilation with an e- from the material. In polymers, the e+ can also be trapped inside the free volume 
element (FVE) located between polymer chains and can then form an e+e- bound state the so-called 
positronium (Ps). Ps exist as para-Ps (p-Ps) and ortho-Ps (o-Ps), in singlet and triplet state, respectively. 
Especially the o-Ps lifetime is interesting in polymer samples, as the e+ of the o-Ps can annihilate with 
an e- from the FVE wall and, therefore, reduce the vacuum lifetime of o-Ps (142 ns) considerably. This 
process is called ‘pick-off annihilation’ and the corresponding lifetime (i.e. the e+ lifetime between 
implantation and pick-off annihilation) is material dependent and can be related to the size of the FVE 
by the Tao-Eldrup model (2) (Tao, 1972, Eldrup et al., 1981). 

𝜏𝑝𝑖𝑐𝑘−𝑜𝑓𝑓 =
1

2
∗  [1 −

𝑟

𝑟+Δ𝑟
+

1

2𝜋
sin (

2𝜋𝑟

𝑟+Δr
)]

−1

[𝑛𝑠]   (2) 

With Δr, an empirically found value describing the overlap of o-Ps wave function and the material around 
the FVE. (set at 0.166 nm (Eldrup et al., 1981)).The longer the pick-off lifetime, the bigger the FVE, and 
vice versa. Additionally, the intensity of the o-Ps lifetime component can be used, in some cases, to 
estimate relative changes in free volume abundance. 

The PALS lifetime spectra were measured with the pulsed low energy positron beam system 
(PLEPS) operated at the neutron-induced positron source Munich (NEPOMUC) located at the FRM-II 
reactor in Germany (Hugenschmidt et al., 2008, Hugenschmidt et al., 2012, Egger et al., 2007, Sperr et 
al., 2008). PALS measurements with implantation energies varying between 1 and 18 keV were 
executed under UHV conditions. Implantation depths were calculated, as described elsewhere (Algers 
et al., 2003), based on a polymer sample density of 1.2 g/cm³ and 0.96 g/cm³ for AEMs and CEMs, 
respectively, calculated as the ratio between mass and volume of 5×5 cm² membrane piece. For every 
spectrum, 4 million counts were collected at a count rate of ca. 10 000 counts/s with an overall time 
resolution of ca. 250 ps. The instrument resolution function was determined by measuring p-doped SiC, 
a sample with known lifetimes. All spectra were evaluated with PALSfit3 software (Kirkegaard et al., 
2017) and split into four-lifetime components corresponding to para-positronium ( p-Ps), the annihilation 
of free e+, and the pick-off annihilation of ortho-positronium (o-Ps) (one or two lifetime components). The 
reduced chi-square values were below 1.2 for all fits. The longest o-Ps lifetime component showed a 
significantly low intensity in all samples and was considered as an artefact of data analysis and surface 
effects. It was therefore not considered as a material property and is hence not taken into consideration 
in the discussion.  

 
 

OMP diffusion experiments 
 

Two-compartment glass cells with a maximum capacity of 250 mL were used for diffusion 
experiments, as described in (Ma et al., 2018). The feed solution contained a mixture of OMPs (50 μgL-

1 for each organic solute), while the permeate solution (i.e., the compartment initially not containing 
OMPs) contained only Milli-Q water. The compartments were separated by a selected IEM of 5.94 cm2 
surface area. Both compartments were continuously stirred at 500 rpm. The experiment was performed 
at a temperature of 23 ± 3°C for up to 120 hours. This time range was selected arbitrarily as sufficient 
time to observe the diffusion of OMPs toward permeate in low concentration difference regime. 1 mL of 
sample was collected at different time intervals in both compartments. Each sample was collected and 
measured in triplicate. To determine the adsorption and transport over the experimental time at different 
time intervals, the mass balances were calculated for all OMPs individually according (3) and (4): 

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 = (
𝑛𝑃 (𝑡)

𝑛𝐹 (0)
∙ 100%)    (3) 

𝑎𝑑𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 = (1 − (
𝑛𝐹 (𝑡)+𝑛𝑃 (𝑡)

𝑛𝐹(0)
)) ∙ 100%   (4) 



Where, nF(0) is the initial amount of OMP [mol] in feed, which is the total amount of OMP in the system. 
nF(t) and nP(t) are the amounts of OMP [mol] in feed and permeate, respectively, at a specific time of 
the experiment.  
 
 
OMPs natural degradation and glass adsorption control experiment 
 

A 250 mL glass vessel containing 200 mL experimental solution of OMPs was located on a stirring 
plate for 96h. Each measurement was performed in a triplicate. Concentrations of OMPs measured 
during the control experiment remained constant.  

 
Figure S7. Concentrations of OMPs measured during the control experiment. Related to Figure 2, Figure 
S1 and S2, and discussed in the manuscript’s 2.2. and 2.3.1. section.  

 
 
Dynamic diffusion-adsorption model for determination of transport coefficients of organic 
micropollutants in IEM 
 

The diffusion process through the membrane was modeled based on diffusion physics by using 
a partial differential equation (PDE) derived from Fick’s second law for non-steady state diffusion as 
follows:  

𝜕𝑛(𝑥,𝑡)

𝜕𝑡
= 𝐷 

𝜕2𝑛(𝑥,𝑡)

𝜕𝑥2 −  𝑘 ∙ 𝑛(𝑥, 𝑡)    (5) 

With a Dirichlet boundary condition at x = 0: 𝑛(0, 𝑡) = 𝑛𝐹 (𝑡),  where  𝑛𝐹 (𝑡) is found from the mass 

balance of the feed, and a Neumann boundary condition 𝐷 
𝜕𝑛(𝑥,𝑡)

𝜕𝑥
= 0 at x = 𝑥𝑤𝑒𝑡 , where 𝑥𝑤𝑒𝑡  is the wet 

membrane thickness. This equation was used to calculate the solution  𝑛(𝑥, 𝑡). In Equation S14.1, 

 𝑛(𝑥, 𝑡) indicates the distribution of a certain OMP in the membrane profile, whereas k is the adsorption, 
and D the diffusion coefficient. Equation S14.1 was solved for the wet thickness of each membrane by 
the Matlab PDE tool, where both boundary conditions were treated as internal boundary conditions.  

The nonlinear least-squares (NLS) method was used to estimate the diffusion (D) and 
adsorption (k) coefficient, where the standard deviation of estimates is calculated from the covariance 
matrix (based on parameter sensitivities, number of measuring points, and residual error between 
measuring points and the model output). 
To identify the smallest residual error, parameters D and k were changed in an iterative procedure, 
induced by the NLS method. During each iteration, a general partial differential equation (PDE; parabolic 

equation 𝑑
𝜕𝑢

𝜕𝑡
− ∇ ∙ (𝑐∇𝑢) + 𝑎𝑢 = 𝑓, with d=1, c:=D, a:=k and f=0) was solved using finite element 

analysis for a geometry corresponding to the experimental setup (i.e., for each node of the mesh at each 
time instance). No flux through the boundary (Neumann) conditions were applied for the outer 



boundaries of the geometry, and internal Dirichlet and Neumann boundary conditions were applied 
between membrane and solution. For the time-domain, a duration of 120 hours was used with time steps 
of 30 min. 
Below are the model outcomes (concentration in nodes) for the same experimental data but at different 
time, that is after 5 (Figure S8.) and after 115 hours (Figure S9.). 
 
 
 

 

 
Figure S8. The model outcomes (concentration in nodes) after 5 hours. Related to Figure 5. 
 
 
 
 

 
Figure S9. The model outcomes (concentration in nodes) after 115 hours. Related to Figure 5. 
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