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Abstract

Older age is associated with deteriorating health, including escalating risk of diseases such as cancer, and a
diminished ability to repair following injury. This rise in age-related diseases/co-morbidities is associated with
changes to immune function, including in myeloid cells, and is related to immunosenescence. Immunosenescence
reflects age-related changes associated with immune dysfunction and is accompanied by low-grade chronic
inflammation or inflammageing. This is characterised by increased levels of circulating pro-inflammatory cytokines
such as tumor necrosis factor (TNF), interleukin (IL)-1β and IL-6. However, in healthy ageing, there is a concomitant
age-related escalation in anti-inflammatory cytokines such as transforming growth factor-β1 (TGF-β1) and IL-10,
which may overcompensate to regulate the pro-inflammatory state. Key inflammatory cells, macrophages, play a
role in cancer development and injury repair in young hosts, and we propose that their role in ageing in these
scenarios may be more profound. Imbalanced pro- and anti-inflammatory factors during ageing may also have a
significant influence on macrophage function and further impact the severity of age-related diseases in which
macrophages are known to play a key role. In this brief review we summarise studies describing changes to
inflammatory function of macrophages (from various tissues and across sexes) during healthy ageing. We also
describe age-related diseases/co-morbidities where macrophages are known to play a key role, focussed on injury
repair processes and cancer, plus comment briefly on strategies to correct for these age-related changes.
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Background: macrophage function and healthy
ageing
Macrophages are numerically abundant phagocytic cells
found in most tissues throughout the body [1, 2]. They
play a key role in maintaining homeostasis as they can
remove deleterious senescent cells that increase dur-
ing ageing [3]. They are also highly plastic and can
acquire many functional states in response to local envir-
onmental signals ranging from pro-inflammatory, anti-
tumorigenic to anti-inflammatory, pro-tumorigenic or
wound healing macrophages [4–6]. Historically, these cells
have been generally classified into M1 and M2

respectively, however more recent studies have suggested
that this broad classification is too simplified to apply to
dynamic in vivo studies [7–9]. Nomenclature based on
macrophage function is a more logical, physiologically
relevant approach, and is further outlined elsewhere [10].
Therefore, here we discuss the inflammatory function of
these cells in relation to in vivo temporal dynamics and
their functional response.
Macrophages can be activated early in a response to

pro-inflammatory stimuli, such as bacterial lipopolysac-
charide (LPS) during bacterial infection [11]. Macro-
phages can also be activated early in a response
following sterile injury and necrosis due to the release of
‘danger signals’ such as high-mobility group box-1 [12].
Following early activation, macrophages secrete pro-
inflammatory cytokines and chemokines that induce
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inflammation and promote immune cell recruitment. Se-
creted cytokines include IL-6, IL-12, and TNF [5, 11, 12]
whilst secreted chemokines include C-X-C motif ligand
(CXCL9) and CXCL10, which recruit helper CD4+ T
cells and effector CD8+ T cells [13]. Macrophages can
also be activated later in a response leading to an anti-
inflammatory or reparative phenotype [14]. These rep-
arative macrophages secrete cytokines such as IL-10 and
TGF-β1 that are critical for wound healing [14] and re-
cruit regulatory CD4+ T cells (Tregs) via release of C-C
motif ligand 17 (CCL17), CCL22, CCL24 and CXCL13
[5, 14]. While these factors stimulate wound healing and
injury repair in mice and humans [13, 14], they can also
influence angiogenesis and tumor growth [5].
Studies suggest that early, pro-inflammatory macro-

phages can transition into anti-inflammatory, reparative
macrophages [15, 16]. This functional transition may
occur following phagocytosis [15] or in response to in-
flammatory microenvironmental changes following the
recruitment of other immune cells such as Tregs [16,
17], as depletion of Tregs impairs this process [18, 19].
Tregs secrete regulatory cytokines, such as IL-4, IL-10
and TGF-β1, which can modulate macrophage transition
from pro-inflammatory to reparative function. The tem-
poral dynamics of the immune cell landscape is tightly
regulated to allow normal resolution of inflammation;
specifically, as reparative macrophages become increas-
ingly abundant their secreted factors inhibit the recruit-
ment and function of pro-inflammatory cells [20–22].
Furthermore, pro-inflammatory TNF is inhibited by
regulatory IL-10 due to cross-regulation of the Janus
kinase/signal transducers and activators of transcription
(JAK/STAT) pathway [23]. Macrophage transitioning
from pro-inflammatory to reparative phenotype may
be dysregulated with ageing. For example, studies
show that macrophages from aged hosts having di-
minished ability to phagocytose apoptotic cells, in-
cluding neutrophils; this is associated with impaired
inflammatory resolution [24, 25].

Macrophage origin, tissue site and ageing
Ontogeny studies in young hosts have shown that mac-
rophages can be derived either from immature bone
marrow myeloid progenitors that are released into the
blood as monocytes and traffic to tissue sites where they
differentiate into macrophages [26, 27]; or as tissue-
resident macrophages that develop early during embryo-
genesis as a separate lineage to bone marrow-recruited
cells and self-proliferate locally [27–29]. The relative
proportions of tissue resident to bone marrow-derived
macrophages varies between tissues and may impact
their function [30]. The function of tissue-resident mac-
rophages during homeostasis can be dependent on the
tissue site [31]. For example, brain-resident microglia

support neuron survival, alveolar macrophages play a
role in immune surveillance and adipose macrophages
help control insulin sensitivity and adaptive thermogen-
esis [31]. During an acute or chronic inflammatory re-
sponse, further monocytes can be recruited from the
bone marrow or spleen and contribute to the tissue-
resident population [26].
Whether macrophage origin influences their response

during ageing or whether context-dependent environ-
mental changes at the tissue site is the driver for age-
related changes is currently unknown. However, studies
suggest that age-related functional changes may be tissue
site-specific [12]; these changes could be due to macro-
phage origin. For example, we have previously examined
macrophages in healthy young versus aged C57BL/6J
female mice (24–28 months) and found there was an in-
crease in IL-10+ macrophages in the spleen and bone
marrow of healthy aged mice [32]. In young hosts,
macrophages at these sites are predominantly of mono-
cyte origin [29] and can supply macrophages to the
tumor microenvironment or during injury repair [33,
34]. Others have shown elevated anti-inflammatory mac-
rophages in the eye [35], lung [36] and muscle [37] of
healthy Balb/c and C57BL/6J mice during ageing. Con-
versely, pro-inflammatory macrophages increase in the
liver, brain and adipose tissue during healthy ageing in
mice [38–40]. During ageing there are also changes to
the tissue microarchitecture, for example loss of
marginal zone macrophages in the spleen [41] leading to
altered local interactions between macrophages, neutro-
phils and T cells [42], which could further impact im-
mune regulation. Similarly, brain-resident microglia
from aged (27–28 months) male and female C57BL/6J
mice increase in soma volume but reduce the length of
their cell processes, limiting their capacity to interact
with and support neuron survival during homeostasis
[43]. It is possible that changes to cell size also occurs in
bone marrow-derived monocytes/macrophages and
haematopoietic stem cells similar to that observed in
bone marrow mesenchymal stromal cells [44].
These varying responses could also be due to tissue-

specific differences in macrophage-related responses be-
tween males and females during ageing. Studies have
suggested that ‘sex is a biological variable that should be
considered in immunological studies’ [45]. Females tend
to have a more robust immune system, heightened im-
mune response and better resistance to infection than
males [46], which is likely to be further impacted during
ageing. Furthermore, it is now recognised that sex chro-
mosomes (via extent of inaction of the second X
chromosome) can also directly exert effects on immune
function, in addition to the role of sex hormones [47].
Inflammageing, characterised by elevated IL-6, is higher
in male compared with female humans [48]. Elderly men
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also display increased levels of circulating inflammatory
CD14+ monocytes compared to females [49]. However,
tissue macrophages were increased in hearts of elderly
(50–68 years) female compared to male humans, which
was associated with a pro-inflammatory shift during
ageing [50]. Similarly, aged female C57BL/6J mice also
exhibit greater microglial-associated neuroinflammation
in comparison to male mice [51]. Interestingly, macro-
phage turnover in the peritoneal cavity is also influenced
by age and sex, which subsequently impacts response to
pneumococcal peritonitis [52]. Therefore, it is possible
that changes to macrophage function during ageing
could be related to differences in macrophage origin and
turnover between females and males.
In vitro studies suggest that macrophages from elderly

humans and mice exhibit an altered response to stimuli,
which may also depend on the tissue site, sex and loca-
tion these cells have been isolated from. For example, we
have previously published that in response to tumor-
derived factors elderly-derived peritoneal macrophages
from female C57BL/6J mice (aged 24–28 months) and
Balb/c mice (18 months) secrete increased levels of
TGF-β1 and IL-4 compared to young mice [32, 53].
Similarly, Smallwood et al. [54] suggested that aged male
Balb/c peritoneal macrophages (14–15 months) were in
a pre-activated basal state that enhanced their response
to LPS. Moreover, bone marrow-derived macrophages
from aged female C57BL/6J mice (16–22 months) and
elderly humans cultured with LPS exhibited increased
TNF and IL-6 production [55, 56]. However, splenic
macrophages from aged female Balb/c mice (18–20
months) stimulated with LPS released lower levels of IL-
1β and TNF [57]. Furthermore, we and others have
shown that splenic macrophages from aged female
C57BL/6J mice (20–24 months) exhibit reduced phago-
cytosis and proliferative capacity [42, 58]. These altered
responses may be due to impaired STAT-1, p38 and
JNK mitogen-activated protein kinases (MAPK) signal-
ling in elderly-derived macrophages [59].
These results may also be explained by recent studies

in young mice and humans demonstrating that macro-
phages can undergo ‘training’ resulting in a heightened
pro-inflammatory phenotype or immune tolerance fol-
lowing re-exposure to the same or another stimulus
such as LPS [60, 61]. Training can occur systemically in
circulating monocytes and monocyte-derived macro-
phages [62, 63]. Tissue-resident macrophages can also
undergo training, with brain-resident microglial cells
shown to be trained after systemic exposure to a single
dose of LPS or tolerized after repeated exposure to LPS
[64]. Whilst tissue-resident alveolar macrophages trained
following respiratory viral infection subsequently con-
tributed to improved anti-bacterial immunity through
rapid induction of CXCL1 and CXCL2 [65].

Interestingly, the enhanced or altered macrophage
cytokine production that occurs during ageing in re-
sponse to stimuli is similar to that observed in the train-
ing studies, which were carried out in young hosts [66,
67]. Indeed, during ageing there is an increase in stimuli
associated with training. For example, intestinal perme-
ability increases in aged C57BL/6J mice (18–22 months)
leading to microbial products entering the bloodstream
[56]. Similarly, LPS binding protein (a surrogate marker
for bacterial products) is elevated in the serum of elderly
compared to young humans. Additionally, damage
associated molecular pattern molecules (DAMPs) accu-
mulate in mice and humans as they age [68]. Further,
recent studies have described that trained immunity in
young mice leads to increased myeloid lineage cells and
can occur in myeloid precursors in the bone marrow
[69]. During ageing a similar shift towards a myeloid cell
lineage occurs, and it is possible that the ageing
microenvironment leads to training [66, 67]. Similarly,
alterations in intestinal permeability, combined with
inflammageing, may impact blood-brain barrier perme-
ability and the function of brain-resident microglial pop-
ulations. However, additional studies are required to
confirm this and whether age-related macrophage train-
ing impacts responses to injury repair and cancer.

Macrophage metabolic function and ageing
Macrophage inflammatory responses involve metabolic
reprogramming, switching from oxidative phosphoryl-
ation mediated by mitochondrial function in resting
cells, towards glycolysis in activated cells [70]. The
change in energy metabolism enables pro-inflammatory
macrophages to perform effector functions, such as
increased production of inflammatory mediators e.g. IL-
1β, TNF and IFN-γ [70, 71]. In contrast, anti-
inflammatory macrophages are supported by both
oxidative phosphorylation and glycolysis [72, 73]. It is
possible that changes to macrophage metabolism during
ageing impacts their activation and function [74, 75].
It has been proposed that mitochondrial dysfunction

occurs during ageing due to reduced synthesis of nico-
tinamide adenine dinucleotide (NAD) [76, 77], which is
a cofactor of key enzymes in the TCA cycle, glycolysis
and oxidative phosphorylation [78]. Declining levels of
NAD+ and dysregulation of regulatory pathways, such as
the kynurenine pathway could impact macrophage func-
tion during ageing as these are key metabolites involved
in macrophage activation [79]. Furthermore, CD38 an
enzyme involved in degradation of NAD increases with
age [76]. Genetic ablation or pharmaceutical inhibition
of CD38 can reverse mitochondrial dysfunction and re-
duce inflammatory cytokines in human monocyte/mac-
rophages and in mice [80, 81]. Interestingly, CD38 is
highly expressed in pro-inflammatory macrophages [80].
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Therefore, it is possible that increased circulating levels
of inflammatory factors in the ageing microenvironment
induce CD38 expression, contributing to metabolic dys-
regulation and in turn promoting the inflammatory
function of macrophages in the elderly. However, in
contrast Fei et al. 2016 [82], showed that metabolic re-
programming of oxidative phosphorylation to glycolysis
was impaired in bone-marrow derived macrophages
from C57BL/6J mice (18–22 month, sex not stated).
This could also be related to tissue-specific metabolic
changes during ageing (reviewed by [74, 75], further
studies are required to determine whether similar
changes occur during injury repair and cancer.

Macrophages and myeloid‐derived suppressor cells
It is also possible that the changes to macrophages that
occur during ageing are due to early release of related
precursor cells from the bone marrow known as myeloid-
derived suppressor cells (MDSCs) [83, 84]. MDSCs are
generally classified into two subsets, monocytic MDSCs or
polymorphonuclear MDSCs [85]. Phenotypically,
monocytic-MDSCs have a greater resemblance to mono-
cyte/macrophages and polymorphonuclear-MDSCs have
greater resemblance to polymorphonuclear cells. Further
classification is beyond the scope of this review and dis-
cussed elsewhere [85]. Generation and expansion of pro-
tumor MDSCs is mediated by colony stimulating factors
(CSFs e.g. granulocyte-CSF, macrophage-CSF and gran-
ulocyte/macrophage-CSF) and pro-inflammatory factors
(e.g. IFN-γ and IL-6). Subsequently, TGF-β1 and IL-13
produced by MDSCs can further augment their immuno-
suppressive capabilities [84].
MDSCs can mediate an increase in Tregs via the re-

lease of arginase, IL-6 and IL-10, consequently leading
to elevated secretion of immunosuppressive factors by
Tregs (e.g. IL-10, TGF-β1, IL-4) [84]. MDSCs can also
suppress T cell activation and proliferation [86, 87],
however, in a murine breast cancer model MDSCs were
shown to be less immunosuppressive compared to
tumor-associated macrophages [87]. MDSCs expressed
lower levels of anti-inflammatory Arg1, Il-10, Ccl17, and
Ccl22, but produced higher levels of angiogenic factors
compared to tumor-associated macrophages [87].
Studies have also shown that MDSCs can differentiate
into tumor-associated macrophages [86, 87]. Further-
more, hypoxic regions found in tumors can promote
MDSC differentiation into tumor-associated macro-
phages [86], and a higher proportion of anti-
inflammatory tumor-associated macrophages are asso-
ciated with these hypoxic regions [86, 88]. We and
others have shown that MDSCs increase in spleen,
bone marrow and lymph nodes of healthy aged
C57BL/6J female mice [32], albeit based on expression
of CD11b+GR-1+ cells) and in peripheral blood in

humans [89]. This may be due to inflammageing in
combination with a shift towards a myeloid cell
lineage that occurs in the bone marrow during ageing
[83, 90]. As described, this is likely to impact macro-
phage responses during ageing, and following injury
repair and cancer.

Macrophages in musculoskeletal injury repair and ageing
For effective repair following musculoskeletal injury in
young hosts, pro-inflammatory macrophages are found
in the area of damage early post injury in both humans
and mice [91, 92]. For example, in young mice, neutro-
phils appear within minutes at the site of injury and che-
moattract further monocytes/macrophages that are then
a major source of chemoattractants for myoblasts [93].
Both neutrophils and monocytes gather at the damaged
tissue by 8 h post muscle injury, and from 24-48 h mac-
rophages become the most abundant cell type present
[92, 94]. Accompanying neutrophils assist macrophages
in the phagocytosis of cell debris and induce local in-
flammation [92]. Upon entry to the necrotic area, mono-
cytes begin to phagocytose injured tissue [15]; this
inflammatory environment can cause monocytes to dif-
ferentiate into pro-inflammatory macrophages [15].
Studies have shown that early pro-inflammatory macro-
phages can influence myogenic cell proliferation via
secretion of pro-inflammatory cytokines such as IL-6,
however this inhibits myoblast differentiation [95].
Following phagocytosis of debris, the induction of
reparative macrophages promotes muscle repair [15].
These reparative macrophages found later during the re-
pair process enhance the differentiation and fusion of
myoblasts to form myotubes that later fuse to reseal
damaged myofibres, mainly through secretion of anti-
inflammatory factors, such as TGF-β1 [15, 92]. A similar
process occurs during bone fracture healing, with similar
temporal macrophage cross-talk occurring with osteo-
blasts/osteoclasts rather than myocytes (reviewed by
[96]. It is well known that musculoskeletal repair is
delayed in elderly humans and mice and this is strongly
associated with an altered inflammatory responses as
shown by a cross-transplantation study of muscle grafts
between young (3 months) and very old (27–29 months)
C57BL/6J female mice [97]. The extent to which these
inflammatory changes in damaged elderly tissues are due
to altered levels of chemotactic factors produced by the
damaged tissues, or reflects impaired and/or reflects dys-
regulated macrophage function is discussed below and
summarised in Fig. 1.
Comparison of skeletal muscle macrophage levels in

young and elderly healthy humans showed that elderly
subjects have higher numbers of reparative macrophages
(based on increased CD206 expression) than younger
subjects [98]. It is possible that this increase in
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reparative macrophages is a compensatory response to
increasing levels of skeletal muscle pro-inflammatory
molecules (e.g. TNF) observed in muscles of elderly pa-
tients (81 years old) male compared to young patients
(23 years old) [99], and in muscles from aged C57BL/6J
male mice [100]. Interestingly, following cardiotoxin-
induced injury, aged male C57BL/6J mice (24 months)
showed decreased infiltration of macrophages into dam-
aged muscle [101], which was associated with decreased
chemokine secretion (particularly interferon-gamma
inducible protein-10). This is similar to the delayed
inflammatory infiltration previously observed with cross-
transplantation young-old studies in aged female
C57BL/6J mice [97], suggesting that the ageing microen-
viroment impacts chemotaxis [102]. It is possible that
macrophage dysregulation during ageing also impacts
cross-talk with other key immune cells required for re-
pair. For example, decreased Treg infiltration in muscle
following cardiotoxin injury in aged C57BL/6J male mice
(> 20 months) was also associated with delayed repair
[103]. Furthermore, reduced vascularity and increasing
levels of fibrosis in the skeletal muscle are also thought
to contribute to a dysregulated inflammatory response
and reduced infiltration by macrophages in aged mice
[102]. In contrast, in a bone-fracture healing model,
macrophages from aged C57BL/6J mice (24 months old,
sex not stated) exhibited a heightened inflammatory sig-
nature and preventing macrophage infiltration improved
healing outcomes [104]. This is similar to the heightened

inflammatory signature observed in elderly hip fracture
patients and thought to be associated with dysregulated
inflammatory monocyte/macrophages [66, 105].

Macrophages in cancer and ageing
Macrophages can make up a large percentage of the
tumor burden and are generally associated with poor
prognosis [106, 107]. It has been proposed that the
macrophage activation states required for injury repair
are similar to those seen in cancer and cancer has been
described as “the wound that does not heal” [108].
Whilst few studies have investigated macrophage func-
tion and their influence on other immune cells in cancer
in the elderly, we may be able to draw parallels from the
injury repair studies described above (summarised in
Fig. 1). For example, tumor evolution starts with chronic
inflammation wherein pro-inflammatory macrophages
producing free radical species and nitric oxide promote
neoplastic transformation [5, 6]. Monocytes and
monocyte-derived macrophages can be recruited to tu-
mors in response to chemotactic signals, such as CSF-1
[109, 110], CCL2 [110–112] and CCL5 [112] released by
tumor cells and stroma [113]. Once established, tumor-
derived factors drive macrophages towards an immuno-
suppressive phenotype mediated through IL-4, IL-10 and
TGF-β release [5, 6] similar to reparative macrophages
during injury repair [92]. Similarly, during initial stages
of lung carcinogenesis in mice, tumor-associated macro-
phages were mainly pro-inflammatory (expressing IL-12

Fig. 1 Age-related changes to macrophages during musculoskeletal repair and cancer . Following musculoskeletal injury or tumor growth, there
may be changes associated with tissue-resident macrophages and tissue site during ageing (1). This may lead to decreased or altered
chemotactic signals (2), driven by factors such as CSF-1, CCL2 or CCL5. Bone marrow and splenic myeloid cells are increased during ageing
(3) and can supply macrophages to the tumor and injury site, however this could be further impacted by inflammageing factors such as TNF, IL-
1β and IL-6. Macrophages during ageing generally display reduced capacity for phagocytosis (4). This may lead to altered transitioning from pro-
inflammatory to reparative macrophages (5), which can also be driven by factors such as IL-4, IL-10 and TGF-β1. Studies are conflicting during
ageing as to whether there are increased or decreased macrophages following musculoskeletal injury or during tumor growth (6). Age-associated
changes are shown as increased (↑); decrease (↓); unknown (?). This Figure was created with BioRender.com
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and IL-1β), and later transitioned to promote angiogen-
esis and tumor growth [114]. We have also previously
observed a similar (albeit “incomplete”) shift in macro-
phage phenotype (based on expression of TNF and IL-
10) during tumor growth in young female C57BL/6J
mice with mesothelioma tumors [115].
Previous studies suggest that macrophages provide fur-

ther support for tumor growth in the aged microenvir-
onment. For example, peritoneal macrophages from
aged (24 months) male and female C57BL/6N mice have
reduced direct anti-tumor cytotoxic activity [116]. Fur-
thermore, we have shown that peritoneal macrophages
that originate from either aged (26 months) C57BL/6J
female mice or Balb/c female mice (18 months) stimu-
lated with tumor-derived factors increased production of
TGF-β1 and IL-4, relative to macrophages from young
mice [32, 53]. In a prostate cancer model, transcriptomic
analysis of the tumor microenvironment revealed an in-
crease in the expression of genes associated with pro-
tumorigenic macrophages, such as Arg1 Cd163, Mrc1,
Retnla, Lyve1, in aged (20–24 months) compared to
young male C57BL/6J mice [117]. Similarly, in human
prostate cancer there was an increase in expression of
CD163, a monocyte and macrophage-specific scavenger
receptor, in elderly patients which corresponded with
poorer survival [117].
Several studies have also shown that T cells and mac-

rophages have altered function associated with ageing
which correlates with tumor progression [58, 118, 119].
Tumor-associated macrophages displaying altered in-
flammatory function in the aged tumor microenviron-
ment may influence subsequent recruitment of T cells
[120]. For example, Tregs have been shown to increase
in lymphoid tissues of aged mice and humans, yet dis-
play decreased infiltration in tumors from elderly cancer
patients [121, 122]. Provinciali and his colleagues also
reported decreased infiltration of CD4+ and CD8+ T
cells in mammary adenocarcinoma from aged (21–24
months) male Balb/c mice compared to young mice
[119]. We have reported that CD8+ T cells in aged (22–
24 months) tumor-bearing C57BL/6J female mice sup-
port tumor growth, suggesting that a shift towards a
regulatory rather than cytotoxic phenotype occurs dur-
ing ageing [123]. This could be due to cross-talk with
macrophages as we have also recently shown that
macrophages impair cytotoxic T lymphocyte function
in vivo in the draining lymph nodes and tumor site
of aged (20–24 months) tumor-bearing C57BL/6J fe-
male mice during immunotherapy [58]. Finally, in a
mouse mammary adenocarcinoma model, MDSCs
were associated with increased tumor susceptibility in
aged (12 months) female BXD12 mice [124]. Deple-
tion of MDSCs slowed tumor growth and partially re-
stored T cell activity [124].

Potential for targeting macrophages during ageing and
age-related diseases
Targeting of inflammation as a therapeutic approach ac-
cords with the interdisciplinary field of geroscience that
aims to maintain and extend the duration of the healthy
lifespan, as a strategy to reduce the impact of age-related
conditions [125]. However, few studies have examined
direct targeting of macrophages in the elderly as a thera-
peutic intervention to improve the outcomes of various
chronic age-related diseases (summarised in Fig. 2), such
as cancer and delayed tissue repair. A critical consider-
ation is whether the chosen drug(s) target elderly cells
with the same efficacy as seen in young hosts (consider-
ing that many pre-clinical studies are carried out using
young adult animal models). For example, the elderly are
often excluded from clinical trials due to reduced kidney
and liver function which could impact drug pharmaco-
kinetics and efficacy [126] yet the elderly might be a
likely future target population for this drug intervention.
Recent studies in humans and mice that focussed on

targeting tumor-associated macrophage infiltration via
blockade of colony stimulating factor-1 receptor (CSF-
1R) have shown promise [6, 127]. Yet downstream
MAPK signalling is altered in elderly-derived macro-
phages, which could impact efficacy of CSF-1R inhib-
ition in the elderly [59]. Furthermore, in healthy and
tumor-bearing aged female C57BL/6J mice (20–23
months) we have observed downregulation and internal-
isation of CSF-1R on monocytes/macrophages (unpub-
lished observations). It is possible that altered or
reduced CSF-1R targeting in the elderly results in partial
macrophage depletion which is beneficial in the aged
setting. For example, in proof-of-principle studies we
have shown that targeted, partial depletion of macro-
phages by anti-F4/80 antibody (approximately 40% re-
duction of F4/80hi cells only) in aged tumor-bearing
female C57BL/6J mice (20–24 months) improved re-
sponse to IL-2/anti-CD40 immunotherapy, i.e. increased
cytotoxic lymphocyte activity, reduced treatment-
associated cachexia and tumor regression [58]. However,
the same treatment worsened anti-tumor responses in
young mice when macrophages were no longer present,
highlighting the different roles of macrophages in anti-
tumor responses in the ageing host.
Studies have suggested that compensatory regulatory

mechanisms may exist in the elderly microenvironment
[128], potentially due to inflammageing [90]. For ex-
ample, following musculoskeletal injury in CCR2-
deficient mice, decreasing pro-inflammatory monocyte/
macrophages infiltration led to an increased pro-
inflammatory microenvironment [129]. This could be
counteracted by administration of reparative cytokines,
as improved musculoskeletal repair was observed by ad-
ministration of growth differentiation factor 3 in aged
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male C57BL/6J mice following cardiotoxin-induced in-
jury (23 months old, [130]. Targeting recruitment of
myeloid cells via CXCR2 can reduce infiltration of
immature MDSCs [131]. Similarly, studies in young
tumor-bearing mice have targeted MDSCs via all-trans
retinoic acid leading to maturation of myeloid cells and
downregulation of secreted factors such as reactive oxy-
gen species via an ERK1/2 dependent mechanism [132].
However, this signalling pathway may also be impaired
in MDSCs from aged mice, along with PI3K signalling
[133]. Interestingly, depletion of MDSCs in aged (17–19
months, sex not stated) but not young C57BL/6J mice
slowed tumor growth [128]. Furthermore, depletion of
Treg cells in tumor-bearing mice led to a subsequent
increase in MDSCs in aged but not young C57BL/6J
mice [128], highlighting complex immune-mediated
compensatory mechanisms that may exist in the elderly
microenvironment.
Targeting of inflammageing via TNF blockade was ef-

fective in restoring responses to cancer immunotherapy
[55] and as a strategy to reduce infection in aged mice
[56]. Both of these studies showed that age-associated
TNF was associated with dysregulated macrophage func-
tion in the aged mice. Similarly, young to old hetero-
chronic parabiosis experiments or transfer of serum/
plasma/blood products have been an effective strategy to
dampen inflammageing and improve function in aged
mice [134–136]. Also, as described above genetic abla-
tion or pharmaceutical inhibition of CD38 can reverse
mitochondrial dysfunction and improve inflammageing
in aged (22–26 months) C57BL/6J male mice [74, 81].
Other strategies to broadly reduce inflammageing also

include targeting of senescent cells and the mammalian
target of rapamycin pathway, (reviewed in [137]. How-
ever, few studies have examined the direct impact of
using senolytics or rapamycin to target macrophage
function in age-related diseases. It is possible that re-
duction of inflammageing, rather than complete inhib-
ition [137, 138], could be an effective strategy to
modulate macrophage function in the elderly. This
was highlighted in a recent study where elevated
MAPK in elderly monocytes led to reduced efferocy-
tosis and an increased pro-inflammatory response in a
dermal model of acute inflammation in elderly
humans [139]. Targeted reduction of MAPK in elderly
monocytes, by using an oral p38 inhibitor, led to an
increase in pro-resolving monocyte/macrophages and
improved recovery in elderly patients [139].

Conclusions
It is possible that in the elderly due to the inflammage-
ing microenvironment, compensatory regulatory mecha-
nisms exist which subsequently delay repair following
injury and promote tumor growth. This could further
impact drugs designed to target inflammatory and regu-
latory immune cell subsets, including macrophages, for
clinical use in elderly humans. This is of particular im-
portance given the number of studies which suggest that
overcompensation of immune responses potentially
leads to immune dysregulation during ageing. As
highlighted above, further studies are required to under-
stand the cross-talk between macrophages and other im-
mune cells during ageing, along with the impact of
tissue-specific changes and sex on macrophage

Fig. 2 Strategies to target macrophages during age-related diseases. Potential strategies to target macrophages during ageing could include
inhibiting recruitment via CSF-1R blockade (1), restoring metabolic function via inhibition of CD38 (2), targeting inflammageing via rapamycin/
senolytics (3), anti-TNF (4), transfer of young serum/plasma/blood products (5), or reducing intracellular MAPK signalling leading to increased
efferocytosis (6). Age-associated changes are shown as increased (↑); decrease (↓); unknown (?). This Figure was created with BioRender.com

Duong et al. Immunity & Ageing            (2021) 18:4 Page 7 of 11



responses following musculoskeletal injury and cancer.
Whilst recent studies have described changes to macro-
phages during healthy ageing, it is clear that further
studies are required to elucidate the underlying mecha-
nisms behind changes to macrophage function, in both
lymphoid and other tissues, during age-related diseases
and co-morbidities.
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