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TRIC-A regulates intracellular Ca2+ homeostasis in cardiomyocytes
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Abstract
Trimeric intracellular cation (TRIC) channels have been identified as monovalent cation channels that are located in the ER/SR
membrane. Two isoforms discovered in mammals are TRIC-A (TMEM38a) and TRIC-B (TMEM38b). TRIC-B ubiquitously
expresses in all tissues, and TRIC-B−/−mice is lethal at the neonatal stage. TRIC-Amainly expresses in excitable cells. TRIC-A−/

− mice survive normally but show abnormal SR Ca2+ handling in both skeletal and cardiac muscle cells. Importantly, TRIC-A
mutations have been identified in human patients with stress-induced arrhythmia. In the past decade, important discoveries have
been made to understand the structure and function of TRIC channels, especially its role in regulating intracellular Ca2+

homeostasis. In this review article, we focus on the potential roles of TRIC-A in regulating cardiac function, particularly its
effects on intracellular Ca2+ signaling of cardiomyocytes and discuss the current knowledge gaps.
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Introduction

Ca2+ signaling plays a central role in cardiac physiology [18].
The regulation of Ca2+ signaling shows a great dynamic range
in terms of frequency and spatial-temporal relationship,
forming a variety of patterns from localized brief Ca2+ bursts
to long-lasting, global Ca2+ transients [8, 17, 18, 53, 68, 81].
On the other hand, sustained elevation of intracellular Ca2+ is
known to be cytotoxic, which would lead to mitochondria
damage, dysregulation of gene expression, and apoptotic
and necrotic cell death. Thus, physiological Ca2+ homeostasis
and signaling must be tightly regulated. To assure this, many
molecules and proteins, including signaling ligands and recep-
tors, are coupled together and function in a coordinated man-
ner [6, 7]. Compromise of such Ca2+ homeostasis and

signaling has been linked to different human diseases, includ-
ing muscle dysfunction and heart failure [8, 17, 53, 68, 81].

In cardiomyocytes, rhythmic electrical excitation travelling
through the cellular membrane triggers the entry of Ca2+

through L-type Ca2+ channels that mediates the systolic re-
lease of Ca2+ from the sarcoplasmic reticulum (SR) to the
cytosol through ryanodine receptor 2 (RyR2) channels [7,
12, 18, 95]. One of the fundamental goals of cardiac physiol-
ogy is to understand the detailed mechanisms behind Ca2+

handling and to find approaches to correct defective Ca2+

cycling associated with heart failure and arrhythmias.
Trimeric intracellular cation (TRIC) channels have been

identified as monovalent cation channels that are located in
the ER/SR membrane [101, 109]. Two isoforms discovered in
mammals are TRIC-A (TMEM38a) and TRIC-B
(TMEM38b). While TRIC-B ubiquitously expresses in all
tissues, TRIC-A mainly expresses in excitable cells. The ag-
gravated embryonic lethality in TRIC-A and TRIC-B double
knockout animals suggests the crucial role of TRIC channels
in embryonic development [101]. TRIC-A−/− mice survive
normally but show abnormal SR Ca2+ handling in skeletal
muscle, characterized by irregular contractile force during fa-
tigue, compromised Ca2+ sparks, and Ca2+ overload in the SR
[105]. Additionally, TRIC-A ablation causes hypertension in
mice due to altered Ca2+ signaling in smooth muscle [98]. On
the other hand, the absence of TRIC-B is lethal in mice at the
neonatal stage [101]. Later studies demonstrated the crucial
function of TRIC-B in inositol trisphosphate receptor (IP3R)–
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mediated Ca2+ signaling from the endoplasmic reticulum (ER)
in non-excitable cells [97]. Takeshima’s group demonstrated
the important function of TRIC-B in the development of bone
and identified several genetic mutations within the TRIC-B
locus that are associated with osteogenesis imperfecta [40,
107].

The crystal structure of TRIC has been resolved and pro-
vided insights into their functional mechanism [43, 65, 82, 91,
100]. Yang et al. resolved the nematode TRIC homologs and
demonstrated that the channel consists of seven transmem-
brane domains, predicted by a previous bioinformatic ap-
proach [79], and forms a homotrimeric complex within the
lipid membrane [100]. Each monomer contains an hour-
glass-shaped, fluid-filled, cation-permeable pore. This impor-
tant feature has subsequently been confirmed in the structures
of other types of prokaryotic TRIC channels [43, 82], and in
vertebrate TRIC-A and TRIC-B channels [91].

TRIC-A functions as a counter-current channel
in SR/ER Ca2+ signaling

During excitation-contraction (EC) coupling, the opening of RyR
allows a massive amount of Ca2+ moving from the SR to the
cytosol due to the electrochemical gradient of Ca2+ ions. Since
Ca2+ is a cation, this instant efflux of Ca2+ would result in the
accumulation of negative charges inside the SR. This potential
asymmetry would hinder the subsequent Ca2+ release. Similarly,
during relaxation, the uptake of Ca2+ into the ER/SR also requires
a similar opposite ionic counter movement. In the absence of an
additional flow of counter-ions to balance the charge, the Ca2+

release or uptake during EC coupling would be compromised.
Thus, robust counter-ion flux across the SR/ER is crucial to com-
pensate the potential changes and promotes efficient Ca2+ release
and uptake during EC coupling [9, 19, 27, 28, 85, 89, 90].
Identification of the molecular identity of those counter-ion chan-
nels are crucial for understanding the Ca2+ regulation and may
provide potential molecular targets for developing therapeutic
means for cardiac and skeletal muscle diseases.

Yazawa et al. first unveiled the molecular identity of such K+-
permeable counter-ion channels as trimeric intracellular cation
channels (TRICs) [101]. Sitsapesan’s group conducted several
studies concerning the biophysical characteristics of TRIC-A
and TRIC-B channels. They found that TRIC-A displayed differ-
ent conductance properties [67, 88]. Unlike TRIC-A, TRIC-B
preferably opened at sub-conductance levels [88]. Further exper-
iments unveiled other differences between these two isoforms.
For TRIC-A channels, the conductance property did not change
regardless of whether theywere isolated or clustered in space. But
for TRIC-B channels, grouped trimmers displayed a much higher
open probability comparing to isolated trimmers. Thus, they pro-
posed that physical interactions between multiple TRIC-B trimer-
ic channels changed the gating behavior of the channels [64]. The

activation of TRIC-A channel was regulated by both voltage and
Ca2+ binding [67, 101]. Ca2+ regulation of TRIC channels was
investigated in depth by Chen’s group in a recent study [91]. At
resting state, Ca2+ binds to G74 residue on the threefold axis,
which is located in the luminal side of TRIC-A, and stabilizes
the closure of the pore. During systolic Ca2+ release, depletion of
luminal Ca2+ results in the dissociation of Ca2+ binding to the
channel. This change enables the Ca2+-dependent gating of the
TRIC-A channel. They also found K129 was critical for the
TRIC-A pore conductance. K129A mutation resulted in constant
opening of the channels while TRIC-A channels with K129Q
mutationmostly stayed closed. Taken all together, TRIC channels
ideally meet all expectations of the counter-current channels for
the ER/SR Ca2+ release, due to their voltage-dependent, luminal
Ca2+-regulated, and potassium-permeable characteristics [91].

However, the assumption that TRIC channels carry the essen-
tial counter-current for SR charge compensation was challenged
by Gillespie and Fill, who argued that RyR channels are poorly
Ca2+ selective and exhibit high conductance of monovalent and
divalent cations such as K+ and Mg2+, which could carry the
counter-current [31]. Using a Poisson-Nernst-Planck/density func-
tional theory (PNP/DFT) model, their calculation demonstrated
that large K+ andMg2+ counter-current through RyR could clamp
the SRmembrane potential far from the Nernst potential for Ca2+,
nullifying the need for additional counter-current channels [30,
31]. Moreover, Guo et al. studied the isolated cardiac SR micro-
somes and saponin-permeabilized cardiomyocytes. They revealed
that replacement of cytosolic K+ with Na+ or Cs+ failed to affect
single RyR2 channel currents, open probability, or Ca2+ sparks.
Thus, they rejected the idea that SR K+ channels have significant
contribution to the counter-current supporting RyR2 Ca

2+ release
[35]. On the other hand, recent mathematical modeling suggests
that no single channel type is essential for the counter-current.
Instead, all possible sources of channel-mediated cation or anion
counter-current would be utilized to form a cascading network of
counter-currents in the entire SR [112]. This network would en-
sure an efficient counter-current to support Ca2+ release in differ-
ent physiological conditions. In this case, TRIC-A may not repre-
sent an indispensable prerequisite for efficient SR Ca2+ release as
presumed earlier but still contribute to the ion equilibrium across
SR during repetitive cycles of release events. This conclusion,
together with the earlier observation that cardiomyocytes from
TRIC-A/TRIC-B double knockout mice exhibit significantly ele-
vated caffeine-induced Ca2+ release [101], raised an intriguing
question: could TRIC channels have additional Ca2+ regulatory
roles for RyR other than the counter-current function?

TRIC-A regulates SR Ca2+ signaling
through direct modulation of RyR activity

RyRs are high conductance Ca2+ release channels located on the
junctional SR in striated muscles [60]. In addition to small
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molecules like Ca2+, Mg2+, and ATP that regulates RyR2 direct-
ly, many other RyR2 modulators have been identified and exten-
sively studied, including FKBP12.6 [83], calmodulin (CaM)
[61], sorcin [51], protein kinase A (PKA) [55], protein phospha-
tase 1 and 2A (PP1, and PP2A) [56], and Ca2+/calmodulin-de-
pendent protein kinase type II (CaMKII) [93]. It is worth noting
that almost all of those RyR2 regulatory proteins function as
stabilizers of RyR2 activities, whose defects would commonly
lead to Ca2+ leakage through RyR2 channels [4, 14].

A study from Sitsapesan’s group found that in skeletal muscle,
the RyR1 channel from the TRIC-A−/− mice displayed increased
sensitivity to Mg2+ inhibition and a defective response to protein
kinase A phosphorylation [26]. Meanwhile, physiological activa-
tors such as ATP are less effective in activating individual RyR1

channels reconstituted into the lipid bilayer membrane. However,
they also reported that the Ca2+-dependent control of RyR1 chan-
nel was not altered in the absence of TRIC-A [26]. These findings
are consistent with the potential role of TRIC-A as an enhancer of
RyR channels, such that the absence of TRIC-A leads to reduced
RyR channel function.

Recently, Zhou et al. presented evidence of a directmodulation
of RyR2 activity by TRIC-A [110]. We observed that
cardiomyocytes derived fromTRIC-A−/−mice have a lower basal
Ca2+ spark frequency and a higher SR Ca2+ content. These
myocytes also have slow-rising and prolonged intracellular Ca2+

transient profiles. We further explored the role of TRIC-A in
HEK293 cells with inducible expression of RyR2 as a model of
store-overload induced Ca2+ release (SOICR) [41, 110].
Overexpression of TRIC-A in HEK293 cells leads to decreased
spontaneous Ca2+ oscillations and hence help mitigate SOICR as
a result of reduced ERCa2+ content. This phenotype is specific to
TRIC-A as co-expression of TRIC-B does not alter the amplitude
or kinetics of SOICR in the same setting. Furthermore, our bio-
chemical and immunohistochemical data demonstrated a direct
interaction between TRIC-A and RyR2, possibly via the
carboxyl-terminal tail (CTT) domain of TRIC-A (CTT-A). This
result is consistent with the data from Dr. Zorzato’s group where
they reported that TRIC-A (named SRP-27 in their paper) directly
binds to RyR in their pulled-down and coimmunoprecipitation
assays [10]. We further unveiled that CTT-A is a crucial structure
responsible for the RyR2 modulation as evidenced by both
HEK293 SOICR assay as well as measuring the effect of CTT-
AonRyR2 channel from cardiac SRvesicles in reconstituted lipid
bilayer assay [110]. Interestingly, the CTT domains are absent in
all of the recent structural studies. The investigators claim this
domain may decrease the stability of the crystal [43, 65, 82,
100] and suggest it could be a flexible function domain.

Further computational modeling predicted several potential
binding sites of TRIC-A on RyR2 [110]. Remarkably, one of
the potential binding sites is located at the SPRY domain of
RyR. It is known that the SPRY domain of RyR could bind to
the dihydropyridine receptor for control of RyR channel ac-
tivity [21]. Thus, the hypothesized interaction of CTT-A and

SPRY domain could be a potential target site for therapeutic
regulation of RyR activity. Together, these data revealed a
novel role of TRIC-A as a direct modulator of RyR2, in addi-
tion to its counter-ion channel function. Both functions would
enhance RyR2-mediated Ca2+ release in cardiac muscle.

Mutations in RyR2 linked to cardiac arrhythmia, including
catecholaminergic polymorphic ventricular tachycardia
(CPVT), have been identified as gain of function mutations such
as N4104K, R4497C, and N4895D [41, 69]. Those mutations
enhance the activity of RyR2, elevate Ca

2+ leakage, and subse-
quently lead to cardiac dysfunction [4, 41]. Therefore, stabilizing
RyR2 activity to prevent the leakage of Ca2+ has been a major
target for the potential treatment of cardiac diseases.
Interestingly, several novel CPVT mutations, including
I4855M [73] and A4860G [42], have been identified as loss-
of-function mutations. Moreover, phosphorylation of RyR2 at
S2808 has been shown to promote the hyperactivity of RyR2

and contribute to the pathological condition of the heart [76].
However, the ablation of the RyR2 phosphorylation at Ser-
2808 did not reverse the cardiac phenotypes but rather exacer-
bated the disease phenotype by reducing the survival rate and
impairing in vivo cardiac function [49]. Thus, accumulating ev-
idence shows that RyR2 requires tight and balanced regulations
not only by negative regulators but also by positive modulators.
Either hyper- or de- activation of RyR2 could result in patholog-
ical consequences. The phenotypes of TRIC-A−/− heart show
some similar characteristics to those in RyR2-S2808A [87],
RyR2-A4860G [106], and RyR2-Ex3-del

+/− mice [50], which
further suggests the importance of the proper regulation of
RyR2 channels. Potential therapeutic interventions can be used
to target the functional interaction between TRIC-A and RyR2 to
restore defective Ca2+ signaling in cardiovascular diseases.

The functional crosstalk between IP3R and RyR-mediated
Ca2+ signaling has also been implicated in muscle and heart
cells under physiological and pathological conditions [24, 44,
46, 84, 102, 103, 111]. Dissecting the role of TRIC-A and
TRIC-B in RyR/IP3R crosstalk regulation and Ca2+ signaling
regulation in physiological and pathological condition will be
another essential task of future research.

TRIC-A regulates SOCE through interaction
with STIM1/Orai1 complex

ER/SR Ca2+ modulation has been the primary focus of TRIC
studies in the past decade. However, a new study from Shrestha
et al. unveiled a new role of TRIC-A in the regulation of Ca2+

entry mechanism [78]. They found that TRIC-Amodulated store
operated Ca2+ entry (SOCE) by interacting with stromal interac-
tion molecule 1 (STIM1)/Ca2+-release activated Ca2+ channel
1(Orai1) complex [78]. STIM1 is an ER/SR-resident transmem-
brane protein with a Ca2+ binding domain. Upon [Ca2+]ER de-
pletion, dissociation of Ca2+ results in STIM1 oligomerization

549Pflugers Arch - Eur J Physiol (2021) 473:547–556



and its translocation to ER–plasma membrane (PM) junctions.
These STIM1 clusters would recruit and activate the Orai1 chan-
nels on the plasma membrane and trigger Ca2+ entry into the
cytosol [71, 94]. Using mutant Orai1 or Orai1 blocker BTP2,
Shrestha et al. showed that the RyR2-induced Ca

2+ oscillations in
HEK293 cells required the SOCE machinery. Upon ER Ca2+

store depletion, TRIC-A channels co-clustered with the STIM1/
Orai1 complex within ER–PM junctions. The association of
STIM1 with TRIC-A reduced the co-localization of STIM1
and Orai in the cells, thus suppressing SOCE. Furthermore, they
demonstrated that knocking down of TRIC-A in HL-1 would
promote SOCE, mimicking the effects of STIM1
overexpression.

Several studies have established the physiological and patho-
logical relevance of STIM1 in the heart [66, 72]. Silencing of
STIM1 results in compromised cardiac function as well as re-
duced cardiomyocyte size [5]. On the other hand, STIM1 over-
expression in the transgenic mice leads to cardiac hypertrophy
and sudden death [20]. Although STIM1 is abundantly expressed
in neonatal cardiomyocytes as well as in HL-1 cells, the level in
adult cardiomyocytes is low [86]. Moreover, Hill’s group dem-
onstrated that SOCE abundantly presents in neonatal
cardiomyocytes; however, SOCE is absent in adult
cardiomyocytes [52]. Therefore, the role of TRIC-A interaction
with STIM1 in the control of SOCE in cardiomyocytes needs
further investigation.

Potential role of TRIC-A in mitochondrial
metabolism and SR-mitochondria crosstalk

The crosstalk between intracellular organelles has drawn great
attention in cell biology and physiology studies in recent years.
The crosstalk between ER/SR and mitochondria-mediated Ca2+

signaling plays an important role in physiological and patholog-
ical conditions [74, 75]. Li et al. presented evidence implicating
TRIC-A in regulation of mitochondrial metabolism through di-
rectly or indirectly modulating mitochondrial Ca2+ signaling
[47]. Mitochondria play a crucial role in oxidative metabolism
that produces 95% energy required for the cell function [3]. In
cardiomyocytes, Ca2+ uptake by mitochondria is an important
messenger for matching energy supply to demand during various
physiological workloads. This is achieved through Ca2+-induced
activation of Krebs cycle dehydrogenases and pyruvate dehydro-
genase [15, 16, 36, 58]. Additionally, mitochondrial Ca2+ has
also been indicated to enhance the activities of complexes I, II,
IV, and V along the respiratory chain [22, 32]. However, persis-
tent augmentation of Ca2+ handling in cardiomyocytes, triggered
by repetitive isoproterenol treatment, chronic pressure overload,
or ischemia/reperfusion, would lead to pathological mitochondri-
al Ca2+ overload, which is not a simple compensatory mecha-
nism to increase energy output [37, 48, 75, 77, 80, 96, 108]. This
pathological overload usually occurs concomitantly with

increased production of mitochondrial reactive oxygen species
(ROS), which is causally related to progressive heart failure [57,
63]. Moreover, recent studies revealed that mitochondrial Ca2+

overload enhanced the activity of Na+/Ca2+/Li+ exchanger
(NCLX), leading to Ca2+ extrusion at the cost of increasedmatrix
Na+. Matrix Na+ interacts with phospholipids, such as phospha-
tidylcholine, of the inner mitochondria membrane, leads to re-
duced membrane fluidityand, the diffusion of ubiquinol (coen-
zyme Q) from glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) or complex II to complex III of the respiratory chain,
and elevation of ROS production of complex III at Qo site [38].
ROS thus activates hypertrophic signaling through the oxidation
of histone deacetylase 4 and the activation of other redox-
sensitive pathways [1]. Furthermore, ROS impairs EC-coupling
by altering the function of RyRs, SR Ca2+-ATPase, NCX, and
other Ca2+ signaling–related proteins [29, 33, 99]. Toxicity of
mitochondrial Ca2+ overload is not only about excessive ROS
generation but also related to the activation of apoptotic and
necrotic cell death. Mitochondrial Ca2+ overload induces
sustained opening of the mitochondrial permeability transition
pore (mPTP), a pore complex in the IMM that allows passage
of ions and solutes up to 1.5 kDa. This sudden increase of IMM
permeability causes the loss of mitochondrial membrane poten-
tial and promotes the release of pro-apoptotic factors, which
triggers the downstream apoptotic cascade, leading to apoptotic
cell death [13, 23, 39, 92]. Furthermore, osmotic influx of water
through these pores swells mitochondrial matrix and ceases ATP
production, disabling ATP-dependent ion exchangers/pumps.
The devastated cellular ion homeostasis eventually leads to plas-
ma membrane rupture and necrotic cell death [2, 11].

There are no significant abnormalities in the heart under
basal conditions in TRIC-A−/− mice. However, heart from
TRIC-A-deficient mice showed altered SR Ca2+ regulation
such as (SR Ca2+ overload) under stress conditions. For ex-
ample, chronic treatment with β-adrenergic receptor agonist
isoproterenol (ISO) leads to extensive fibrosis development in
the TRIC-A−/− heart. Such effect is likely caused by increased
death of cardiomyocytes and fibrotic remodeling, which may
be linked to the overload of SR Ca2+ associated with the ab-
lation of TRIC-A. SR Ca2+ overload due to TRIC-A depletion
likely exacerbates mitochondria Ca2+ overload, promotingmi-
tochondria ROS production and facilitating apoptosis and/or
necrosis of the TRIC-A−/− cardiomyocytes. However, the un-
derlying mechanism is still largely unknown. Therefore, it is
worthwhile to further explore the role of TRIC-A in Ca2+

mediated SR-mitochondrial crosstalk.

Localization of TRIC-A in the nuclear envelope
suggests potential transcriptional function

TRIC-A is not only located in the ER/SR membrane but also
heavily expressed in the membrane of the nuclear envelope of
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muscle cells [101]. Although the exact function of TRIC-A in the
nuclear envelope remains unknown, pioneer studies by
Schirmer’s group provided important insights [70]. They
screened the nuclear envelope transmembrane proteins (NETs)
thatmediated the global changes in actively transcribing genomic
loci during myoblast differentiation and identified TRIC-A as
one of the NETs directing specific chromosomal regions to the
nuclear periphery for transcriptional repression during
myogenesis [70]. To investigate whether the dysfunction of
NETs like TRIC-A contributes to the pathogenesis of hereditary
muscular diseases, they acquired primary myoblasts/fibroblasts
culture derived from Emery–Dreifuss muscular dystrophy
(EDMD) patients. Interestingly, TRIC-A displayed the most no-
table change of distribution among the 8 candidateNETs in those
patients. Most patient samples exhibited moderate redistribution
of TRIC-A favoring the SR localization [45]. Recently, they also
identified TRIC-Amutations (N260D and N260 deletion) which

alter the redistribution of target genes to the nuclear periphery
during myogenesis. This result further confirms that abnormali-
ties in TRIC-A-mediated chromosomal repositioning can be an
etiological factor of EDMD [59].

Another possible role of TRIC-A on the nuclear envelope
could be related to nuclear Ca2+ regulation. Since TRIC-A is
known to regulate ER/SR Ca2+ signaling, its role in the nuclear
Ca2+ regulation is plausible. It has been shown that Ca2+ signal-
ing in the nucleoplasm regulates events that are distinct from the
ones mediated by cytosolic Ca2+ [25]. For example, cardiomyo-
cyte nucleus contains its own Ca2+ store called nucleoplasmic
reticulum that expresses RyR and IP3R [25, 54]. IP3-induced
Ca2+ release from nucleoplasmic reticulum facilitates protein ki-
nase C (PKC) translocation to the nuclear envelope [25].
Abnormal nuclear Ca2+ signaling is also involved in cardiomyo-
cyte hypertrophy. Diminishing Ca2+ level in the nuclei leads to
swelling of the nuclei in neonatal cardiomyocytes, accompanied

Table 1 Phenotypes and mechanism in different tissues

Tissue Mechanism Phenotype Publication

Cardiac muscle a) Counter-current
b) Regulation of RyR2

c) Regulation of STIM1 mediated SOCE.

Stress-induced cardiac arrhythmia
Stress-induced cardiac fibrosis

Zhou et al., 2020
Shrestha et al., 2020

Smooth muscle a) Counter-current
b) Regulation of RyR-IP3R

Hypertension Yamazaki et al., 2011

Skeletal muscle a) Counter-current
b) Regulation of RyR1

c) Nuclear action for gene transcription

Irregular muscular contractile force
Emery–Dreifuss muscular dystrophy

Zhao et al., 2010
El-Ajouz et al., 2017 Robson

et al., 2016

Fig. 1 Multi-functional role of TRIC-A in regulating Ca2+ signaling in
cardiomyocytes. (a) TRIC-A channels are predominantly localized to the
ER/SR, providing counter-current K+ movement (green arrows) for SR
charge compensation during RyR2-mediated Ca2+ release (thick red ar-
rows). (b) TRIC-A channels directly interact with RyR2 through its car-
boxyl terminal tail to modulate RyR2 opening status. (c) Association

between TRIC-A and STIM1 has been proposed to control store-
operated Ca2+ entry. (d) TRIC-A is found in the nuclear envelope, while
its role in modulation of nuclear Ca2+ signaling and gene transcription
remains largely unknown. (e) TRIC-A may function to modulate Ca2+

signaling crosstalk from SR to mitochondria to match the metabolic de-
mand ofmyocardial workload under physiologic or pathologic conditions
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by increased calcineurin expression and increased nuclear enrich-
ment of NFAT [34]. It is well known that calcineurin/NFAT
signaling cascade plays a critical role in activating the transcrip-
tion of genes involved in cardiac hypertrophy, such asβ-myosin
heavy chain (β-MHC) [34, 62]. Recently, we confirmed the
noticeable expression of TRIC-A on the periphery and the mem-
brane invaginations of the nuclear envelope of cardiomyocytes
(unpublished data). Unlike the skeletal muscle cells, which form
a smooth oval shape of the nuclear envelope, cardiomyocytes
develop apparent membrane invaginations on the nuclear enve-
lope. Researchers have speculated that such invagination could
play a role in gene regulation [104], although the detailed mech-
anism is still lacking. TRIC-A locates directly on the invagination
membrane structure of the nuclear envelope, suggesting it may
play a role in nuclear Ca2+ regulation and gene translational
regulation. Further studies are required for understanding the
exact role that TRIC-A plays in the nuclear envelope of
cardiomyocytes. The potential of TRIC-A regulating nuclear
Ca2+ signaling would be an interesting direction for future
investigation.

Table 1 summarizes our current understanding for the role
of TRIC-A in cardiac, smooth and skeletal muscles, and the
phenotypes associated with knockout of TRIC-A or genetic
mutation in TRIC-A. In addition to supporting the counter
current movement associated with intracellular Ca release,
TRIC-A can also interact with RyR channels to directly or
indirectly modulate ER/SR Ca homeostasis and crosstalk with
mitochondria.

Conclusion

We depict a diagram to demonstrate the proposed func-
tions of TRIC-A in cardiomyocytes (Fig. 1). Although
there are still debates about whether TRIC channels carry
the essential counter-current during RyR channel–
mediated Ca2+ release, the identification of direct interac-
tions between TRIC-A and RyR2 support a pivotal role of
TRIC channels in regulating ER/SR Ca2+ homeostasis.
Due to the growing interest in the physio-pathological
roles of TRIC channels, novel regulatory mechanisms me-
diated by TRIC-A have started to emerge, including direct
control of RyR2 activity, SOCE, SOICR functions, and its
potential role in modulating mitochondria Ca2+ signaling.
In addition to SR/ER localization, TRIC-A is also identi-
fied on the nuclear envelope and may participate in
excitation-transcriptional regulation of genes involved in
myogenesis and adaptive responses of the muscle and
heart under physiologic and pathophysiologic settings.
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