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Simple low‑cost 3D metal printing 
via plastic skeleton burning
Vladimir D. Burtsev1*, Tatyana S. Vosheva1, Anton A. Khudykin2, Pavel Ginzburg3 & 
Dmitry S. Filonov1

Additive manufacturing of complex volumetric structures opened new frontiers in many technological 
fields, turning previously inconceivable designs into a practical reality. Electromagnetic components, 
including antenna and waveguiding elements, can benefit from exploring the third dimension. While 
fused deposition modeling (FDM) polymer printers become widely accessible, they manufacture 
structures with moderately low electromagnetic permittivities, compared to metals. However, 
metal 3D printers, being capable of producing complex volumetric constructions, remain extremely 
expensive and hard to maintain apparatus, suitable for high-end market applications. Here we 
develop a new metal printing technique, based on a low-cost and simple FDM device and subsequent 
electrochemical deposition. For testing the new method, we fabricated several antenna devices 
and compared their performances to standard printed FeCl3 etched board-based counterparts, 
demonstrating clear advantages of the new technique. Our new metal printing can be applied to 
manufacture electromagnetic devices as well as metallic structures for other applications.

Additive manufacturing enables exploring complex volumetric structures across variety of fundamental and 
applied disciplines1. The range of new capabilities allows reconsidering conventional approaches in mechanics2–4, 
thermal management5, medicine6, robotics7, electronics8,9, and many others applied areas, e.g.10,11 where novel 
architectures and material platforms can grant ever foreseen capabilities.

Hardware components, supporting wireless communication links, can also benefit from exploring volumetric 
geometries. Traditionally, planar architectures of radio frequency (RF) components, including waveguides and 
antennas, are integrated within printed electronic circuitry. This approach is favourable owing to well-established 
layer-by-layer lithographic fabrication. Functional 3D printing, however, allows exploring conceptually different 
designs with potentially better electromagnetic performances. While the surface equivalence principle suggests 
the ability to replace a volumetric realization with an impedance surface, enclosing the volume of the initial 
structure12, practical aspects play a role13, underlining real advantages of volumetric designs. Several additive 
manufacturing techniques were recently developed to create high-quality RF devices14. CNC milling15,16, laser 
direct structuring17–19, conformal printing of metallic inks20,21, ultrasonic wire mesh embedding22, and metal 
deposition through a mask on curved surfaces23,24 are among a series of the developed methods. Despite the 
proven performances of the beforehand mentioned techniques, those are designed per a specific task and yet can 
be considered as an ultimate solution in the field. On the other hand, fused deposition modeling (FDM) print-
ers become available and are extremely low cost, making them the first choice in cases, when fast prototyping 
of volumetric structures is needed. FDM printers are compatible with a variety of polymer materials, including 
polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), polyethylene terephthalate glycol (PETG), different 
alloys, polymer-nanostructures mixtures, and many others. Those plastics were already integrated within antenna 
devices (e.g.25,26). Furthermore, several polymer materials can be printed in parallel during manufacturing within 
a single session27,28. However, plastics are dielectrics with a relatively low electromagnetic contrast. Typically, 
the permittivity ranges between 2.5 and 3.5 at the 1–10 GHz band with the loss tangent of 10−3–10−1 for PLA28. 
Those numbers, though, depend on fabrication parameters, mainly on the polymer fill factor in a unit volume. 
Electromagnetic losses become dramatically high if conductive materials, e.g., graphene flakes, are mixed within 
polymer filaments. Here, loss tangent can approach unity, making those materials almost irrelevant for use in 
wireless communication devices. An ultimate solution for manufacturing volumetric RF devices is metal print-
ing, e.g., performed with a direct metal laser sintering29. However, metal printers, nevertheless they provide 
high-quality standalone RF-contrast metal structures, remain extremely expensive, motivating the development 
of other approaches.
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Here we demonstrate a simple and low-cost metal printing, based on a low-grade FDM technique. The new 
method is described first and then followed by a demonstration of several efficient electromagnetic devices, which 
are shown to outperform their conventional printed circuit board (PCB) counterparts.

Results
FDM metal printing.  Metals with high RF conductivity allow obtaining superiorelectromagnetic perfor-
mances. However, only a thin metal layer, having a thickness of several skin depths, governs the interaction30. 
Typically, several microns of copper is sufficient for the 1–10  GHz frequency range. It is worth noting that 
electroless plating can be used to cover non-conductive polymers, though this approach requires quite extensive 
chemical processing steps31,32. Another technique is electroplating, where electrochemical deposition is made on 
materials with a sufficient low-frequency conductivity. In our case, a structure’s 3D-printed skeleton serves as a 
cathode. For this purpose, initially isolating polymers should become conductive, which is done by introducing 
small particles. Filaments, made of PLA, mixed with graphene flakes (GPLA), will be used here. DC resistivity 
of this commercially available material (conductive PLA, 2.85 mm diameter, ‘Proto-pasta’) is about 0.1275 Ω m. 
It is worth noting that RF conductivity of this material is insufficient for practical applications. The permittivity 
of GPLA varieties between 52 and 15 at the 1–10 GHz frequency range, while the loss tangent is 0.75–0.8733. 
However, GPLA skeletons can serve as cathodes in electroplating. Micron to millimetre thickness layers of met-
als can be deposited on FDM-printed structures and serve GHz electromagnetic applications. However, electro-
chemically metalized GPLA remains as a substrate and, due to its relatively high permittivity, causes a high field 
concentration inside its volume, leading to moderately high losses. Those losses severely degrade antenna and 
waveguide performances, making the profitability of this approach questionable. Consequently, the removal of 
GPLA skeletons after their electroplating can drastically increase performances of 3D-printed electromagnetic 
devices. After performing this last skeleton removal step, freestanding metal structures are obtained. This new 
method will be described next.

The fabrication process is divided into several main steps. The first one is the printing a skeleton. BCN3D 
Sigmax printer was employed. BCN3D Cura 3.4.0 for slicing the model was used for the prototyping (Fig. 1A). 
After manufacturing the model, the next step is its post-processing. The structure was treated with a rag, wet 
with acetone or potentially, with another solvent (e.g., 1,2-dichloroethane, dichloromethane and others). This 
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Figure 1.   The proposed metal printing—the sequence of a free standing metal coronavirus prototyping. (A) 
3D-modelling and slicing. (B) FDM 3D-printing of a conductive PLA (GPLA) skeleton. (C) Electroplating of 
the prototype’s surface. (D) Removal of the plastic skeleton.
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step allows smoothing roughness, occurred during the printing process own to finite thickness of FDM nozzles, 
0.4 mm was used here. However, only small imperfections, e.g., cracks and bubbles, with sizes smaller than 
0.5 mm can be efficiently diminished (Fig. 1B). The next stage is the electroplating. After the solvent prepara-
tion, the electroconductive part of the model was activated with copper sulfate solution. This makes the model 
surface more sensitive for further galvanization process due to increased ions adhesion34. To achieve a uniform 
deposition of metal ions on a surface, the later should be held at nearly uniform electric potential. While typical 
cathodes with initially high DC conductivity do not possess extra-challenges, GPLA skeletons with moderately 
high resistivity exhibit a significant voltage drop between adjacent electrodes. To improve the uniformity of the 
electric potential in this case, we distributed several electrodes along the sample. Those electrodes (copper wires) 
were isolated from the solution, otherwise the electrochemical deposition will primarily occur on contacts, leav-
ing GPLA skeleton uncovered. After performing those technically uncomplicated steps, auxiliary electrodes of the 
structure were connected to the negative terminal of a current source (MATRIX MPS-3003L-3). A copper plate, 
serving as an ion source, was connected to the positive terminal. The galvanic bath contained 70:10:1 of water: 
Cu2SO4: sulfuric acid. The current in the galvanic circuit was calculated using the empirical ratio of 100 mA for 
every dm2 of electroconductive model surface, which is a compromise between the deposition quality and its 
rate. The deposition time is defined by a required metal thickness. The sample was removed from the galvanic 
bath and washed under running cold water at the end of the process (Fig. 1C). After the GPLA skeleton is met-
alized, the last stage is to remove the substrate. The melting point of typical polymers, used in FDM printing, is 
around 180-230ºC. Electrochemically deposited metal, however, sustains those temperatures. Hence, the skeleton 
can be removed in an oven, though minor oxidation of copper surfaces can be observed if air environment is 
used. Another option is to apply chemical removal or just burn the plastic with a gas jet, which we used here as 
the easiest option (Fig. 1D). As the result, the polymer skeleton is melted, whereas metal construction remains 
standalone—this is our proposed metal printing.

The characteristics of the resulting model are as follows: thickness of the metal layer is at least 0.5 mm, which 
permits the model to remain free standing after the skeleton removal, the overall size of the structure can reach 
dozens of centimeters along any direction (for our model the maximum is 11.8 cm), surface roughness is smaller 
than 0.1 mm and the surface coverage is quite uniform in all areas. The fabrication cycle is printing (3–8 h usu-
ally), post-processing (0.5–1 h), and electroplating (24–48 h).

Electromagnetic performances of 3D‑printed structures.  To test the performances of the new fab-
rication technique, radio frequency identification (RFID) was chosen as an application. Rapid development of 
internet of things (IoT)35 and an emerging concept of internet of small things—IoST (e.g.36) motivates develop-
ing new miniature long-range tags with omni-directional responses (e.g.37–39). Here, efficient low-cost designs 
are essential for powering this application. RFID tags consist of an integrated circuit and an antenna, which, in 
many cases, governs the performances. Exploration of volumetric geometries can provide and advantage over 
conventional 2D designs.

Hereinafter, we will assess the impact of GPLA removal on antenna performances. A rather generic geometry, 
reported in40 (Fig. 2A, inset, panel D), will be used for the investigations. The structure is a dipole, considered in 
the frequency range from 750 MHz to 10 GHz, which captures both: the main resonant area (around 850 MHz, 
for which the structure was initially designed), and a non-resonant zone (1 to 10 GHz) where the antenna has 
a more complex radiation pattern and not necessarily impedance-matched. The rather known design was cho-
sen for assessing performances of the new fabrication methodology versus existent standards. CST Microwave 
Studio was used for the analysis. Thickness of the GPLA substrate was taken as 2 mm uniform and conformal 
with the antenna. Figure 2A shows the absorbed power within the structure with and without GPLA skeleton. 
This parameter was calculated as a balance between four channels—power (i) entering launched into antenna 
port, (ii) total radiated (iii) back reflected to the port owing to the impedance mismatch, and (iv) absorbed. It 
is evident that GPLA removal significantly reduces the absorption along the entire frequency range. The dif-
ference is more pronounced at higher frequencies. In terms of radiation patterns, both configurations show a 
well-defined dipolar emission at lower frequencies (e.g., 850 MHz, Fig. 2B, and 1.5 GHz, Fig. 2C). However, at 
higher frequencies (7 GHz, Fig. 2E) low-loss freestanding metal antenna has quadrupole-like radiation pattern, 
while GPLA skeleton quenches the radiation quite significantly. Since the near-field localization grows with 
increasing the multipole number (e.g.41,42), the very pronounced difference between the radiation patterns is 
observed at high frequencies, where GPLA substrate demonstrates a severe absorption. While the structure is not 
resonant, it still has significant internal losses and cannot be used as a radiation element, underlining the clear 
advantage of the GPLA substrate removal. This general trend can be further seen while comparing panels (F), 
(G) and (H), where each horizontal cut of the colour map corresponds to the unwrapped radiation pattern. The 
GPLA skeleton lead to a significant blurring at higher frequencies. Maximal gain reaches 4 on the linear scale.

To verify the beforehand made claims and assessments, experimental studies have been performed. Standard 
PCB design and fabrication were made for getting a reference sample. Figure 3 demonstrates the devices—PCB 
reference (panel A), 3D-printed antenna with GPLA skeleton (panel B), and standalone metal structure, which 
was obtained after GPLA removal (panel C). Antenna characteristics were acquired at an anechoic chamber 
(Fig. 3H). The antennas were connected to the Rohde & Schwarz RTO1024 vector network analyser (VNA) using 
a coaxial cable and mounted on an azimuth-rotary table opposite the measuring horn antenna (also connected 
to the same VNA). Polystyrene supports, being transparent to GHz waves, were used. The table was rotated 
between 0° and 360° with 1° steps. Complex transmission coefficients (S12) were obtained for the entire frequency 
range and for each angle. The colour maps (Fig. 3D–F) summarize the experimental results—horizontal lines 
are unwrapped angular radiation patterns at the sweep frequencies. Vertical lines represent the evolution of the 
radiation pattern with frequency. Metal freestanding antenna demonstrates the best performances, compared 
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to both references. The advantage is more pronounced at higher frequencies, where both GPLA and FR4 (PCB 
material) have higher losses. Total radiation efficiencies of the samples were measured, and the results appear in 
Fig. 3G. Metal antenna outperforms the counterparts for all the frequencies within the band apart from several 
points, where the results fluctuated owing to parasitic reflections from the measurement apparatus.

Discussion
A new simple and low-cost metal printing approach have been developed and its advantages in the field of 
additively manufactured electromagnetic devices were demonstrated. Our method is based on FDM printing of 
skeletons with the subsequent set of relatively straightforward post-processing operations. The process is sum-
marized in the following five steps: (i) 3d printing of a skeleton with a conductive polymer, (ii) surface treatment 
for improving smoothness, (iii) auxiliary electrodes distribution on the skeleton, (iv) electroplating, and (v) 
skeleton removal. As the result of the process, freestanding metal structures can be obtained. The advantage of 
the substrate removal was analysed numerically and experientially, demonstrating significant improvement of 
antenna characteristics. In particular, high frequency loses were reduced by orders of magnitude compared to 
samples, where conductive polymer skeleton was present. The differences are much more pronounced at higher 
frequencies, where conductive polymers have looser performances. Furthermore, free-standing metal antennas, 
made by our new printing process, were shown to outperform standard PCB-based realizations, which also suffer 
from losses at frequencies above 5 GHz, if FR4 substrates are in use.

Though it is evident that our new method cannot compete with direct metal printing, based e.g., on laser 
sintering, on performances, it can provide sufficient solutions at extremely low cost. It is worth noting that 
fabricated structures had to be of an opened geometry for allowing the melted polymer flow out. The further 
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advancement of this technology can allow creating more complex shapes and reveal their advantages in electro-
magnetic applications. Furthermore, there are quite a few efforts to 3D-print electronic circuitry—both passive 
and active elements. Given this capability developed, additive manufacturing of an antenna together with tunable 
electronics will become possible. The overall production cost in this case can drop significantly, making additive 
manufacturing of RF devices to be the referable first choice.
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