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Non-small-cell lung cancer (NSCLC) is the most common subtype of lung cancer, of
which approximate 4% had BRAF activation, with an option for targeted therapy. BRAF
activation comprises of V600 and non-V600 mutations, fusion, rearrangement, in-frame
deletions, insertions, and co-mutations. In addition, BRAF primary activation and
secondary activation presents with different biological phenotypes, medical senses
and subsequent treatments. BRAF primary activation plays a critical role in proliferation
and metastasis as a driver gene of NSCLC, while secondary activation mediates acquired
resistance to other targeted therapy, especially for epidermal growth factor tyrosine kinase
inhibitor (EGFR-TKI). Treatment options for different activation of BRAF are diverse.
Targeted therapy, especially two-drug combination therapy, is an important option.
Besides, immune checkpoint inhibitors (ICIs) would be another option since BRAF
activation would be a positive biomarker of tumor response of ICIs therapy. To date, no
high level evidences support targeted therapy or immunotherapy as prioritized
recommendation. After targeted therapy, the evolution of BRAF includes the activation
of the upstream, downstream and bypass pathways of BRAF. In this review, therapeutic
modalities and post-therapeutic evolutionary pathways of BRAF are discussed, and future
research directions are also provided.

Keywords: BRAF activation, EGFR mutation, non-small cell lung cancer, targeted therapy, acquired resistance,
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INTRODUCTION

Lung cancer is the leading reason of cancer death worldwide, accounting for 18% of all and non-
small-cell lung cancer (NSCLC) is the most common subtype of lung cancer (1). With the
development of precision medicine, especially next-generation sequencing (NGS) technology and
circulating tumor DNA (ctDNA) technology, targeted therapy has replaced platinum-based
chemotherapy as the first-line treatment for NSCLC patients with driver gene mutations (2, 3).
More and more driver genes have been found in NSCLC, among which activated BRAF proto-
oncogene accounts for approximate 4% (4, 5). BRAF mutant tumors are characterized as an
aggressive histologic pattern with micropapillary features, and indicates a poor prognosis.

This review provides a comprehensive overview of characteristics, treatment modalities, and
outcomes for NSCLC patients with different BRAF mutations. The pathways of activation and
evolution of BRAF are divided into primary and secondary mutations. And different BRAF types
have different clinical, biological and pathological features. The mechanism of acquired resistance
and subsequent evolution of BRAF activation and the strategies after resistance are also discussed.
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A BRIEF HISTORY OF BRAF SIGNALING

The RAF kinase has been closely and inextricably linked to
cancer since 1983, when v-raf was first described by Ulf Rapp
et al. (6) This is a murine retroviral oncogene with a mammalian
cell homolog, called CRAF. And in 1984-1985, two CRAF-
related genes were identified in studies in mice and humans:
ARAF and BRAF (7, 8). In 2002, following the pioneering work
of Davies et al. (9) on the BRAF gene, a number of studies have
clarified the specific implications of BRAF mutations in lung
cancer (10, 11). In 2011, following the results of a phase III trial
(BRIM-3), the FDA approved the first drug targeting BRAF-
mutated cancers, PLX4032 (vemurafenib) (12). Two years later,
based on the results of the Phase III trial (NCT01227889),
another targeted agent against BRAF mutations, Dabrafenib
(GSK21188436), was also approved by the FDA for the
treatment of advanced melanoma (13). In the same year,
Trametinib (GSK1120212) was also approved for the treatment
of patients with advanced melanoma with the BRAF V600E
mutation (14). In 2017, dabrafenib and trametinib received FDA
approval for the treatment of metastatic non-small cell lung
cancer carrying the BRAF V600E mutation (15). The next year,
the FDA approved encorafenib in combination with binimetinib
which is an anti-MEK1/2 protein kinase inhibitor for the
treatment of unresectable or metastatic melanoma patients
with mutations in BRAF V600E or BRAF V600K based on a
Phase III randomized, active-controlled, open-label, multicenter
trial (COLUMBUS) (16). (Figure 1).
THE ACTIVATION OF BRAF

The Primary Activation of BRAF
BRAF is a mammalian cytosolic serine/threonine kinase that
belongs to the rapidly accelerated fibrosarcoma (RAF) kinase
family (ARAF, BRAF, CRAF), which uses the mitogen-
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activated protein kinase (MAPK) pathway to transmit signals
downstream of RAS (17). The primary activation of BRAF
comprises of BRAF classic mutations, BRAF rare mutations,
BRAF fusion and amino acid insertion, etc. (17, 18). Different
types of BRAF classical mutations have different clinical,
pathological and biological characteristics. Studies have found
that the occurrences of BRAF V600E mutations were not
associated with age, tumor size, lymph node status, tumor
stage and BRAF V600E mutation is more common in female
lung adenocarcinoma, but very rare in male or squamous cell
carcinoma (19). Besides, BRAF non-V600E mutations were
prone to be found in smokers. Their occurrences were not
associated with clinicopathological parameters or had no
impact on prognosis. When treated with platinum-based
chemotherapy, NSCLC patients with BRAF V600E mutation
had a tendency of shorter progression-free survival (PFS) than
those with BRAF non-V600E mutations, and the clinical
outcomes between patients with BRAF mutation-positive and
wild-types were similar, suggesting that BRAF mutations were
not sensitive to chemotherapy.

The BRAF primary classic mutations process that leads to
tumors can be broadly divided into three categories. Compared
to wild-type, Class I (BRAF V600 mutation) increases 500-700
times kinase activity and activates downstream MAPK cascade
pathways through activating monomers in a non-RAS
dependent form and transcription factors. Class II and class III
are mainly BRAF non-V600 mutations. Class II mutants have
moderate kinase activity and can transmit signals through RAS
independent constituent dimer to activate MEK1, which in turn
activate ERK1/2, ultimately promote cell growth and infinite
reproduction. Unlike class II mutants, class III mutants have no
or little kinase activity, relying on RAS generates upstream
signals that induce class III mutants to signal in the form of
dimers (17, 20, 21). In general, class I and class II BRAF mutants
can be independent of RAS signals and inhibit the negative
feedback of ERK signals. In addition, class I BRAF mutants
transmit signals in the form of active monomer, while class II
FIGURE 1 | Timeline of key events in BRAF signaling research.
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and III BRAF mutants in the form of dimer, and the final signal
transduction leads to the continuous activation of MAPK.

In addition to the three types of BRAF mutations, there are
other forms of mutations that lead to over-activation of the
pathway and ultimately the development of tumors. For
example, BRAF in-frame deletions are mutually exclusive with
RAS mutations, and these mutations can continuously transmit
signals to activate the MAPK pathway by forming BRAF
homologous dimers (22). Another study has also demonstrated
that BRAF internal deletion is a mechanism of acquired drug
resistance to BRAF/MEK inhibitors (23).

BRAF fusion has also been reported to be associated with
tumorigenesis and progress. It was reported that BRAF fusion
could cause the deletion of n-terminal inhibitory domain and
activate downstream MAP kinase signal through recruiting
CRAF protein to form a dimer (24, 25). In addition, a study
reported that two melanoma cases whose pathogenesis was
similar to BRAF fusion leading to tumorigenesis, but different
from BRAF fusion, these two cases leaded to the over-activation
of the pathway through the loss of BRAF inhibitory domain
caused by chromosomal translocations of BRAF oncogene (26).

Amino acid insertions were found at position 599 of the
BRAF codon, which is rare in the BRAF primary gene alteration.
It is speculated that this may be related to the increase of kinase
activity caused by changes in the spatial structure of the
P ring (18).

NGS technology has revealed better comprehensive
understanding of the gene mutations in various tumors. For
BRAF, more and more co-mutations have been found between
BRAF and other genes, which also indicates that the branching
cloning process occurs at the early stage of tumor evolution,
which leads to the generation of BRAF co-mutations. According
to literature reports, BRAF can co-occur with KRAS mutation
(27, 28), NRAS mutation (29), PTEN mutation (30, 31), MEK2
mutation (32), PIK3CAmutation (33) and other gene mutations.
And most of these BRAF co-mutations occur in melanoma and
lung cancer, but also found in other tumors.

The Secondary Activation of BRAF
The secondary activation of BRAF includes BRAF classic
mutations, BRAF fusion and rearrangement, which are mainly
acquired resistance to EGFR-TKI (25). Osimertinib has been
prior recommended to the resistance caused by first- and second-
generation EGFR-TKIs (34). But it will inevitably cause acquired
resistance. It has been reported that the underlying mechanisms
of acquired resistance to third-generation EGFR-TKIs include
activation of parallel pathways, such as mutations of BRAF or
other genes, and rearrangement of resistant genes, such as
fusions of BRAF or other genes (25). The mutation and fusion
mechanism of BRAF induced by EGFR-TKI resistance constitute
an important part of BRAF gene evolution, and different
treatment schemes have been explored for different types of
BRAF evolution. BRAF rearrangement accounts for 4.4% of
BRAF changes in NSCLC, and BRAF fusion is a form of BRAF
rearrangement. Four cases were reported that BRAF fusion was a
Frontiers in Oncology | www.frontiersin.org 3
mechanism of EGFR-TKI acquired resistance in EGFR mutant
lung adenocarcinoma (25).

Three cases revealed BRAF V600E mutation may be the
mechanism for acquired crizotinib resistance after ROS1
rearrangement in NSCLC, two of them had acquired ROS1
rearrangement co-existing with BRAF V600E (35, 36). In
another patient, ROS1 rearrangement was lost during
treatment, leaving only the BRAF V600E mutation (37).
Through single circulating tumor cell (CTC) sequencing,
researchers found that patients with ALK mutation developed
acquired drug resistance after ALK-TKIs therapy (27). And the
mechanism of ALK-TKIs resistance mainly included mutations
of RTK-KRAS pathway and TP53 pathway independent of ALK
pathway. In the RTK-KRAS pathway, BRAF mutations
accounted for 6.2% of the RTK-KRAS pathway (38). In
addition, studies showed that BRAF mutation and BRAF
fusion were secondary to adagrasib therapy in patients with
KRAS G12C mutation (39).
THE THERAPY OF BRAF ACTIVATION

The treatment of BRAF mutation is mainly divided into two
types, one is BRAF V600 mutation and the other is BRAF non-
V600 mutation. BRAF V600 accounts for approximately 50% of
BRAF mutation, and is more aggressive, and it occurs by
mutation of glutamate into valine at position 600 of exon 15
(40). BRAF V600 develops by the previously described Class I
mutation that activates the pathway in RAS independent
monomer form. The other type of BRAF non-V600 mutation
is mainly the previously described Class II and III BRAF
mutations, which develop from signaling to downstream
molecules in the form of dimers (17). The class II BRAF
mutant is divided into class IIa within the activation segment
and class IIb within the glycine-rich p-loop (20). The different
structure, mechanism of occurrence and development leads to
different treatment modalities for BRAF V600 and BRAF non-
V600 mutations. On the other hand, current targeted drugs are
mainly targeted at BRAF V600E, while there is no specific
treatment modality for BRAF non-V600E.

Targeting BRAF V600 Mutation
BRAF V600 mutations including V600E, V600K, V600D and
other subtypes, among which V600E is the most common
subtype. The initial treatment for BRAF V600 mutation was
monotherapy and FDA approved the first successful therapy
targeting BRAF mutant melanoma called vemurafenib, an oral
small molecule inhibitor of BRAF V600 mutations in 2011 (41).
The evidence came from a histology-independent, flexible, early
phase II “basket” study of vemurafenib in patients with non-
melanoma cancers harboring BRAF (42). In this study, the
objective response rate (ORR) was 42% (95% confidence
interval [CI], 20 to 67%) and the median PFS was 7.3 months
(95% CI, 3.5 to 10.8 months). The 12-month rate of PFS was 23%
(95% CI, 6 to 46%) and the preliminary 12-month overall
July 2022 | Volume 12 | Article 882940
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survival (OS) rate was 66% (95% CI, 36 to 85%). The most
common adverse event was nausea. Vivek Subbiah et al. (43)
explored whether BRAF V600E mutations in NSCLC were
sensitive to vemurafenib or not. The results turned out that
among sixty-two NSCLC patients with BRAF V600 mutation,
the overall ORR was 37.1% (95% CI, 25.2 to 50.3%), and 37.5%
(95% CI, 8.5 to 75.5%) in previously untreated patients, and
37.0% (95% CI, 24.3 to 51.3%) in previously treated patients. The
median PFS was 6.5 months (95% CI, 5.2 to 9.0 months), and the
median OS was 15.4 months (95% CI, 9.6 to 22.8 months).
Vemurafenib had a similar safety profile in studies focused on
melanoma patients. Furthermore, the French National Cancer
Institute (INCA) conducted a trial to assess the efficacy and
safety of vemurafenib in cancers with various BRAF mutations
(44). Among 118 NSCLC patients, 101 of them presented with a
BRAF V600E mutation and 17 with BRAF non-V600 mutations.
In the BRAF V600 cohort, the ORR was 44.9%, the median PFS
was 5.2monthes (95% CI: 3.8 to 6.8%), and the OS was 10
months (95% CI, 6.8 to 15.7 months). The results indicated that
vemurafenib is beneficial to NSCLC patients with BRAF
V600E mutation.

By inhibiting BRAF V600E kinase activity, dabrafenib resulted
in decreased phosphorylation of MEK and ERK, inhibition of cell
proliferation, and ultimately G1 cell cycle arrest and cell death (45).
In a phase II, multicenter, nonrandomized, open-label study, 84
advanced NSCLC patients with BRAF V600E mutation showed
dabrafenib had some active killing effect, though the effect was
limited. The adverse events were mainly skin-related, but these
adverse events were tolerable (46).

A study had demonstrated that the acquire resistance to
BRAF inhibitors was largely caused by reactivating the MAPK
signaling pathway (47). Trametinib is a MEK1/2 inhibitor which
blocks MEK1/2 kinase activity and prevents RAF-dependent
MEK phosphorylation (48). A phase II, multicenter, non-
randomized, open-label study assessed the efficacy of the
combination of trametinib and dabrafenib, among previously
treated or untreated metastatic NSCLC patients with BRAF
V600E mutation. All patients were divided into three cohorts.
In cohort B, 57 patients were enrolled and resulted in an ORR of
63.2%, disease control rate (DCR) of 79%, median PFS of 9.7
months (95%CI: 6.9-19.6) and 37 patients (65% [95% CI 51–76])
achieved 6-month PFS and median duration of response was 9·0
months ([95% CI 6·9–18·3]. The median OS data are immature,
but 47 (82%) of 57 patients were alive at 6 months. The most
common adverse event is pyrexia in 26 patients (46%) (49). The
results of cohort C of this phase II study demonstrated promising
results with ORR of 64% and DCR of 75%,the median PFS of OS
10.9 months and OS of 24.6 months, which was slightly better
than in the previously treated cohort (cohort B) of this trial (50).
In addition, the side effect profile was mostly similar to that of
cohort B, BRAF-MEK combination therapy (dabrafenib plus
trametinib) demonstrated tolerability and efficacy in a recent
phase II clinical trial and in light of these promising results,
combination dabrafenib and trametinib was approved by the US
FDA for patients with metastatic melanoma and BRAF V600E
mutation. Moreover, a real-life cohort of patients with BRAF
Frontiers in Oncology | www.frontiersin.org 4
mutant advanced NSCLC shows that treatment with BRAF
inhibitors and MEK inhibitors in BRAF V600E tumors is
associated with ORR of 67%, median PFS of 5.5 months, and
median OS since treatment initiation of 9.5 months, which
indicate the combination of BRAF inhibitors and MEK
inhibitors is clearly superior to monotherapy with a BRAF
inhibitors (51). In addition, the incidences of pyrexia and
myelosuppression are higher with combination therapy than
with monotherapy.

NSCLC patients with EGFR mutation could develop BRAF
V600E mutation after acquiring resistance to targeted therapy.
Given the secondary activation of BRAF, Huang et al. (52)
proposed a strategy of combination of dabrafenib, trametinib
and osimertinib, and the patient achieved long-term control of
the disease. Another study also demonstrated that the
combination of dabrafenib, trametinib and osimertinib was
effective to NSCLC patient who developed a BRAF V600
mutation after EGFR-TKI resistance. In addition, the adverse
events could be controlled by reducing the dose (53). In another
experiment, the treatment of patient also demonstrated that the
BRAF inhibitor encorafenib inhibited MEK signaling but had no
significant effect on ERK phosphorylation, while the
combination of encorafenib and osimertinib significantly
reduced MEK and ERK phosphorylation and cell growth (54).
In addition, in the review of 7 additional patients who were also
reported to be treated with combined therapy of dabrafenib,
trametinib and osimertinib, all patients obtained extended PFS
and clinical benefit (54–57). In summary, NSCLC patients
harbored secondary BRAF V600E mutations because of
acquired resistance to EGFR-TKI could benefit from the
combination with EGFR-TKI (e.g., osimertinib) and FDA-
approved two-drug therapy (e.g., dabrafenib, trametinib).

In 3 patients with secondary activation of BRAF V600E, two
patients had both ROS1 rearrangement and BRAF V600E
mutations and one of them died 15 days after taking
dabrafenib, while the other one died 11 days after taking
dabrafenib and trametinib (35, 36). The third patient who
developed BRAF V600E secondary to ROS1 rearrangement
loss on crizotinib received a partial response of more than 6
months with dabrafenib and trametinib (37).

To date, two-drug therapy is only approved in NSCLC with
BRAF V600E for FDA indication and recommended by the
NCCN guideline. However, some studies showed that the
treatment mode and clinical characteristics of BRAF V600E
were similar with other subtypes, such as BRAF V600K (58).
In light of guidelines for BRAF V600 mutated melanoma, dual-
targeted therapy is also recommended. Therefore, this review
recommends that dual-targeted therapy (dabrafenib and
trametinib) could be initiated in BRAF V600 mutated patients,
as a congener disease as well. Now that we know the treatment
for BRAF V600, and then we talk about how to treat BRAF
non-V600?

Targeting BRAF Non-V600
The most patients of BRAF non-V600mutation has less aggressive
phenotype and significantly superior survival compared to those
July 2022 | Volume 12 | Article 882940
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with BRAF V600 mutation, suggesting the potential need of
different therapeutic strategies (59). A retrospective multicenter
cohort study concluded that patients with BRAF non-V600E
mutations located outside of the activation segment of the BRAF
kinase domain were resistant to BRAF therapy (60). Another trial
recommended chemotherapy as the dominant strategy for non-
V600 mutation patients in the first-line treatment (61).

Recent experiences in vitro and in vivo show that class IIa
BRAF mutant cells were sensitive to single-agent BRAF
inhibitors, whereas class IIb BRAF mutant cells were not (62).
Moreover, dual MAPK pathway inhibition (dMAPKi) effectively
impaired the growth of subsets of non-V600 (62). In vitro, other
trials have also demonstrated that BRAF non-V600 (L597,
K601E) had significant response to MEK inhibitors (63).

Instead, research about class III mutant that have impaired
kinase activity or are kinase-dead and linked with high RAS
levels suggest Class III BRAF mutants may be treated with MEK
inhibitors which co-existing with mutations in RAS and NF1 in
melanomas, but in epithelial tumors, the great majority of class
III mutations are not associated with RAS/NF1 alterations and
may be treated with receptor tyrosine kinase (RTK) inhibitors
that block the RAS pathway (20). Another study came to similar
conclusions (64). A case report have also shown that dMPAKi is
also benefit for patients harboring a dual G469A and W604C
BRAF mutations and the response is more than 15 months (65).
However, other studies found vemurafenib is not effective in
NSCLC patients with BRAF non-V600 mutation (44, 66).

There is no evidence for patients resisted to EGFR-TKI yet,
which could result in BRAF non-V600 mutations. A basic
research demonstrated that, in osimertinib resistant PC9 cells
transfected with BRAF G469A mutant plasmid, the combination
of osimertinib, selumetinib (MEK 1/2 inhibitor) and trametinib
(MEK 1/2 inhibitor) or dabrafenib reversed osimertinib
resistance (67). Except for the two classical mutations of BRAF
V600 and non-V600, there are also co-mutations of BRAF, and
we will continue to discuss the treatment of BRAF co-mutations.

Treatment Recommendations for BRAF
Co-Mutations
There is no high-level clinical trial for primary BRAF co-mutations
to date. Since BRAF co-mutations were a clinical problem, we
provide some recommendations for reference. Based on the studies
on EGFR/ALK co-mutations, the phosphorylation level of the
mutant genes would be a rational treatment option, and the
abundance of gene mutations was also a positive biomarker for
clinical decision (68). Besides, the treatment of primary BRAF co-
mutation can refer to the treatment of secondary BRAF activation
with EGFR/ALK/ROS1 mutation and adopt double or triple
targeted therapy (53, 69). Considering the cost effectiveness and
adverse events, immunotherapy, specifically immune checkpoint
inhibitors (ICIs) would be a choice for BRAF co-mutations, which is
introduced in detail as follows. We have solutions for all three of
BRAF mutation patterns. And in recent years, the rise of
immunotherapy has also brought new solutions to
BRAF mutations.
Frontiers in Oncology | www.frontiersin.org 5
Immunotherapy
Studies have reported BRAF mutant NSCLC patients have high
expression of programmed cell death ligand 1 (PD-L1), which
means that patients with BRAF mutation have great potential for
ICIs (4). A retrospective cohort study conducted in 31 NSCLC
patients with BRAF mutations showed that there was no
statistically significant difference in OS among BRAF classic
mutant patients who received first-line chemotherapy or
immunotherapy (70). In a multi-institution retrospective chart
review of 39 patients with BRAF mutated NSCLC, 22 of whom
received ICIs, the ORR for V600E and non-V600E were 25% and
33%, respectively (P =1.0); PFS was similar in patients received
ICIs treatment; median OS was equal for patients who received
or did not receive ICIs (71). Another study collecting 4178
patients and 4462 samples from a cBioPortal database showed
that BRAF wild-type mutants had a longer OS than BRAF
mutants. Unlike previous study, this study showed that non-
V600E had a longer OS than V600E under ICIs treatment (72). A
BRAF G469A mutant NSCLC case obtained a deep and durable
response after ICIs treatment, which suggested that BRAF non-
V600 mutation may benefit more from immunotherapy than
EGFR/ALK-driven mutation in NSCLC (73). However, in a
retrospective, multicenter and real world analysis, 44 of 107
patients with BRAF mutations (V600:26, non-V600:18) received
ICIs, with the response rates of 26% in BRAF V600 cohort and
35% in the non-V600 cohort. Besides, BRAF V600 cohort have
longer PFS and OS than non-V600 cohort (74).

The above studies demonstrate the survival in various types of
BRAF mutations treated with ICIs immunotherapy or targeted
therapy are different. However, there is a lack of high-level
evidence to prove which is better. Further prospective clinical
trials are necessary to prove which is the optimal first line
strategy. We have solutions for all three of BRAF mutation
patterns. In recent years, the rise of immunotherapy has also
brought new solutions to BRAF mutations.

Strategies for Resistance to
BRAF Inhibitors
BRAF mutant tumors might initially respond to treatment with
BRAF inhibitors, but eventually developed drug resistance. For
acquired resistance to BRAF inhibitors caused by BRAF fusion,
clinical trials have demonstrated the efficacy of pan-RAF
inhibitors in patients with BRAF fusion (75). Evidence suggests
that BRAF proteins undergo homodimerization and
heterodimerization, therefore BRAF rearrangement is very
insensitive to BRAF inhibitors. And RAF inhibitors could bind
and inhibit all RAF isomers, so they are effective for BRAF fusion
(76, 77). Evidence is also provided that a combination of MEK
inhibitors and EGFR inhibitors is effective in patients with BRAF
fusion (25, 77). As for acquired drug resistance, a series of post-
resistance measures were reported. Intermittent dosing would be
a choice. A melanoma case with vemurafenib showed the
accelerated growth of RAS-mutant leukemia, and intermittent
dosing of vemurafenib relieved the disease and reduced the
disease burden (78). Subsequent studies showed that
July 2022 | Volume 12 | Article 882940
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intermittent dosing of BRAF inhibitors and RAF inhibitors may
delay the progression of resistant tumors and make it sensitive to
inhibitors again (79, 80). An international team of 180 scientists
proposed the concept of a low toxicity “broad-spectrum”
treatment based on the sequencing of the cancer’s genome,
which targeted multiple key tumorigenesis pathways and
mechanisms to prevent cancer growth (81). What’s more, for
resistant mutations at different gene target, different drug
combinations could be adopt. For example, FDA has approved
the combination of BRAF inhibitors (Vemurafenib and
Dabrafenib) and MEK inhibitor trametinib for the treatment of
BRAF inhibition resistance. And clinical studies of PI3K/AKT
inhibitor plus MAPK inhibitor, everolimus (RAD001) plus
bevacizumab, everolimus (RAD001) plus temozolomide
(TMZ), and targeted therapy plus immunotherapy have also
been conducted, but there is a lack of more data to support these
therapies, so further exploration is needed (82). The strategies for
resistance to BRAF inhibitors were listed in Table 1.
THE EVOLUTION OF BRAF ACTIVATION

The Pathways of BRAF Evolution
As reported, the evolution of BRAF comes from the changes of
various genes mainly in the following three ways after targeted
therapy (Figure 2). First, the changes of BRAF itself and BRAF
downstreammolecules which lead to resistance to BRAF targeted
inhibitors mainly come from the following aspects. BRAF splice
variants are the most common situation. Studies has
demonstrated that AGK-BRAF fusion leads to loss of the CR1
region of BRAF, thereby eliminating the inhibitory RAS-binding
domain, and results in RAS-independent constitutive activation
of the kinase (83). A research has found that the loss of the
inhibitory RAS binding domain resulting from the loss of the
internal BRAF leads to the reactivation of RAS-RAF-MEK-ERK
signaling and mediates resistance to BRAF inhibitors (23).
Besides, BRAF copy number amplification also can lead to
resistance to BRAF targeted inhibitors. Hubing Shi et al. (84)
proved that BRAF V600E amplification was the mechanism of
acquired resistance of BRAF inhibitors, providing evidence for
drug target changes leading to clinical relapse. Moreover,
Montagut et al. (85) found that CRAF overexpression to
increased ERK1/2 level indicating some BRAF mutant tumor
cells were primary insensitive to RAF inhibition in the
experiment, which was related to a switch from BRAF to
CRAF dependency in tumor cells. And Lu et al. (86) found
p21-activated kinases phosphorylate CRAF and MEK to
Frontiers in Oncology | www.frontiersin.org 6
reactivate ERK, which drive acquired drug resistance to MAPK
inhibitors in BRAF mutants. Furthermore, MEK1 mutation can
also lead to reactivation of the MAPK pathway. MEK is
downstream of RAS signaling MEK reactivation caused by
MEK mutation does not require stimulation of BRAF
signaling, so BRAF inhibitors are ineffective against MEK1/2
mutation. Therefore, MEK1 mutation can promotes ERK
phosphorylation, and MEK2 can also heterodimerize with
MEK1, ultimately leading to the reactivation of EKR (87).

Second, changes in upstream molecules of BRAF lead to the
evolution of BRAF mainly from the following aspects. First of all,
studies have shown that NRAS upregulation is another resistance
mechanism of BRAF inhibitors and NRAS upregulation may
promote the dimerization of RAF, which will cause insensitivity
of ERK signaling to drugs, leading to tumor drug resistance
(88–90). And the mutation of RAS gene may lead to the
reactivation of MAPK pathway. On the one hand, the mutant
RAS protein will not dissociate after binding to GTP but become
permanently activated. On the other hand, overactivated RAS
may lead to overactivation of ARAF and CRAF, and thus cell
proliferation. These two aspects jointly promote signal
transduction of MAPK pathway (89, 91, 92). And ERK protein
is a negative regulator of RAS protein, BRAF inhibitors can
inhibit ERK pathway, thereby inducing part of RAS activity and
leading to the activation of MAPK pathway (93, 94). And as well
as RTKs alteration, overexpression of platelet derived growth
factor receptor (PDGFR)-b or siRNA knockdown of PDGFRb
demonstrates the potential role of PDGFRb signaling in drug
resistance, and the introduction of PDGFRb into untreated cells
reduces sensitivity to vemurafenib (89). In addition, up-
regulation of EGFR expression was found in BRAF inhibitor
resistant cell lines and resistant tumor biopsies (95). EGFR
activation binds to specific tyrosine residues on the receptor
and results in a conformation change of Sos protein, thereby
recruiting and activating RAS-GDP, and finally ERK activation
induces cell proliferation (96). Besides, the upregulation of
IGF1R/IR in BRAF and MEK inhibitor resistant cells and the
maintenance of P-ERK and P-Akt suggest that IGF1R/IR may
mediate resistance to inhibitors through the reactivation of
MAPK (97).

Third, activation of bypass pathways leads to overactivation
of the BRAF signaling pathway mainly come from the following
aspects. At first, elevate expression of COT, like CRAF, activates
ERK through MEK-dependent mechanisms that do not require
RAF signals, thus driving resistance to RAF inhibition (98).
Besides, studies have shown that loss of STAG2 or STAG3
inhibits CCCTC-binding factor (CTCF) mediated dual
TABLE 1 | Strategies for resistance to BRAF inhibitors.

Situation Strategies Ref.

BRAF fusion pan-RAF inhibitors (75)
BRAF inhibitors and RAF inhibitors (76, 77)
combination of MEK inhibitors and EGFR inhibitors (25, 77)

Acquired drug resistance to vemurafenib intermittent dosing (78–80)
Changes in multiple key tumorigenesis pathways and mechanisms low toxicity “broad-spectrum” treatment (81)
Resistant mutations at different gene target different drug combinations (82)
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specificity phosphatase 6 (DUSP6) expression, leading to a
significant decrease in DUSP6 protein levels and ultimately
reactivation of MEK-ERK signaling in BRAF-inhibitor treated
melanoma cells (99). What’s more, RAC1 is a GTP-binding
protein that modulates cytoskeletal rearrangement by signaling
g-protein-coupled receptors and other molecules and RAC1
P29S mutations may mediate resistance to vemurafenib and
dabrafenib by maintaining MAPK signaling (100).
Additionally, NF1 is a tumor suppressor that inhibits RAS
activity. Experiments have proved that loss of NF1 can re-drive
MAPK pathway by activating RAS activity and increasing CRAF,
thus mediating resistance to RAF inhibitors (101). Moreover,
studies have found that ACK1 can inhibit the expression of
EGFR, so the loss of ACK1 induces the increase of EGFR protein,
thus increasing cell signal transduction to mediate the generation
of drug resistance (102). Furthermore, it has been confirmed that
increased Notch signaling results in increased expression of
markers associated with cell dedifferentiation and increased cell
migration and does not reactivate ERK in the presence of drug
therapy to mediate acquired resistance to MAPK inhibitors (103).
Finally, the study of Hubing Shi et al. (56) named the PI3K-PTEN-
AKT pathway as the second core resistance pathway, and it has
been reported that upregulation of the PI3K pathway accounts for
approximately 22% of BRAF inhibitor acquired resistance
melanoma. PTEN is an important tumor suppressor, which acts
to counteract the effect of PI3K and when PTEN is lost, mutant or
methylated, the activity of PI3K pathway will increase, and cells
can finally survive by adopting PI3K signal (104). The evolution
and pathways of BRAF activation were listed in Table 2 and
Frontiers in Oncology | www.frontiersin.org 7
Figure 2. We have collected several paths of BRAF evolution. In
addition, we hope to find certain rules from the evolutionary
pathway, so we need to study the pathway of BRAF evolution
through some methodologies.

Methodology to Track the BRAF Evolution
Due to the diversity and randomness of gene evolution, we need
to use various emerging technologies and methods to find certain
rules from dynamic evolution, so as to obtain certain therapeutic
effects, and also to find effective therapeutic strategies. With the
advent of cancer genomics and the development of multi-region
sequencing, single-cell correlation sequencing and cloning
techniques, it has become possible to describe gene phylogeny
and evolution (105–107). In recent years, studies have been
carried out on clonal phylogeny using single time point
snapshot, multi-region sampling and spatio-temporal modeling
to analyze diseases. In addition, mathematical models and other
methods can be used to explore new evolutionary methods. At
the same time, it also puts forward the direction and challenge to
bioinformatics and computer science (108). In addition, it has
been proposed that the development of single-cell multi-omics
technology is crucial for a comprehensive understanding of the
evolutionary mechanism. For example, multiple sampling
methods can be used to analyze the evolutionary mechanism
of tumors by different sampling methods (such as multiple
regions or multiple times). And examples include in vivo and
in vitro modeling of tumor evolution through optical or
sequencing barcodes (109). Furthermore, deep sequencing of
multiple regions of a tumor directly to detect evolutionary
mutations is another way (110).
UNDERGOING STUDIES FOR
BRAF ACTIVATION

The efficacy and safety of BRAF inhibitors are being explored in
several clinical studies (e.g., NCT03915951, NCT04543188 etc.).
In addition, more treatment options for patients with BRAF
mutations can be explored, for example, BRAF inhibitors as
adjuvant/neoadjuvant therapy for patients with NSCLC; BRAF
inhibitor combined with MEK inhibitor and EGFR-TKI as three-
target combination therapy; BRAF inhibitors combined with
immunotherapy, anti-angiogenic drugs and other drug
combinations. With the success of the ADAURA study, a new
direction of targeted therapy in the adjuvant treatment for
NSCLC patients has been opened. Therefore, we believe that
the use of dabrafenib in combination with trametinib in
neoadjuvant/adjuvant therapy for early-stage NSCLC patients
is worthy of further exploration (111). Besides, for patients with
acquired resistance to BRAF inhibitors, re-biopsy and NGS test
to find new targeted drugs or new combination therapy are
necessary. Finally, we still want to know if the strategy of dual-
targeted or triple-targeted therapy could be re-challenged. Small-
sample case reports suggest that sequential therapy with targeted
therapy and immunotherapy, combined with the “rechallenge”
FIGURE 2 | The resistance pathways of BRAF inhibitor. BRAF mutated
tumor cells evolve different drug resistance pathways to maintain cell growth
after chronic inhibition by BRAF inhibitors. These evolutionary mechanisms
(Table 2) include BRAF splice variants, BRAF copy number amplification,
CRAF overexpression, MEK1 mutations, and other mechanisms. Different
pathways of BRAF evolution can tell us how to overcome the problem of
resistance to BRAF inhibitors and how to develop more rational protocols to
address the resistance problem.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. The Evolution of BRAF Activation
of dabrafenib and trametinib, may benefit patients with V600E
mutation and positive PD-L1 (112). Among the 2 patients in the
prospective match-R study, 1 patient was switched to
chemotherapy and then dual-target therapy after double-target
drug resistance. Another patient, after double-target drug
resistance, was first switched to immunotherapy, followed by
chemotherapy, and then sequential double-target therapy, all of
which achieved disease stability in the “re-challenge” of double-
target therapy (113). These explorations are expected to become
hot research directions in the future, and we eagerly look forward
Frontiers in Oncology | www.frontiersin.org 8
to more effective drugs or treatments. The undergoing studies for
BRAF activation were listed in Table 3.
CONCLUSIONS

There are many forms of activation of BRAF in primary and
secondary activation, including classical mutations (BRAF V600
and non-V600), other mutations, BRAF fusion, rearrangement,
in-frame deletions, insertions, co-mutations, etc. with different
TABLE 3 | Selected ongoing trials with BRAF Inhibitors for NSCLC.

Clinical Trial
Identifier

Study Design Intervention/s Setting Primary Endpoint Phase Status

NCT03915951 90 participants
Open-label, Multicenter, Non-randomized,
Phase 2 study

Encorafenib plus Binimetinib First
line

ORR Phase 2 Recruiting

NCT04543188 225 participants
two-part, phase 1A/B, open-label,
multicenter trial evaluating pharmacokinetics

PF-07284890 plus Binimetinib plus
Midazolam

First
line

DLTs,
AEs,
Overall response

Phase 1 Recruiting

NCT04526782 119 participants
Open-label, Multicenter, multi-cohort Phase
2 study

encorafenib plus binimetinib First
line

ORR Phase 2 Recruiting

NCT05003622 6 participants
Multicenter, Open-label, Phase 1 Study

Encorafenib First
line

DLTs Phase 1 Active, not
recruiting

NCT05065398 20 participants
Open Label, Multicenter Phase II Clinical
Trial

HLX208 First
line

ORR Phase 2 Recruiting

NCT05275374 221 participants
Dose-escalation and Expansion Phase I/IIa
Study

XP-102 or XP-102 plus Trametinib or First
line

Characterize the safety of
XP-102,
Evaluate the
pharmacokinetics of XP-
102,
Establish maximum
tolerated dose of XP-102

Phase 1
Phase 2

Not yet
recruiting

NCT05195632 55 participants
Multicenter, Open-label, phase 2 study

Encorafenib plus Binimetinib First
line

DLTs,
ORR

Phase 2 Not yet
recruiting

NCT02974725 331 participants
Phase Ib, Open-label, Multicenter Study

LXH254 plus LTT462 or LXH254 plus
Trametinib or LXH254 plus Ribociclib

First
line

DLTs,
AEs, Tolerability

Phase 1 Recruiting

NCT04620330 100 participants
Multicenter, Non-randomized, Open-label
Phase 1b/2 study

VS-6766 or VS-6766 plus Defactinib First
line

the optimal regimen,
the efficacy of the
optimal regimen

Phase 2 Recruiting
July 2022 | Volu
me 12 | Art
TABLE 2 | The evolution and pathways of BRAF activation.

Cancer types Evolutionary types Evolutionary pathways Ref.

Melanoma changes in BRAF itself BRAF splice variants (23, 83)
Melanoma - BRAF copy number amplification (84)
Melanoma downstream of the BRAF CRAF overexpression (85, 86)
Melanoma - MEK1 mutations (87)
Melanoma upstream of the BRAF RAS alteration (88, 94)
Melanoma – RTKs alteration (89, 95, 97)
Melanoma activation of bypass pathways Elevated expression levels of COT (98)
Melanoma – Loss of stromal antigen 2 (STAG2) or STAG3 (99)
Melanoma – RAC1 mutation (100)
Melanoma – Loss of NF1 (101)
Melanoma – Loss of ACK1 (102)
Breast cancer and melanoma – Activation of the Notch1 pathway (103)
Melanoma – Phosphoinositide 3-kinase (PI3K)/AKT pathway dysregulation (56, 104)
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biological phenotypes, medical senses and different subsequent
treatments. Currently, the FDA recommends dual targeted drug
combination for BRAF V600, while there is no unified treatment
regimen for other types of BRAF mutations. As for the treatment
of primary BRAF co-mutations, it could base on a comprehensive
consideration of the phosphorylation level and abundance of the
mutant genes, cost effectiveness and adverse events of combined
targeted therapy. Immunotherapy can also benefit for patients
with BRAFmutations with high PD-L1 expression in small sample
size studies. After resistance of BRAF inhibitors, the evolution of
BRAF mainly evolves through activation of upstream,
downstream and bypass pathways of BRAF. The evolutionary
pathway can be tracked by various emerging technologies
including genomics, next-generation sequencing, single-cell
sequencing and cloning techniques, which may find a solution
for the resistance of BRAF inhibitors.

In the future, it’s necessary to explore head to head clinical
trials to compare targeted therapy with immunotherapy, to
develop drugs for other BRAF mutations except V600, to find
Frontiers in Oncology | www.frontiersin.org 9
new strategies for the resistance of BRAF inhibitors. Furthermore,
whether BRAF inhibitors can be used as adjuvant/neoadjuvant
therapy or re-challenged treatment are likely to be hot topics.
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