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Abstract
Introduction: Investigating	 how	 the	 brain	 adapts	 to	 increased	 mental	 workload	
through large-scale functional reorganization appears as an important research 
question. Functional connectivity (FC) aims at capturing how disparate regions of 
the brain dynamically interact, while graph theory provides tools for the topological 
characterization of the reconstructed functional networks. Although numerous stud-
ies investigated how FC is altered in response to increased working memory (WM) 
demand, current results are still contradictory as few studies confirmed the robust-
ness of these findings in a low-density setting.
Methods: In	this	study,	we	utilized	the	n-back	WM	paradigm,	in	which	subjects	were	
presented stimuli (single digits) sequentially, and their task was to decide for each given 
stimulus if it matched the one presented n-times earlier. Electroencephalography re-
cordings were performed under a control (0-back) and two task conditions of vary-
ing difficulty (2- and 3-back). We captured the characteristic connectivity patterns 
for each difficulty level by performing FC analysis and described the reconstructed 
functional networks with various graph theoretical measures.
Results: We found a substantial decrease in FC when transitioning from the 0- to 
the 2- or 3-back conditions, however, no differences relating to task difficulty were 
identified. The observed changes in brain network topology could be attributed to 
the dissociation of two (frontal and occipitotemporal) functional modules that were 
only present during the control condition. Furthermore, behavioral and performance 
measures showed both positive and negative correlations to connectivity indices, 
although only in the higher frequency bands.
Conclusion: The marked decrease in FC may be due to temporarily abandoned con-
nections	that	are	redundant	or	irrelevant	in	solving	the	specific	task.	Our	results	in-
dicate that FC analysis is a robust tool for investigating the response of the brain to 
increased cognitive workload.
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1  | INTRODUC TION

The brain is a complex system of small functional units—neurons—
that are densely interconnected and thus functionally coupled 
through	thousands	of	synapses	per	neuron	 (Sporns	et	al.,	2005).	
This structural and functional organization lays the foundation 
for emergent behavior, that is, the ability of the brain to perform 
substantially more complex tasks than it could be predicted based 
solely on the functional capacities of its constitutive elements 
(Chialvo, 2010; Werner, 2010). Emergence is considered to be 
achieved through quick formation and dissolution of functionally 
coupled neuronal assemblies (Friston, 2000a, 2000b), ranging 
in size from neural microcircuits through macroanatomical cor-
tical regions devoted to specific functions to whole-brain func-
tional networks (Bullmore et al., 2009; Bullmore & Sporns, 2009). 
Although the mechanisms of coordinated activity concerning 
disparate regions of the brain has been the subject of intense re-
search	for	almost	three	decades	now	(Biswal	et	al.,	1995;	Friston	
et al., 1993), it is still poorly understood how functional reorga-
nization on the whole-brain level is related to increased mental 
workload, especially when various difficulty levels at the same 
task are applied.

The analysis of functional connectivity (FC) has been proven to 
be a robust and efficient tool for capturing the large-scale functional 
organization of the brain (Sporns, 2011; van den Heuvel & Hulshoff 
Pol, 2010). Numerous methods have been proposed to characterize 
FC, with the graph theory-based approach being one of the most 
popular given its relatively simple interpretability and strong expres-
sive power (Bullmore & Sporns, 2009). Within a graph theoretical FC 
framework, the brain is modeled as a network whose nodes are the 
investigated brain regions while its edges represent the functional 
coupling between the corresponding regions. Nodes of the network 
can be defined based on a priori hypotheses—for example Brodmann 
areas—or are inherently determined by the utilized imaging tech-
nique itself, for example, by the recording sites of an electroen-
cephalography (EEG) system. The functional cooperation between 
the nodes could then be estimated from regional activities with a 
plethora of statistical methods, each with its own advantages and 
disadvantages (Bastos & Schoffelen, 2016). Finally, the obtained net-
works can be quantitatively described by a set of graph theoretical 
measures, capable of characterizing various aspects of network to-
pology (Rubinov & Sporns, 2010). This relatively simple concept was 
indeed demonstrated to be a powerful asset of neuroscience, which 
could be utilized for a better understanding of not only physiolog-
ical but also pathological brain function (Bullmore & Sporns, 2009; 
Stam, 2014). Furthermore, the graph theoretical FC approach was 
successfully applied for characterizing the effects of various cogni-
tive	stimulation	paradigms	as	well	(Hou	et	al.,	2018;	Racz	et	al.,	2017;	
Ren	et	al.,	2017).

Working memory (WM) paradigms provide means for inves-
tigating how brain networks reconfigure themselves in response 
to	 increased	mental	 workload.	 In	 a	WM	 paradigm,	 transient	 stor-
age and processing of the information is a prerequisite to solve a 
complex cognitive task (Baddeley, 2003). Moreover, WM para-
digms elicit coordinated responses in multiple brain areas (Cohen & 
D'Esposito, 2016), with the prefrontal cortex (PFC) often playing a 
central	 role	 (Aghajani	et	al.,	2017;	Cohen	et	al.,	1997).	The	n-back 
paradigm	 (Kirchner,	 1958)	 is	 among	 the	 most	 frequently	 utilized	
WM	tasks	 (Owen	et	al.,	2005),	 in	which	 the	 level	of	difficulty	can	
be adjusted such that a state of increased mental workload can be 
maintained in the range of tens of seconds. This is key in obtain-
ing statistically reliable connectivity estimates that are free of tran-
sients. Assessing FC in subjects while performing n-back tasks could 
not only enhance our understanding of how the brain adapts to var-
ious levels of cognitive challenges but would also allow for disentan-
gling what characteristics of large-scale neural networks are related 
to cognitive or behavioral performance.

Although multiple studies investigated FC during an n-back WM 
task,	results	are	somewhat	contradictory.	On	one	hand,	findings	in	
EEG studies are consistent in that functional segregation and connec-
tivity strength decreases during tasks when compared to rest (Cohen 
&	D'Esposito,	2016;	Ginestet	&	Simmons,	2011;	Hou	et	al.,	2018).	
On	 the	 other	 hand,	 functional	 integration	 has	 been	 shown	 to	 de-
crease	 (Hou	et	al.,	2018)	and	 increase	 (Cohen	&	D'Esposito,	2016;	
Dai	et	al.,	2017)	alike	while	performing	an	n-back task. Furthermore, 
measures of global FC were found increased during n-back stimu-
lation (Fishburn et al., 2014) when monitoring neural activity with 
functional	near-infrared	spectroscopy	(fNIRS).	Functional	magnetic	
resonance	 imaging	 (fMRI)	studies	reported	on	both	decreased	and	
increased FC for the default mode- and dorsal attention networks, 
respectively	 (Godwin	et	al.,	2017;	Newton	et	al.,	2011).	Task	diffi-
culty	either	had	no	(Hou	et	al.,	2018)	or	an	ambiguous	effect	on	FC	
(Newton et al., 2011) and only weak correlations were found be-
tween FC network characteristics and behavioral measures (Cohen 
&	D'Esposito,	2016;	Dai	et	al.,	2017;	Hou	et	al.,	2018).	Comparing	
previous results is further complicated by the fact that most studies 
utilized different imaging techniques, preprocessing pipelines as well 
as slight variations in implementing the n-back paradigm.

In	this	study,	we	set	out	to	investigate	the	effects	of	the	n-back 
WM task on whole-brain FC when cortical activity is assessed with 
a relatively low-density EEG setup. This would not only allow us to 
characterize how large-scale brain networks are reorganized during 
graded mental workload but also to evaluate how robust the elicited 
changes are, which latter aspect of our study is aimed at broaden-
ing the applicability of WM related tests. The observed measures 
of global FC decreased markedly when transitioning from control to 
task states, which was found to be most prominent over the pre-
frontal	and	frontal	regions.	On	the	other	hand,	graded	levels	of	task	
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difficulty could not be distinguished based on their connectivity 
characteristics. Weak correlations between behavioral and FC mea-
sures were also revealed, mostly over prefrontal regions.

2  | MATERIAL S AND METHODS

2.1 | Participants

For	 this	 study,	 56	 young,	 healthy	 volunteers	 were	 recruited	 (mean	
age of 24.3 years, 30 females). The study was designed according 
to the standards of the Declaration of Helsinki, it was approved by 
the	Semmelweis	University	Regional	 and	 Institutional	Committee	of	
Science	and	Research	Ethics	(approval	number:	2017/94),	and	all	par-
ticipants provided written informed consent prior to the measurement. 
Only	individuals	over	the	age	of	18	were	allowed	to	participate.	Subjects	
were instructed not to consume any substances affecting cognitive 
performance (e.g., caffeine) for at least 3 hr prior to measurement, and 
to have at least 6 hr of sleep the preceding night. Exclusion criteria 
included neuropsychological or psychiatric morbidities, brain damage, 
ongoing medication affecting the central nervous system, pregnancy, 
or the presence of any general medical condition. All participants were 
able to perform the measurement protocol; however, five female and 
three male subjects were later excluded from further analysis due to 
poor signal quality or excessive head motion. Thus, the final sample 
included	25	female	(2	left-handed,	mean	age	of	24.8	± 3.16 years) and 
23 male (3 left-handed, mean age of 24.0 ±	2.68	years)	participants,	
resulting	in	a	total	number	of	48	subjects.

2.2 | The n-back paradigm and behavioral measures

In	 the	 n-back WM paradigm, participants are presented visual 
stimuli (e.g., Arabic numbers in the range 0–9) in a pseudorandom 

sequence that they have to recall later from their short-term mem-
ory. Accordingly, for each new stimulus presented the task is to de-
cide if the current item is the same as the one presented n items prior 
(Sweet, 2011). Participants have to provide a response for each and 
every stimulus, for example, in a 2-back task (n = 2) for every item 
presented, they had to answer “yes” if it matches the one presented 
2 items ago, while “no” otherwise.

For this study, we adapted the n-back protocol as reported 
in	Shin	et	al.	 (2018).	 In	that,	participants	performed	n-back tasks 
at two difficulty levels (2- and 3-back) while 0-back tasks were 
carried out for baseline acquisition. The presented stimuli were 
single-digit Arabic numbers ranging from 0 to 9. Following a brief 
practice session ensuring that the task was understood, each sub-
ject had to complete three measurement sessions with one session 
containing three 0-, 2- and 3-back stimulus blocks, yielding 9 stim-
ulus	blocks	for	each	difficulty	level	and	27	stimulus	blocks	in	total.	
Within each session, the three task types were arranged in a coun-
terbalanced order so to provide variability in the difficulty level. 
The schematic diagram of a stimulation block is shown in Figure 1. 
Each task started with a 2-s instruction screen showing the type 
of the upcoming task. This was followed by a 40-s stimulus block 
comprising of 20 sequential stimuli. For every trial, the stimulus 
symbol	 was	 visible	 for	 0.5	 s	 and	 was	 subsequently	 replaced	 by	
a	 fixation	 cross	 for	 1.5	 s.	 The	 stimulus	 block	was	 then	 followed	
by a 1-s long “stop” screen and a 20-s long resting period before 
the next instruction screen. Each stimulation block contained a 
“target” number that had an increased chance of appearing, cre-
ating 6 positive and 14 negative trials in a randomized order (Shin 
et	al.,	2018).	During	the	2-	and	3-back	tasks,	participants	had	to	
press	 the	 “yes”	 button	 (number	 7	 on	 keyboard)	 with	 their	 right	
index finger in case of positive stimuli (i.e., if the presented num-
ber matched the one showed 2- or 3-times earlier, respectively), 
while	the	“no”	key	(number	8	on	keyboard)	with	their	right	middle	
finger otherwise. During the 0-back paradigm, participants were 

F I G U R E  1   Schematic diagram of the n-back experimental protocol. The timing sequence of all sessions is illustrated on one session of 
2-back task. First, the difficulty level is shown for 2 s, followed by a stimulation block of 40s. Throughout the stimulation block, digits are 
presented	sequentially	at	every	2s,	with	the	stimuli	being	visible	for	0.5s	and	followed	by	a	fixation	cross	for	1.5s.	The	end	of	the	stimulation	
block	is	indicated	by	a	‘STOP’	screen	presented	for	1	s,	which	is	followed	by	a	resting	period	of	20s	showing	only	the	fixation	cross
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instructed to press the key assigned to a “yes” response for each 
stimulus in order to maintain subject attention. A one-minute 
resting period was included between the measurement sessions 
where subjects were allowed to move or speak if necessary. The 
n-back protocol was implemented in Matlab (MathWorks).

For each stimulus, subject reaction time (RT) was assessed and 
registered	as	 the	 time	 from	stimulus	onset	 to	 the	 response.	 If	 the	
subject was unable to provide a response during a trial, RT was au-
tomatically set to 2 s. Reaction times within each 40-s stimulation 
block were averaged. Finally, the effective RT for the 0-, 2- and 
3-back tasks was obtained as the grand average taken over the 9 
stimulation blocks for the corresponding difficulty levels. Cognitive 
performance was assessed for each stimulation block through re-
sponse accuracy (ACC), defined as the fraction of correct (including 
both positive and negative) responses given for the 20 trials pre-
sented in the block. The effective ACC for the three difficulty levels 
again was obtained by averaging accuracy values over the nine cor-
responding stimulation blocks.

2.3 | Data acquisition

Measurements were implemented in a dark, electrically sealed room, 
where participants were seated in a comfortable armchair in front of 
a computer display and a keyboard. EEG data acquisition was car-
ried out by using an Emotiv Epoc + wireless EEG system and the 
EmotivPRO	software	(Emotiv	Systems	Inc.,	San	Francisco,	CA,	USA).	
The device allowed the monitoring of neural activity from 14 stand-
ard locations according to the international 10-10 system (AF3, AF4, 
F3,	F4,	F7,	F8,	FC5,	FC6,	T7,	T8,	P7,	P8,	O1,	and	O2)	with	reference	
(CMS) and ground (DRL) electrodes positioned at the left and right 
mastoid	processes.	EEG	was	recorded	at	2048	Hz	and	was	internally	
downsampled	to	128	Hz.	The	data	was	internally	band-pass	filtered	
between	0.2	and	48	Hz	using	a	5th	order	digital	Sinc	filter	as	well	
as	additional	notch	filters	were	applied	at	50	and	60	Hz.	Electrode	
impedances were kept under 20 kΩ so that all measurements could 
be carried out with maximal contact quality, as indicated by the 
EmotivPRO	software.

2.4 | Data preprocessing

Raw EEG data were first segmented into 40-s epochs, contain-
ing only the stimulation periods. Epochs were band-pass filtered 
using	 a	 5th	 order	 zero-phase	 Butterworth	 filter	 with	 lower	 and	
upper	cutoff	frequencies	of	0.5	and	45	Hz.	Artifact	removal	was	
performed for every epoch separately using the EEGLAB toolbox 
(Delorme	&	Makeig,	2004).	In	that,	independent	component	analy-
sis	(ICA)	was	used	to	decompose	the	data	(Hyvarinen	&	Oja,	2000)	
into 14 linearly maximally independent components. From these 
components, those that could be associated with eye movement, 
blinking, muscle contractions, or cardiac activity were identi-
fied	and	excluded	before	performing	reverse	 ICA.	Subsequently,	

epochs were visually inspected, and artifact-free segments of 
36 s were selected for further analysis. Finally, data were again 
band-pass	filtered	using	a	5th	order	zero-phase	Butterworth	filter	
for five frequency bands traditionally used in EEG analysis: delta 
(0.5–4	Hz),	theta	(4–8	Hz),	alpha	(8–13	Hz),	beta	(13–30	Hz),	and	
gamma	(30–45	Hz).

2.5 | Functional connectivity estimation

The	phase	 lag	 index	 (PLI,	Stam	et	al.,	2007))	was	used	to	estimate	
FC	between	all	pairs	of	brain	regions.	PLI	is	a	measure	of	phase	syn-
chronization (Rosenblum et al., 1996), according to which two pro-
cesses are considered phase-locked if the difference between their 
instantaneous phases (Δ�) is constant or at least bounded between a 
small interval. The latter—that represents a weaker concept of phase 
coupling—can be expressed as

where �1 and �2 are the phases of the two processes acquired by Hilbert 
transform and c is a constant less than 2π.	In	EEG-based	connectivity	
studies however, due to volume conduction or active reference elec-
trodes, this measure is susceptible to the effects of common sources, 
which may result in spuriously high connectivity estimates between 
channel	pairs	 (Stam	et	al.,	2007).	PLI	accounts	 for	 this	by	discarding	
phase differences centered around 0 mod π indicating instantaneous 
coupling, that is more likely to originate from common source effects. 
This is achieved by looking at the distribution of phase differences, as 
an asymmetric distribution would indicate a stable phase-locking with 
a non-zero Δ�. Therefore, an asymmetry index can be obtained from 
the time series of phase differences (Δ� (t)=�1 (t)−�2 (t)), where 
�1 (t) and �2 (t) are the instantaneous phases of the two processes), 
that	yields	the	definition	of	PLI	(Stam	et	al.,	2007):

where ⟨⋅⟩ denotes the mean and |⋅| denotes the absolute value function. 
PLI	is	bound	between	0	and	1	with	1	indicating	perfect	phase-locking	
(with Δ�≠0mod �),	 0	 indicating	uncoupled	dynamics	and	 larger	PLI	
values	implying	stronger	functional	coupling	(Stam	et	al.,	2007).

In	 every	 stimulation	 block,	 PLI	 was	 calculated	 for	 all	 channel	
pairs, yielding a 14 × 14 weighted connectivity matrix. For each dif-
ficulty level (0-, 2- and 3-back), the nine matrices obtained from the 
stimulation blocks were averaged in order to increase the signal-to-
noise ratio and capture the characteristic connectivity patterns of 
the various mental workload levels, and the average matrices were 
used subsequently for calculating graph theoretical measures. This 
technique was shown to provide more reproducible connectivity es-
timates than calculating network measures first and averaging them 
afterward (Hardmeier et al., 2014). No additional thresholding was 
applied to the averaged connectivity matrices that were then made 
subject to graph theoretical analysis.

(1)|Δ𝜑|= |
|𝜑1−𝜑2

|
|< c,

(2)PLI= �
�⟨sign[Δ�(t)]⟩

�
� ,
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2.6 | Graph theoretical analysis

Each averaged connectivity matrix defined a weighted, undirected, 
fully connected network: Nodes of the network representing the 
monitored brain regions, edges of the network representing func-
tional connections between corresponding regions, and edge 
weights—given	by	the	average	PLI	values—indicating	the	strength	of	
coupling between the corresponding regions. These networks can 
be characterized by a set of graph theoretical metrics, each provid-
ing insight on different aspects of network structure and function 
(Bullmore & Sporns, 2009; Rubinov & Sporns, 2010). Considering the 
small size of the reconstructed networks, the following set of global 
and local network metrics were calculated in this study using func-
tions of the Brain Connectivity Toolbox (Rubinov & Sporns, 2010).

2.6.1 | Connection	density	and	
weighted node degree

For each node d of the network, the weighted node degree (Dw) was 
obtained by summing the weights of edges connected to d. Global 
connection density (Dw) was acquired as averaging Dw within the 
network. Connection density is often considered to reflect the cost 
of functional networks, while weighted node degree characterizes 
the connectedness of node d to the rest of the network (Rubinov & 
Sporns, 2010).

2.6.2 | Clustering	coefficient

The clustering coefficient of a particular node (Cw) can be defined 
as the fraction of the node's neighbors that are also neighbors of 
each	other	(Watts	&	Strogatz,	1998).	Although	this	original	concept	
applies for binary networks (where edge weights are either 0 or 1 
depending on the existence of a link between the corresponding 
nodes), the concept of clustering can be extended to weighted net-
works	as	well	 (Onnela	et	al.,	2005),	yielding	Cw. The global cluster-
ing coefficient (Cw) is the average of Cw taken over all nodes of the 
network. Cw and Cw characterize network segregation, that is, the 
presence of smaller node groups (clusters) within the network that 
are densely interconnected with each other.

2.6.3 | Global	and	local	efficiency

Global efficiency of a network is the average inverse shortest 
path length between two randomly selected nodes (Latora & 
Marchiori, 2001). The weighted global efficiency (Ew) can be similarly 
defined for weighted networks by first transforming edge weights 
into proximity indices, that is, by taking their inverse (Rubinov & 
Sporns,	2010).	It	is	strongly	related	to	the	characteristic	path	length	
(the average shortest path length between two randomly selected 
nodes), however Ew is often considered as a superior measure, 

especially	in	the	case	of	smaller	networks	(Achard	&	Bullmore,	2007).	
Local efficiency (Ew) of node d is the efficiency of the subnetwork 
defined by the neighbors of d. Ew is a measure of network integra-
tion, as it reflects how fast information from disparate regions of the 
network	can	be	combined	on	the	global	level.	On	the	other	hand,	Ew 
captures very similar information to that of Cw, therefore it is more 
often considered as a measure of local segregation.

2.6.4 | Modularity

The modularity index (Q) captures the degree to which the network 
can be subdivided into nonoverlapping groups of nodes (modules), 
where within-group connectivity is maximized while at the same time 
between-group connectivity is minimized (Newman, 2004). Q is a 
more sophisticated measure of network segregation than Cw, in that 
it not only captures the presence of densely connected subgroups 
but can also provide an exact community structure and composition 
of such groups (Newman, 2006; Rubinov & Sporns, 2010). The mod-
ularity indices and node partitions were obtained using the algorithm 
described in (Newman, 2004, 2006) with the modularity resolution 
parameter set to the default value of one. Group-characteristic mod-
ules were defined according to the most frequently obtained parti-
tion (i.e., the mode of the community structures obtained among all 
subjects for the given state).

2.7 | Statistical analyses

Since data did not meet at least one of the assumptions of normal-
ity, homogeneity, and sphericity, nonparametric statistical methods 
were used to compare behavioral variables, global and local network 
measures between the three difficulty levels, as well as to estimate 
correlations between behavioral and connectivity measures.

The effects of task difficulty on behavioral measures RT and 
ACC were assessed by Friedman tests at significance level �=0.05.  
Consistency of the results among subjects was estimated using 
Kendall's W coefficient of concordance. Post hoc pairwise analy-
ses were carried out using paired Wilcoxon signed-rank tests and 
p-values were adjusted to control for multiple comparisons using 
Bonferroni method.

Similarly, global network measures (Dw, Cw, Ew and Q) obtained 
for the three difficulty levels were compared using Friedman tests 
while concordance among subjects was estimated using Kendall's W. 
Paired Wilcoxon signed-rank tests were used for post hoc pairwise 
comparisons with Bonferroni adjustments.

The main effect of localization on local network measures (Dw, 
Cw and Ew) was assessed by Friedman tests at level �=0.05 for each 
difficulty level separately and the consistency of regional differ-
ences among subjects was estimated using Kendall's W. Then, the 
effect of task difficulty on local network measures was assessed 
for each channel individually using Friedman tests and Kendall's W. 
Post hoc comparisons were again carried out using paired Wilcoxon 
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signed-rank tests and p-values were Bonferroni adjusted to account 
for multiple comparisons.

The plausible relationships between behavioral measures RT and 
ACC and both global and local network measures were estimated 
by Spearman rank correlation (r) in 0-, 2- and 3-back conditions 
separately. Considering the exploratory nature of these results, the 
p-values obtained for the correlations were not adjusted for multiple 
comparisons.

3  | RESULTS

3.1 | Behavioral measures

Task (2- and 3-back) states could be characterized with longer RT 
when compared to the control (0-back) state, however, no difference 
of RT was found between the two difficulty levels (see Figure 2a). As 
expected, subject accuracy decreased steadily with increasing task 
difficulty (see Figure 2b).

3.2 | Global connectivity measures

We found a markedly strong correspondence among subjects be-
tween Dw, Cw and Ew in all conditions and frequency bands (pair-
wise Spearman correlation coefficient r >	.98,	p < 10–6 in all cases), 
indicating that the three network measures generally captured the 
same information. Therefore, in order to avoid redundancy, in the 

followings, we only present results regarding Dw (as results acquired 
for Cw and Ew were nearly identical) and Q.

In	 all	 five	 frequency	 bands,	 connection	 density	 reduced	 sig-
nificantly during the 2- and 3-back conditions when compared to 
the 0-back condition (see Figure 3, upper panel). This pattern was 
identified as highly consistent among subjects, as indicated by high 
Kendall's W values (Table 1). Pairwise post hoc comparisons indicated 
robust differences between 0-back and the two task conditions 
(p < 10–6 in nearly all cases, see Figure 3), however, no difference 
was identified between the two difficulty levels. Modularity also 
decreased during increased mental workload (see Figure 3, lower 
panel), albeit this was less pronounced and could be captured sig-
nificantly only in the alpha and beta bands (Table 1). Although pair-
wise comparisons indicated a decrease of Q during 2- and 3-back in 
the beta band, the Friedman test failed to identify a significant main 
effect of state (Table 1). Similarly to Dw, no difference was found 
between 2- and 3-back conditions.

The above-described results are also illustrated by the grand me-
dian connectivity matrices (i.e., for each cell the median was taken 
over	the	corresponding	values	of	the	48	subjects)	for	the	three	con-
ditions and five frequency bands (see Figure 4). Reduction in connec-
tion density in 2- and 3-back conditions is apparent in all frequency 
bands. Also, the most frequently identified community structure is 
illustrated for the 0-back matrices, indicating the presence of a fron-
tal and an occipitotemporal module, which practically got disassem-
bled in the 2- and 3-back conditions (see Figure 4).

3.3 | Local connectivity

Similarly to global network measures, values of Dw, Cw and Ew were 
found strongly correlated, therefore we only present results regard-
ing the weighted node degree, with those of the weighted clustering 
coefficient	and	local	efficiency	being	highly	comparable.	In	accord-
ance with the results acquired for global network measures, Dw 
was found significantly lower in the 2- and 3-back conditions when 
compared to 0-back, while no difference was found between the 
two	 difficulty	 levels	 (see	 Figure	 5).	 These	 differences	were	 found	
most pronounced over the frontal regions, while increased mental 
workload had more subtle or no effect on local connectivity over the 
temporal and parietal regions. Although Friedman tests indicated a 
significant effect of localization in all cases (p <	.05),	regional	differ-
ences appeared less pronounced during the 2- and 3-back tasks, cor-
responding to the decreased modularity found previously in these 
conditions.

3.4 | Correlations with behavioral measures

We found significant positive correlations between RT and Dw in the 
alpha and beta bands (see Figure 6a,b), however only during the con-
trol condition (r =	.3265,	p = .0240 and r =	.3017,	p =	.0376	for	alpha	
and beta, respectively), while no relationship between RT and global 

F I G U R E  2   Behavioral variables. Reaction times (a) and accuracy 
(b) are shown for the three different conditions. Reaction times 
were found increased in the 2- and 3-back conditions when 
compared to 0-back, while accuracy decreased steadily with the 
increase of task difficulty. Solid circles mark the median values 
while	lover	and	upper	vertical	bars	denote	the	25th	and	75th	
percentiles, respectively. Significant pairwise differences are 
marked by *** indicatingp < 10–6following Bonferroni adjustment
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FC	was	identified	during	the	2-	and	3-back	tasks.	On	the	other	hand,	
accuracy was found negatively correlated to Dw in the beta and gamma 
bands (see Figure 6c,d) during 3-back task performance (r =	−.3911,	
p = .0060 and r =	−.3963,	p =	.0053	for	beta	and	gamma,	respectively).	
Results acquired for Cw and Ew were identical, while no relationship 
was found between Q and any of the behavioral measures.

In	 order	 to	 explore	 the	 plausible	 relationship	 between	FC	 and	
task performance in more detail, we also investigated the correla-
tions between behavioral measures and local connectivity indices. 
This analysis indicated that the relationship between RT and Dw 
found previously could be attributed to the correlated nature of RT 
and Dw during 0-back, localized mostly over the frontal regions (see 
Figure	7).	This	pattern	was	present	 in	 the	alpha,	beta,	and	gamma	
bands.	 Interestingly,	 RT	 was	 found	 anticorrelated	 with	Dw during 
2- and 3-back over the occipital, frontal, and parietal regions in the 
theta	and	alpha	bands	(see	Figure	7).

Conversely, an anticorrelated relationship between ACC and 
Dw was identified during 3-back in the beta and gamma bands, re-
stricted mostly to parietal, occipital and right frontal regions (see 
Figure	8).	Additionally,	ACC	tended	to	show	a	negative	correlation	
with Dw during 0-back over the frontal regions, as well as a positive 
correlation over F4 during 3-back in the theta and alpha bands, while 
in	this	same	task	type	showing	negative	correlation	over	P7	in	the	
delta	band	(see	Figure	8).

F I G U R E  3   Global network measures. Density (upper row) and modularity (lower row) median values are shown for the three conditions 
in	all	five	frequency	bands	(from	left	to	right:	delta,	theta,	alpha,	beta	and	gamma).	In	all	five	frequency	bands	density	decreased	markedly	
when transitioning from 0- to 2- and 3-back conditions, however no difference was found between the two difficulty levels (2- and 3-back). 
On	the	other	hand,	this	same	difference	in	modularity	could	be	observed	only	in	the	alpha	and	beta	bands.	Significant	pairwise	differences	
are marked by *, ** and *** indicatingp <	.05,p < 10–4andp < 10–6following Bonferroni adjustment, respectively

TA B L E  1   Friedman test results and Kendall's W values for 
connection density and modularity

Band

Connection density Modularity

Friedman p
Kendall's 
W Friedman p

Kendall's 
W

Delta <10–6 0.5135 0.2053 0.0330

Theta <10–6 0.3236 0.0710 0.0551

Alpha <10–6 0.5781 <10–4 0.2201

Beta <10–6 0.5473 0.0553 0.0603

Gamma <10–6 0.4236 0.3050 0.0247
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4  | DISCUSSION

In	this	study,	we	report	on	a	robust	decrease	of	FC	when	implement-
ing the n-back WM paradigm in all the five conventional frequency 
bands when compared to the control condition. Local connectivity 
analysis indicated that this effect could be attributed mostly to a 
decrease in FC over the prefrontal and frontal regions. Conversely, 
no effect of task difficulty on FC could be identified. Network topo-
logical measures such as density, clustering coefficient, and global 
efficiency yielded highly consistent results, indicating that at this 
resolution	 they	 generally	 captured	 the	 same	 information.	 On	 the	
other hand, the obtained modularity index indicated that while in the 
control (0-back) condition a frontal and an occipitotemporal cluster 
of nodes could be distinguished, this modular structure practically 
got dissociated during the 2- and 3-back task conditions. The RT of 
the subjects was found positively correlated to FC in the alpha and 
beta	bands,	however	only	during	the	control	state.	In	contrast,	sub-
ject accuracy was found negatively correlated with FC in the beta 
and gamma bands, although only in the most challenging setting 
(3-back).

Our	results	are	in	line	with	earlier	reports	on	decreased	connec-
tivity during the n-back	WM	 paradigm	 (Dai	 et	 al.,	 2017;	 Ginestet	

&	 Simmons,	 2011;	 Hou	 et	 al.,	 2018).	 However,	 in	 contrast	 to	Dai	
et	 al.	 (2017),	 we	 found	 a	 stimulation-related	 decrease	 in	 E	 and	 C	
in both the theta and alpha bands and in the beta band, respec-
tively,	while	Hou	et	al.	 (2018)	 found	an	 increase	 in	the	same	mea-
sures. These seemingly contradictory results may be attributed to 
differences in the analysis pipeline, which can affect results sig-
nificantly even when obtained from the same dataset (Jalili, 2016; 
Lindquist,	2020).	In	the	first	study	(Dai	et	al.,	2017),	FC	was	assessed	
as the Pearson correlation—a linear measure of statistical interde-
pendence—of band-limited power time series following source re-
construction.	Instead,	our	approach	was	carried	out	in	the	electrode	
space	using	PLI	as	the	FC	estimator,	a	measure	of	nonlinear	phase	
coupling; therefore, a direct comparison would be difficult. Still, in 
order to explore the plausible effect of the FC estimator, we re-an-
alyzed the current dataset using a different, linear measure of inter-
dependence,	spectral	cross-coherence	(Srinivasan	et	al.,	2007).	We	
found nearly identical results at both global and local levels as well as 
regarding correlations with behavioral variables, rendering it highly 
improbable that the choice of FC estimator added a significant bias 
to our findings.

On	the	other	hand,	Hou	et	al.	 (2018)	estimated	FC	in	the	elec-
trode	space	using	PLI,	a	pipeline	strongly	similar	to	ours.	However,	in	

F I G U R E  4   Grand median connectivity matrices. Group-representative connectivity matrices are shown for every task condition (from 
top to bottom: 0-back, 2-back and 3-back) in all frequency bands (from left to right: delta, theta, alpha, beta and gamma). Matrices in each 
frequency band are on the same scale for better comparison. A strong decrease in overall connectivity strength is apparent in all five 
frequency bands when transitioning from 0- to 2- and/or 3-back conditions. The two identified modules (frontal and occipitotemporal) are 
marked	in	the	0-back	matrices	with	black	lines.	PLI	= phase lag index
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that	study,	the	authors	only	used	epochs	of	2.5	s	taken	from	the	be-
ginning of each stimulation block, in addition to estimating the graph 
theoretical measures first and averaged them over various difficulty 
settings subsequently. As shown previously, that FC characteristics 
can vary significantly in different phases of various WM tasks (Ren 
et	al.,	2017;	Toppi	et	 al.,	2018;	Zhang	et	 al.,	2019);	 therefore,	 it	 is	
plausible that the functional organization in the brain at the begin-
ning of each stimulation block is different from later periods. Also, 
in our analytical pipeline, the obtained synchronization matrices 
were first averaged over the stimulation blocks of corresponding 
difficulty levels, and network measures were only then calculated 
from the average connectivity matrices. This procedure was shown 
to yield statistically more robust and reproducible connectivity es-
timates (Hardmeier et al., 2014). Therefore, by utilizing this tech-
nique a better assessment of the characteristic FC pattern at each 
difficulty level could be achieved, similarly as when increasing the 
signal-to-noise ratio through block-averaging (Buckner et al., 1996). 

Nevertheless, to further test this hypothesis, we re-evaluated our 
results by calculating network measures from the estimated con-
nectivity matrices first and then averaging network measure values 
for corresponding task difficulties. This analysis produced nearly 
identical results for Dw, Cw and Ew.	 In	 contrast,	 although	 the	 same	
decreasing tendency of Q with increasing the difficulty was appar-
ent, the differences were found nonsignificant in all scenarios. This 
suggests that averaging synchronization matrices first to obtain the 
average connectivity patterns of each state indeed yields a more ro-
bust characterization of network topology. Also, we found a strong 
correspondence between Dw, Cw and Ew in all frequency bands. This 
may indeed suggest that these three network measures basically 
capture the same information on small networks such as those an-
alyzed in this study (Hardmeier et al., 2014; van Wijk et al., 2010), 
where network size prevents the full and robust manifestation of 
network characteristics such as segregation or integration (Rubinov 
& Sporns, 2010).

F I G U R E  5   Weighted node degree in different n-back conditions. MedianDwvalues are plotted for all channels in all three task conditions, 
with results regarding 0-back shown in black while those of 2- and 3-back are shown in blue and red, respectively. The 0-back condition 
could be characterized with higher weighted node degree than the 2- and 3-back conditions over almost every cortical region. Significant 
pairwise differences between 0-, 2- and 3-back tasks are marked by *, ** and *** indicatingp <	.05,p < 10–4andp < 10–6following Bonferroni 
adjustment, respectively
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Contrary to most studies, Fishburn et al. (2014) reported in-
creased FC during n-back	using	fNIRS	for	monitoring	neural	activity.	
However, when comparing these results, the very different mecha-
nisms	 involved	 in	measuring	evoked	cognitive	 responses	by	 fNIRS	
and	EEG	 should	 be	 taken	 into	 consideration.	 Specifically,	 fNIRS	 is	
able to measure changes in regional blood volume that is elicited 
by an increase in local neuronal activity, thus it provides an indi-
rect	manner	to	investigate	neural	dynamics	(Irani	et	al.,	2007;	Keles	
et al., 2016). Due to the low-pass filtering effect of the neurovascular 
coupling	 (Huneau	 et	 al.,	 2015),	 the	 frequency	 range	 of	 neural	 ac-
tivity-related	components	captured	by	fNIRS	is	approximately	two	
orders of magnitude lower (usually between 0.01–0.1 Hz) than of 
those directly monitored by EEG (~1 Hz and higher). Moreover, it has 
been shown that neural fluctuations express markedly different dy-
namic properties in these frequency ranges when investigated by 
EEG	and	 fNIRS	 (Nagy	et	 al.,	2017).	Hence,	 it	 can	be	hypothesized	
that these contradictory results may emerge due to the character-
istics of the imaging modalities. This is also in line with our previous 
study reporting on increased FC during a pattern recognition-based 
WM	task	when	assessed	by	fNIRS	imaging	(Racz	et	al.,	2017).

Nevertheless, our findings yet remain contradictory to some 
extent when compared to those of the literature, indicating that 
further research is called for. Future studies may focus on the in-
fluence of various preprocessing and analysis pipelines during the 
n-back paradigm. A relevant future direction may be the extension 

of	such	pipelines	to	the	framework	of	dynamic	FC	(Preti	et	al.,	2017),	
which would allow for monitoring how FC changes in time through-
out a longer stimulation block. A further aspect that could be taken 
into consideration is subject fatigue or stress, which may have an 
influence not only on performance measures but also on how the 
brain responds to increased mental challenge (Dimitrakopoulos 
et	al.,	2018).	Although	our	analyses	revealed	a	marked	decrease	in	
FC even when only limited number of cortical regions were mon-
itored, the effects of electrode density may be better assessed in 
a high-density setup utilizing multiple analysis pipelines, each using 
data from various subsets of all electrodes. Simultaneous monitoring 
of	EEG	and	NIRS	 (Wallois	et	al.,	2012)	during	n-back	may	help	 re-
solve contradictory findings when analyzing neural signals of differ-
ent modalities. Finally, alterations in physiological parameters when 
adapting to increased mental workload could also be considered in 
a broader context, focusing not only on changes occurring in the 
brain	but	on	the	level	of	the	entire	organism.	It	has	been	shown	that	
cognitive stimulation may evoke involuntary responses in the car-
diorespiratory	(Debreczeni	et	al.,	2009;	Szirmai	et	al.,	2005)	or	auto-
nomic	nervous	systems	(Hjemdahl	et	al.,	1989),	that	may	also	affect	
indices derived from neural signals. The recently introduced concept 
of	 network	 physiology	 (Bartsch	 et	 al.,	 2015;	 Bashan	 et	 al.,	 2012;	
Ivanov	&	Bartsch,	2014)	provides	a	framework	able	to	account	for	
such interactions, namely how different organ systems dynamically 
interact	during	physiological	functioning.	Indeed,	it	has	been	shown	

F I G U R E  6   Correlations between 
behavioral measures and global 
functional connectivity. The positive 
relationship between reaction time and 
global connection density during 0-back 
condition is shown for the alpha (a) and 
beta (b) bands. Conversely, accuracy 
showed an anticorrelated relationship 
with connection density during 3-back 
in the beta (c) and gamma (d) bands. 
The value of the Spearman correlation 
coefficientris indicated on each panel, as 
well as the trend acquired by least squares 
regression is plotted in red on all panels 
in order to illustrate the tendency of the 
relationship
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that characteristic brain connectivity patterns across multiple fre-
quency ranges could be associated with various global physiological 
states, such as sleep stages (Lin et al., 2020). Clearly, cognitive stud-
ies carried out in a network physiological framework—for example, 
the	work	of	Zanetti	et	al.	(2019)—could	not	only	reveal	global	phys-
iological states associated with mental processes, but may also help 
in resolving some of the controversies regarding functional brain 
connectivity during increased mental workload.

An interesting finding of this study is the presence of two distinct 
modules—frontal and occipitotemporal—in the control condition 
that dissociates when cognitive demand increases. This observa-
tion is in contrast with the hypothesis that since WM tasks require 
the involvement of multiple functions such as information encoding 
and retrieval, short-term memory and increased attention (Roux & 
Uhlhaas, 2014), an increase in FC during a WM task would be rea-
sonable as being consistent with enhanced cooperation between 
various	brain	regions.	On	the	contrary,	connectivity	strength	is	more	
often found decreased while performing an n-back task (Cohen & 
D'Esposito, 2016; Ginestet & Simmons, 2011). An explanation for 

this phenomenon is offered by the fact that the brain is highly ac-
tive and densely connected even in the resting state, that is, in the 
absence of any external stimuli (Damoiseaux et al., 2006; Raichle 
et al., 2001). Namely, the set of brain regions most consistently found 
functionally coupled in the resting state is often termed the default 
mode network (DMN), consisting mainly of the medial PFC, the pos-
terior cingular cortex, the precuneus, and the angular gyrus (Buckner 
et	al.,	2008).	A	fundamental	characteristic	of	the	DMN	is	that	 it	 is	
practically dissolved (i.e., its FC decreases rapidly) in the presence of 
external	stimuli	(Fox	et	al.,	2005).	This	notion	is	partially	in	support	
of our findings, especially considering that modules identified in the 
control condition correspond well to regions of the DMN. However, 
an exact correspondence cannot be established since the control 
condition itself (0-back) should not be considered as a purely rest-
ing-state condition. Maintaining such a dense network of functional 
connections in the resting state requires high metabolic expendi-
ture. Therefore, under increased mental workload when computa-
tional demands are increased even further, connections that are not 
vital for performing the actual task are likely being “pruned” in order 

F I G U R E  7   Correlations between reaction time and weighted node degree. Black dots indicate no correlation, while red and blue dots 
mark positive and negative correlation, respectively. The positively correlated nature of RT andDwin 0-back (upper row) is well localized 
over the frontal regions in the alpha, beta and gamma bands. Negative correlations were also identified between RT andDwduring 2- (middle 
row) and 3-back (bottom row) in the alpha and theta bands, respectively, localized mainly over parietal and occipital regions. RT = reaction 
time;Dw = weighted node degree
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to allow for the recruitment of new connections specifically re-
quired	to	solve	the	task	(Cohen	&	D'Esposito,	2016;	Fox	et	al.,	2005).	
Additionally, it has been shown recently that FC between various 
subnetworks (A and B) of the frontoparietal network (FPN) and the 
DMN and dorsal attention network (DAN) may influence cognitive 
performance in a WM task (Murphy et al., 2020). Specifically, ac-
tivity of FPN subnetwork B was found inversely correlated with FC 
between the DMN and FPN, while positively correlated with FC 
between DAN and FPN (Murphy et al., 2020). Consequently, the 
observed decrease of FC in our study—that may reflect decreased 
DMN activity—may also indicate an increased activity of FPN sub-
network B and DAN, both systems crucial in adapting to increased 
WM	demands	(Dixon	et	al.,	2017;	Palva	et	al.,	2010).	This	may	also	be	
partially supported by the fact that we found a negative correlation 
between FC and subject accuracy, as an anticorrelated relationship 
between activities of the DMN and the FPN is associated with in-
creased cognitive performance (Anticevic et al., 2010). Furthermore, 
although modularity decreased during task performance, it ex-
pressed	no	significant	correlation	with	behavioral	measures.	In	a	re-
cent study it has been shown, that even though modular structure 

of brain networks is critical for cognitive performance, global mod-
ularity (as captured in Q) only showed weak correlations with task 
performance	in	a	2-back	WM	task	(Bertolero	et	al.,	2018).	Instead,	
connectivity of specific regions acting as local or connector hubs—
and thus attuning global modularity of the network—could be ef-
fectively utilized for accurately predicting cognitive performance 
(Bertolero	et	al.,	2018).	These	results	clearly	indicate	the	key	role	of	
network modularity in cognitive performance, while the lack of rela-
tionship between behavioral measures and Q in our study was most 
likely due to the small network size preventing the manifestation of 
more elaborate network topological features.

Theta activity has been proposed to be responsible for con-
trolling and integrating various WM functions (Sauseng et al., 2010). 
This hypothesis is supported by multiple studies reporting on in-
creased theta-band activity and enhanced theta-connectivity during 
increased	 mental	 workload	 (Dai	 et	 al.,	 2017;	 Langer	 et	 al.,	 2013;	
Sauseng	et	al.,	2005).	While	we	found	a	significant	decrease	of	the-
ta-band FC in the task when compared to the control condition, a 
slight (nonsignificant) tendency of higher FC also appeared in the 
3-back when compared to the 2-back condition (see Figure 4). The 

F I G U R E  8   Correlations between accuracy and weighted node degree. Black dots indicate no correlation, while red and blue dots 
mark positive and negative correlation, respectively. The anticorrelated nature of ACC andDwin 3-back (bottom row) is mainly localized 
over the occipital, parietal and right frontal regions in the beta and gamma bands. Positive correlations were also identified between ACC 
andDwduring 0-back (top row) in the alpha band, localized mainly over frontal regions. ACC = accuracy;Dw = weighted node degree
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average connectivity matrices showed that this could be attributed 
mainly to stronger connections within frontal and prefrontal re-
gions (see Figure 4), consistent with previous reports on increased 
theta	activity	over	the	same	regions.	In	contrast,	alpha-band	activity	
during WM tasks is considered responsible for the suppression of 
neural activities unrelated to task performance and thus attention 
control	(Klimesch	et	al.,	2007),	which	is	in	line	with	our	findings	along	
with those of other studies reporting on decreased alpha-band con-
nectivity	during	WM	tasks	(Dai	et	al.,	2017;	Hou	et	al.,	2018).	Higher	
frequency (beta- and gamma-band) neural activity and connectiv-
ity were found to be related to cognitive performance, high exec-
utive demand, increased attentiveness, and maintenance of WM 
information	 (Guevara	 et	 al.,	 2018;	 Makeig	 &	 Jung,	 1996;	 Roux	 &	
Uhlhaas, 2014). These previous findings suggest that neural activ-
ity at various frequency ranges plays roles in fundamentally distinct 
aspects of cognitive functioning. Surprisingly, our results regarding 
global and local FC revealed a generally similar pattern of changes 
in all investigated frequency bands during different n-back condi-
tions (although the actual values of FC measures varied substantially 
between the various ranges, see Figure 3). Nevertheless, the for-
mer notion is supported by the fact that FC indices showed rele-
vant correlations with behavioral measures only in the alpha, beta, 
and gamma bands. Specifically, RT was positively correlated with 
alpha- and beta-band FC, however only during the control condi-
tion, with the inference being that stronger alpha and beta synchro-
nization predisposes longer RTs in the absence of cognitive demand. 
However, this relationship gets dissolved with decreasing alpha and 
beta synchronization in the presence of more involved WM func-
tions. Conversely, there was an inverse relationship between cogni-
tive performance (as measured in the subject accuracy) and FC in the 
beta- and gamma bands, however, this correspondence only became 
prominent at the hardest difficulty level, 3-back. This implies that 
as cognitive demand increases, increased large-scale connectivity of 
high-frequency neural activity would lead to poorer performance.

Finally, we must address some of the limitations and future 
perspectives of this study. EEG recordings were carried out by 
using a low-density setup with moderate spatial (14 channels) and 
temporal	(128	Hz)	resolution.	On	the	one	hand,	this	poses	an	ob-
vious limitation, that underlies the fact that network measures Dw, 
Cw and Ew—that otherwise characterize vastly different aspects 
of	network	topology—yielded	highly	similar	results.	On	the	other	
hand, this highlights the robustness of our results, which indicated 
a very powerful effect of increased mental workload (p < 10–4 
even following Bonferroni adjustment) on FC in the vast major-
ity of cases. Also, our experimental paradigm did not contain a 
purely resting-state condition. Therefore, an important future di-
rection is to expand our analyses on how large-scale connectivity 
patterns are reorganized when transitioning from resting state to 
control (0-back) and increased mental workload (2- and 3-back) 
states. Another important aspect to consider is test-retest reliabil-
ity, which in the case of FC and graph theoretical studies (such 
as this study) so far appears to be highly consistent (Hardmeier 
et al., 2014; Vecchio et al., 2020). Additionally, FC has been 

shown previously to vary not only in response to stimuli (Sakoglu 
et al., 2010) but also to fluctuate even in the resting state (Chang 
& Glover, 2010; Hutchison et al., 2013). Furthermore, dynamic 
graph theoretical analysis (Dimitriadis et al., 2010) has been suc-
cessfully applied to reveal nontrivial features of dynamic FC such 
as	 its	 (multi)fractality	 (Racz,	Mukli,	 et	 al.,	 2018;	 Racz,	 Stylianou,	
et	 al.,	 2018)	 or	 (spatially	 varying)	 information	 content	 (Racz	
et al., 2019, 2020). Since fractal aspects of brain dynamics have 
been shown to correlate with cognitive stimulation (He, 2011; He 
et al., 2010), the question of how these novel features of dynamic 
FC could be utilized in characterizing the functional organization 
of the brain during various WM paradigms appears important to 
pursue.

5  | CONCLUSIONS

In	this	study,	we	found	that	large-scale	FC	of	the	brain	decreased	
with increasing mental workload, however, this was found inde-
pendent from the difficulty of the applied WM task. This decrease 
in FC could be attributed to the dissolution of two—a frontal and 
an occipitotemporal—functional modules that were only present 
in the control condition, while during increased mental workload 
the functional network of the brain expressed a more homoge-
nous topology. This response may reflect the suppression of func-
tional connections irrelevant to task solving. Behavioral variables 
showed	correlations	only	with	high-frequency	FC.	In	that,	RT	was	
positively correlated with alpha- and beta-band FC only in the 
control state, while accuracy was negatively correlated with beta- 
and gamma-band FC only in the hardest difficulty setting. These 
results indicate that an impaired downregulation of FC may result 
in poorer performance.
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