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Performance variation is a critical issue in motor imagery brain–computer interface (MI-
BCI), and various neurophysiological, psychological, and anatomical correlates have
been reported in the literature. Although the main aim of such studies is to predict MI-BCI
performance for the prescreening of poor performers, studies which focus on the user’s
sense of the motor imagery process and directly estimate MI-BCI performance through
the user’s self-prediction are lacking. In this study, we first test each user’s self-prediction
idea regarding motor imagery experimental datasets. Fifty-two subjects participated
in a classical, two-class motor imagery experiment and were asked to evaluate their
easiness with motor imagery and to predict their own MI-BCI performance. During the
motor imagery experiment, an electroencephalogram (EEG) was recorded; however, no
feedback on motor imagery was given to subjects. From EEG recordings, the offline
classification accuracy was estimated and compared with several questionnaire scores
of subjects, as well as with each subject’s self-prediction of MI-BCI performance. The
subjects’ performance predictions during motor imagery task showed a high positive
correlation (r = 0.64, p < 0.01). Interestingly, it was observed that the self-prediction
became more accurate as the subjects conducted more motor imagery tasks in the
Correlation coefficient (pre-task to 2nd run: r = 0.02 to r = 0.54, p < 0.01) and root
mean square error (pre-task to 3rd run: 17.7% to 10%, p < 0.01). We demonstrated
that subjects may accurately predict their MI-BCI performance even without feedback
information. This implies that the human brain is an active learning system and, by self-
experiencing the endogenous motor imagery process, it can sense and adopt the quality
of the process. Thus, it is believed that users may be able to predict MI-BCI performance
and results may contribute to a better understanding of low performance and advancing
BCI.
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INTRODUCTION

Motor imagery based brain–computer interface (BCI) has become an increasingly prevalent
process, and in recent decades researchers have made valuable achievements and demonstrated
the feasibility of BCI for various applications, such as communication, control, rehabilitation,
entertainment, and others (Wolpaw et al., 2002; Millán et al., 2010; Ortner et al., 2012; LaFleur
et al., 2013; Ahn M. et al., 2014; Bundy et al., 2017; Guger et al., 2017). Despite such advances in BCI,
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there is still a significant hurdle to overcome before BCI can
move forward to the public market. Reportedly, about 10 —
30% of BCI users do not modulate the classifiable brain signals
that are critical to run a BCI system; such a phenomenon
is called “BCI-illiteracy” (Blankertz et al., 2010). In recent
years, researchers have investigated the BCI-illiteracy phenomena
and proposed techniques to improve current BCI systems in
the context of control paradigm, system feedback modality,
algorithms, and training protocols (Hwang et al., 2009; Grosse-
Wentrup et al., 2011; Kübler et al., 2011; Fazli et al., 2012;
Hammer et al., 2012; Maeder et al., 2012; Ahn S. et al., 2014; Suk
et al., 2014; Jeunet et al., 2015a, 2016a,c; Pacheco et al., 2017).

According to a recent review (Ahn and Jun, 2015), researchers
have approached this problem from different perspectives, all
aiming to answer one question: “What is the best correlate
of performance variation?” The aims of such studies can be
summarized as follows: First, identify what distinct characteristics
exist in poor performers; second, understand why these traits
are common in the lower performers; and, lastly, use the
correlates to classify the poor performers in advance, prior to
using BCI.

To resolve performance variation, many ideas have been
proposed. These methods include introducing advanced signal
processing techniques such as co-adaptive learning (Vidaurre
et al., 2011; Xia et al., 2012; Merel et al., 2015), training users
until they are able to generate classifiable signals (Mahmoudi
and Erfanian, 2006; Hwang et al., 2009; Tan et al., 2014), and
brain tuning that shifts the current brain state to a better
state for motor imagery using tactile (Ahn S. et al., 2014) or
electrical (Pichiorri et al., 2011; Wei et al., 2013; Yi et al.,
2017) stimulation. These ideas are based on the fact that the
human brain is able to reflect on, learn from, and even adapt to
its experiences. In fact, the classical signal processing methods
overlooked this aspect and thus focused on designing a better
feature extractor or classifier than a fixed decoder (McFarland
et al., 1997; Ramoser et al., 2000; Lemm et al., 2005). In
recent years, advanced BCI system designs have been proposed
to employ the concept of co-adaptation, which is the process
whereby a user learns to control the BCI in conjunction with the
adaptation of learning brain states of the user. However, in the
studies of performance variation, such functionality of the brain
is not seriously considered.

In general, the feedback modality of BCI system is considered
important (Kübler et al., 2001; Hinterberger et al., 2004;
Blankertz et al., 2006; Cincotti et al., 2007; Leeb et al., 2007;
Nijboer et al., 2008; Gomez-Rodriguez et al., 2011; Ramos-
Murguialday et al., 2012; McCreadie et al., 2014; Jeunet et al.,
2015b, 2016b). Similarly, user feedback may be equally as
important as system feedback. Interestingly, a few studies
have evaluated feedback from users (Burde and Blankertz,
2006; Hammer et al., 2012; Vuckovic and Osuagwu, 2013).
These studies used indirect measures to correlate with BCI
performance. However, the variation of such parameters was
not investigated while subjects performed the motor imagery
tasks. Our ultimate aim is to predict a user’s performance
prior to using the BCI system; therefore, it may make more
sense to let users predict their performance directly. The brain

can adapt to the external environment. Such functionality
has been introduced in a co-adaptive learning algorithm in
BCI systems; likewise, we expect that users may be able
to directly estimate their own BCI performance. This idea
is supported by a recent study by Vuckovic and Osuagwu
(2013) that investigated the motor imagery quality indicated
by users. The authors demonstrated that the proprioceptive
sensation of a movement (kinesthetic imagery), which was
assessed with 5-point rating scales, can be used as a test to
differentiate between “good” and “poor” performers in motor
imagery BCI.

Several benefits are conceivable with the self-prediction of
BCI performance. First, it removes or reduces time-consuming
preparation or installation and recording procedures that usually
require tremendous effort from users and experimenters. Note
that relevant studies employed brain signal recording (Blankertz
et al., 2010; Ahn et al., 2013a,b), brain imaging (Halder et al.,
2011, 2013) and intensive psychological tests (Hammer et al.,
2012). However, if self-prediction is possible and usable, the only
necessary step is to ask the user how his/her BCI performance
will be based on his/her own feelings or experiences. This is the
best scenario because it does not require any further behavioral,
psychological, or experimental tasks. In a study by Vuckovic and
Osuagwu (2013), subjects also conducted some behavioral and
mental tasks, and they could therefore answer questions based on
their sensations. Therefore, the best-case scenario, in which the
user immediately answers questions about his/her performance,
is less likely. Rather, the user may need to perform some tasks—
either behavioral, mental, or motor imagery—to give enough
experience and time to build the sense of their individual motor
imagery proficiency. Even if this is proven true, however, we can
still reap the other benefits of self-prediction. BCI performance
may be somewhat influenced by unique characteristics of the
user and the hardware/software of the system (Kübler et al.,
2011). Therefore, a BCI user may realize that he/she is good
or bad at conducting motor imagery at some point during the
training or testing of BCI; the user is then able to clarify where
or when the BCI problem occurs. This is the second benefit.
The third benefit is that the inferior data can be separated
from the good dataset. This is important because poor-quality
data is much more likely to introduce a bias in classification
results and can eventually lead to incorrect conclusions in
research.

In summary, the brain is a good learning system and
motor imagery is an endogenous process. Therefore, a user’s
self-assessment provides valuable feedback and includes
information relevant to understanding performance variations.
However, to the best of our knowledge, this aspect has not
been well investigated in the existing studies on BCI illiteracy;
thus, a rigorous analysis on it would be quite interesting
and informative. To address the issue of whether a user’s
self-predicted score is correlated with offline BCI performance
and, if so, how long it may take for the user to get a sense of the
connection, we investigated the user’s self-assessed parameters,
including mental and physical states, the quality of motor
imagery, and self-predictions of motor imagery performance
before and between runs.
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MATERIALS AND METHODS

Motor Imagery Task
In this study, 52 healthy subjects (26 males, 26 females;
mean age: 24.8 ± 3.86 years) participated. Among all
subjects, six subjects experienced BCI or biofeedback with
neurophysiological signals. The Institutional Review Board from
the Gwangju Institute of Science and Technology approved
this experiment. All participants were informed of the purpose
and process of the experiment and each written consent
form was collected before conducting the experiment. We
used BCI2000 software (Schalk et al., 2004) and Biosemi
Active 2 system (64 channels, sampling rate: 512 Hz) for
stimulus presentation and electroencephalography (EEG) signal
acquisition, respectively. At the beginning of the experiment, we
recorded 1-min resting state signals under eyes-open conditions,
and we then conducted a conventional two-class motor imagery
experiment. A detailed step-by-step description of the motor
imagery experiment follows.

On the monitor screen, the visual instruction was presented.
At the beginning of each trial, a cross appeared for 2 s, and then
text indicating left or right was shown for 3 s. Subjects were
asked to imagine left- or right-hand movement according to the
presented direction at the motor imagery phase. Right after the
motor imagery phase, a cross appeared for 2 s again. Thus, the
total time of each trial was 7 s and the inter-trial interval was
set randomly to between 0.1 and 0.8 s. In each run, 20 trials for
each condition (left or right) were collected, and at the end of
each run we asked the subject if he/she could perform the next
run. Only when the subjects responded ‘Yes’ would they perform
the next run. All subjects conducted 5 or 6 runs with about a
2-min break between runs. Thus, we obtained a total of 100 or 120
trials for each condition for each subject. During the experiment,
there was no feedback given on how well subjects performed the
motor imagery tasks. The procedure for one trial is illustrated in
Figure 1.

Questionnaire Survey
Prior to the motor imagery experiment, the subjects were
asked to practice kinesthetic imagery rather than visual imagery
since kinesthetic imagery yields better discriminable brain
wave patterns than visual imagery does (Neuper et al., 2005;
Vuckovic and Osuagwu, 2013). An explanation regarding the
meaning of binary classification was also given, so subjects
would understand the concept of poor (50%) and perfect (100%)
accuracies. Thus, most of the subjects answered between 50
and 100%, with the exception of six subjects (sbj7, sbj21,
sbj28, sbj36, sbj51, and sbj52) as seen in Supplementary
Table 1.

Two questionnaires were generated: pre-task and inter-task
forms (Table 1). Each subject filled out a pre-task questionnaire
that contained question items regarding age, handedness, sex,
hours the subject had slept the previous night, hours elapsed since
the subject had ingested substances (coffee, alcohol, or cigarettes),
and predicted accuracy. Then the subject started the actual motor
imagery task. In order to obtain the feedback about physical,
mental, and emotional states and motor imagery scores of each

run, an inter-task questionnaire was provided at the end of each
run, and the subject filled out the form.

Subjects scored the easiness of motor imagery on a scale
from 1 to 5 (1: easiest to 5: very difficult) and the prediction
of their classification accuracies between 50 and 100%. We note
that the subjects were not given any feedback on their motor
imagery performance during the experiment; their predicted
motor imagery scores were purely based on their own experiences
or expectations. In conducting the self-assessment of physical,
mental, and emotional states (except for fatigue), each question
was answered according to a 1–5 scale (1: most or best to 5: least
or worst). The overall procedure of the experiment is illustrated in
Figure 1. For detailed experiment information and questionnaire
forms, refer to the literature (Cho et al., 2017).

Motor Imagery Classification Accuracy
Motor imagery classification accuracy was calculated in a
conventional way, by using Common Spatial Pattern (CSP)
and Fisher Linear Discriminant Analysis (FLDA) (Ramoser
et al., 2000; Ahn et al., 2013b). For the statistically reasonable
accuracy, different groups of training and testing trials were
generated multiple times (120 repetitions), and the final accuracy
was obtained from this cross-validation method. The detailed
procedure is as follows. First, EEG signals were filtered
with the specific frequency band (8–30 Hz) and temporal
interval (0.4–2.4 s after cue onset) to include the informative
event-related (de) synchronization of Alpha/Beta (Pfurtscheller
and Lopes da Silva, 1999; Ahn et al., 2012), which was reported
as the primary feature in motor imagery BCI. With the filtered
epochs, the cross-validation technique was applied to produce a
statistically reasonable estimate of classification accuracy. Data
was processed by first grouping all trials into 10 subsets of
equal size; these 10 subsets were separated into seven training
and three testing sub-groups. Therefore, the total number of
such possible separations is 120. For each separation, the 10
most significant spatial filters were extracted from training
trials by CSP and then a class separation line through FLDA
was generated. By applying these 10 spatial filters and the
classification line to corresponding testing trials, the correct
rate (the number of correct epochs divided by the number of
total epochs) was estimated. This procedure was repeated for
other separations. Finally, all correct rates were averaged and
this average was defined as the motor imagery classification
accuracy.

Analysis
In the analysis of personal information, for each comparison
we divided subjects into two groups according to Sex (male vs.
female) or Age (older vs. younger than 24.8 years, which is the
mean age of subjects), or Coffee/Alcohol/Cigarettes (subjects who
had coffee/alcohol/cigarettes within 24 h vs. subjects who did
not) since the data showed that many subject answered that
they did not consume the substances. Most of the subjects were
right-handed, thus the handedness classification was excluded
for further analysis. Then, the offline classification accuracy
was compared at the in-group level. Here, the Wilcoxon
Rank-Sum test was applied to check statistical significance. For
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FIGURE 1 | Overall experiment design. Before the 1st run, personal information was collected, and subjects practiced motor imagery and predicted their
classification accuracy. Then, resting state EEG was recorded. Between tasks, the follow-up questions were asked to collect the self-assessed condition levels and
motor imagery related scores, including prediction of BCI performance.

TABLE 1 | Question items for motor imagery experiment.

Before experiments
(pre-task question)

Personal information

• Handedness (R: right, L: left, and B: both hands)
• Sex (M: male, F: female)
• Age
• Hours the subject slept the previous night (SLP)
• Hours elapsed since the subject had coffee (COF),

alcohol (ALC), or a cigarette (CIG)

Motor imagery scores

• Accuracy prediction (PreAP)

After each run
(inter-task question)

Self-assessed physical, mental and emotional states

• Calmness (CALM),
• Interest (INT),
• Concentration level (CONT),
• Physical state (PHYS),
• Mental state (MENTAL),
• Fatigue (NSLP; number of times the subject fell

asleep during the run)

Motor imagery scores

• Easiness of motor imagery (ES)
• Accuracy prediction (AP)

the other questions, which had 5-scale scores, we first flipped
the self-assessed scores in the following way: score 1 switched
to score 5, 2 switched to 4, and so on. Then, the correlation
coefficient between the scores (for each personal information
category) and motor imagery classification accuracy over subjects
and corresponding p-values were calculated using the MATLAB
“corr()” function, which computes Pearson’s Correlation. For the
statistically reasonable results, a permutation test was conducted
(n = 2,500) and correction for multiple comparisons was made
for p-values using the False Discovery Rate (FDR) (Benjamini and
Hochberg, 1995; Genovese et al., 2002) with a q value of 0.1.

These processing steps made the results more intuitive; if
results from one question item were highly correlated to the
motor imagery classification, it would show an overall positive

correlation. For pre-task questions, the raw answer values
were used, but the scores in the inter-task questions were
averaged over runs for further analysis. The Pearson’s correlation
coefficient was also computed with actual classification accuracy.
A permutation test in which actual BCI performance is shuffled
was also conducted (n = 2,500) and corrected for the statistical
significance.

For investigation of the variations of self-prediction over
time, session-wise classification accuracy was compared with the
self-prediction at each run. The correlation coefficient and the
corresponding Root Mean Square Error (RMSE) were quantified.
In addition, the cross-validated classification accuracy at each
run was computed using the same method (six CSP filters and
FLDA) and compared with the prediction to see the evolution of
run-wise accuracy and prediction across runs. The result from
this analysis will be used in the Section “Discussion.”

RESULTS

Personal Information and Conditions
The scores from the questionnaire survey and offline
classification accuracy are tabulated in Table 2 (for accuracy
prediction at each run, see Supplementary Table 1). The
overall classification accuracy yielded 66.93 ± 11.05%
(average ± standard deviation), ranging from a minimum
of 46.9% to a maximum of 96.1%. We observed that the
classification accuracies were well scattered, and our collected
datasets therefore had a broad spectrum of subjects from poor to
good performers in terms of motor imagery proficiency.

Figures 2A–F show the accuracy comparisons of different
groups classified according to Sex, Age, Coffee, Alcohol, and
Cigarettes. There are apparent differences between groups.
Young female subjects seemed to perform better than male
and relatively older subjects who were more than 24.8 years of
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TABLE 2 | Questionnaire results and neurophysiological index. For detailed information about items, please see the text.

ID Hand EXP SLP COFF ALC CIG CALM INT CONCENT BODY MENTAL NSLP preAP ES AP ACC ACCSTD

sbj1 R 4 5 0 0 5 4 3 3 3 0.4 80 3.8 88 96.11 2.60

sbj2 R 3 0 0 0 4 3.8 3.8 3.4 3.4 0.3 50 4.4 74 95.65 4.46

sbj3 R Yes 3 0 0 0 4.2 3.6 3.6 3.8 3.4 0 70 3.4 71 84.60 5.33

sbj4 R 2 20 15 0 4.2 3.6 3.6 4 4 0 70 4 75 83.07 4.46

sbj5 R 4 0 0 0 4 4 4.2 3.6 3.2 0.8 80 4.6 85 81.97 4.66

sbj6 R 3 0 22 0 3 2.6 3.6 2.8 3.4 0 65 3 68 79.65 4.47

sbj7 R 1 2 0 1 5 3.6 2.8 1 2 0.4 50 2.8 72 79.18 8.15

sbj8 R 1 2 0 1 4 3 3.6 4 3 2.4 75 3.6 69 78.96 6.94

sbj9 R 2 30 16 16 5 4.4 4 2 4 0 60 1.6 56.2 78.89 6.53

sbj10 R 3 0 0 0 4 2 2 3 3 0.7 70 2.4 64 78.72 6.73

sbj11 R 3 17 0 0 2.8 4.4 2.8 3.4 3.8 0 80 3 65 76.90 5.05

sbj12 R 3 16 0 0 4 4 4.4 4.8 4.4 0 80 4.2 70.6 76.00 8.20

sbj13 R 3 0 0 0 5 4.2 4.4 4.4 4.4 0.2 75 4.2 72 75.33 8.85

sbj14 R 1 23 0 0 4.2 1.8 4.4 3 3 0 80 3.2 65.6 75.19 5.03

sbj15 R 5 0 17.5 0 4 2.4 3.4 4 3.8 3.2 60 4 63.8 74.24 5.61

sbj16 R 4 22 0 0 2.4 2.2 2.2 3 2.8 1 60 3 62 73.64 6.05

sbj17 R 4 1 0 0 4.4 4.8 4.2 5 4.6 0.4 80 4 75 72.54 6.49

sbj18 R 2 12 0 0 3 4 3.6 3.2 4 0.6 80 3.8 72 71.44 6.10

sbj19 R 3 0 14 14 4 2 3 4 4 0 70 4 66 71.44 6.43

sbj20 R 2 0 0 0 4.8 3.6 3 3 3.4 0.4 50 2.4 58 70.99 5.50

sbj21 B 4 7 0 0 3 3 3 3 3 0 70 2.4 56 69.33 6.85

sbj22 R Yes 4 0 0 0 5 4 5 5 5 0.4 90 5 86 68.33 6.30

sbj23 R 3 0 0 0 3.8 3.4 3.6 4 4 0.8 75 2.6 59 66.47 6.30

sbj24 R 4 4 0 0 5 3.6 3.6 4 4.2 0.4 75 4.2 65 66.42 6.38

sbj25 R 2 7 0 0 3.8 2.6 2.6 3.2 3.2 0 70 3.2 56 64.50 5.96

sbj26 R 3 0 8 0 3.8 3.2 3.2 3.2 3.2 1.2 80 3.8 60 63.63 6.27

sbj27 R 3 2 0 0 3 3 3 3 3 1.3 60 3 61 63.22 5.84

sbj28 R 2 0 0 0 4.2 2.8 3 4 3.8 0.6 90 2.6 52 63.14 6.27

sbj29 R 2 0 0 0 5 2.6 4 5 5 0 50 2 61 63.04 6.98

sbj30 R 4 0 0 0 4.6 3.2 4.2 4.2 4.4 0 60 4 58 62.96 5.97

sbj31 R 2 5 0 0 3 3 3 3 3 0 50 2 50 62.43 5.26

sbj32 R 3 0 0 2 4 4.2 3.4 3.8 4.2 0 65 3.4 61 61.17 5.19

sbj33 R 4 0 0 0 3.2 2.6 2.8 2.8 3 0 70 2.2 62 61.13 5.15

sbj34 R 2 0 0 0 5 4.8 3.4 5 5 0 75 3.2 60 60.83 5.28

sbj35 R 3 0 0 0 3.8 3.6 3.6 5 5 0 65 4 58 60.35 5.95

sbj36 R Yes 3 0 0 0 3 2.8 2.4 2.4 2.8 1 60 2.2 61.25 60.18 4.87

sbj37 R 4 12 0 0 3.6 4.2 3.8 3.4 3.6 0 70 4 59 59.71 6.69

sbj38 R 2 0 0 0 3.8 3.4 2.2 3 2.8 0 70 1.6 52 59.19 5.31

sbj39 R 4 0 0 0 4 3 2.6 2.8 2.6 0.6 75 2.8 61 58.07 6.42

sbj40 R 5 0 0 0 4.4 3.6 4 4 4 0 81 2 50.4 57.69 5.54

sbj41 R 5 0 0 0 3 2.6 2.2 4.8 4.8 0 80 1.8 52 57.64 5.71

sbj42 R Yes 3 0 0 0 4 4 3.2 3.8 3.6 0.4 80 3 62 57.29 6.54

sbj43 R 2 0 23 0 3.8 3.2 3.2 4 4 0.6 70 2.8 59 56.76 5.37

sbj44 R 1 2 0 0 3 3 2.6 3 2.6 0.3 60 2.8 56 56.68 5.54

sbj45 B 2 4 0 0 3 3 3 3 3 0.2 70 3 64.2 55.81 5.53

sbj46 R Yes 3 0 0 0 4.8 4.8 4 4 4 0 80 3.6 58 55.40 6.01

sbj47 R Yes 5 0 0 0 3.4 1.2 1.8 2.6 2.6 0 80 2.6 64 54.57 5.01

sbj48 R 4 0 0 0 3.4 2.4 2.8 3.2 2.6 4.8 83 4.8 66 54.11 6.48

sbj49 R 1 11 0 0 3.8 4 3.2 2.8 2 0 80 3.4 62 53.16 5.31

sbj50 R 4 6 0 0 4 4 3.6 3.6 3.6 0 70 2.6 58 52.58 6.11

sbj51 R 4 0 0 0 4 4 2.8 3.8 3.8 0.8 0 2.4 55 52.14 5.46

sbj52 R 2 0 0 0 3.4 3.4 3.4 3.2 3.4 1 70 3 66.25 47.90 6.03
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FIGURE 2 | Accuracy comparisons between different groups. Mean accuracy with standard deviations are presented, and the total number of subjects within each
group is noted on the bottom of each figure: (A) Sex, (B) Age, (C) Coffee, (D) Alcohol, and (E) Cigarettes. Figure (F) notes the correlation coefficients between
physical/mental scores (FDR-corrected).

age. Additionally, subjects who had coffee/alcohol/cigarettes in
the 24 h preceding the tests were likely to show higher motor
imagery accuracy than the subjects who had not. However, these
differences were not statistically significant (Sex: p = 0.25, Age:
p = 0.07, Coffee: p = 0.2, Alcohol: p = 0.09, and Cigarettes:
p= 0.08). In the correlation analysis of physical and mental states,
none of the items (SLP: r = −0.06, NSLP: r = −0.04, Calmness:
r = 0.25, Interest: r = 0.08, Concentration: 0.25, Physical state:
−0.08, or Mental state: r = 0.0 with p > 0.05 for all results) were
significantly correlated with classification accuracy, although they
were highly correlated to each other, as shown in Figure 2F.

Easiness of Motor Imagery and
Self-Prediction of Accuracy
Figure 3 represents the results of the correlation analysis. Most
measures were positively correlated with classification accuracy,
but the magnitude of this correlation (how strong) varied
depending on the measures. The predicted accuracy during runs
(the average of many predictions assessed during runs) showed
a higher correlation coefficient (r = 0.64, p < 0.01, permutation
test n= 2,500) than easiness of motor imagery (r= 0.32, p< 0.05,
permutation test n= 2,500), even though they are quite positively
correlated (r = 0.67). On the other hand, the classification
accuracy which subjects predicted before the playing task yielded
no significant correlation with offline classification accuracy
(r = 0.03, p > 0.05, permutation test n = 2,500). It is inferred
from these results that during the task, subjects could more
accurately estimate their motor imagery proficiency to some
extent. However, they were not able to do so before completing
the task. A more in-depth analysis was conducted with the
individual estimates at each run. Figure 4A demonstrates how
self-prediction changes as the subjects participate in each task
from pre-task to 5th run. The increasing tendency of the

correlation coefficient was clearly observed, and it dramatically
jumped from the pre-task expectation (r = 0.03) to the 1st
(r = 0.23) and 2nd (r = 0.54) runs in Figure 4B; it then increased
marginally afterward. Similarly, as shown in Figure 4C, RMSE
steeply decreased from pre-task (RMSE = 17.7%) to the 3rd
run (RMSE = 10%) and then fluctuated slightly. Permutation
tests (n = 2,500) revealed that correlation coefficient and RMSE
in the 2nd to 5th runs are statistically different from the two
statistical ceilings [p = 0.05 (dashed line) and p = 0.01 (dotted
line)].

DISCUSSION

In this study, we instructed subjects to predict their motor
imagery performance and investigated how their predictions
correlated with actual (offline) classification accuracy. Initially,
participants estimated their performance poorly. As observed in
the pre-task and 1st run in Figure 4B, the correlation coefficients
were determined to be non-significant from the permutation test;
however, as participants completed the motor imagery task (from
2nd to 5th runs, the correlation coefficients were statistically
significant and increasing), they seemed to get a better sense of
their motor imagery quality.

Subjects evaluated how easy their motor imagery was, and the
self-assessed motor imagery scores wound up being positively
correlated with offline classification accuracy. This relationship
concurred with the results of the reports from Vuckovic
and Osuagwu (2013) and Marchesotti et al. (2016), which
stated that simply asking questions about the quality of motor
imagery can be used to predict motor imagery performance.
Interestingly, the predicted accuracy during tasks was also highly
positively correlated with actual classification accuracy (r = 0.64,
p < 0.01), and this value was notably larger than the correlation
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FIGURE 3 | Correlations with actual classification accuracy. (A) The relationships between measures are presented with correlation coefficients. The non-significant
correlation (p > 0.05) and significant correlation (p < 0.05) are presented with dotted and solid lines, respectively. Line width represents the strength of correlation.
(B) Dots in each figure represent subjects, and the black line is the linear regression line to data points. Statistical significance is marked with one star (p < 0.05) or
double stars (p < 0.01) on the right bottom of each figure (p-values were FDR corrected).

FIGURE 4 | Self-prediction comparison across task runs. (A) The evolution of accuracy and self-prediction from pre-task to the 5th run. (B) Correlation coefficients
between self-predicted performance and actual classification performance are presented across pre-task and the 1st to 5th runs. (C) Corresponding Root Mean
Square Error between the predicted performance and actual classification performance are presented. Statistical lines are marked with the dotted (p = 0.01) and the
dashed (p = 0.05) lines.
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coefficient of scores on the easiness of motor imagery (r = 0.32,
p < 0.05).

Considering Kübler et al.’s (2001) statement that “perception
of the electrocortical changes is obviously related to the
control of these changes,” perception is an important feature
to understand the internal state, and the self-report is the tool
to express such information to the external world. Related to
this notion, the above-mentioned results raise an interesting
question. The information that the subjects used to predict their
performance accuracy may have come from the same source
they used for evaluating the easiness of motor imagery, so
both measures may overlap in a certain domain. From our
results, it is believed that this is true, since the two measures
are highly correlated (r = 0.67), as shown in Figure 3A.
However, we observed a greater difference between the two
measures in terms of the correlation coefficient with actual
classification accuracy. Considering that many psychometrics by
self-report (e.g., vividness of motor imagery, mental rotation,
and visuo-motor coordination), were confirmed to be significant
measures for predicting an individual’s BCI performance
(Hammer et al., 2012; Jeunet et al., 2015a; Marchesotti et al.,
2016), self-assessment seems to be a useful tool for evaluating
motor imagery. These results demonstrate the psychological
capacity of sensing the internal state of a participant based on
a certain model that depends on the given question or task to
perform.

In this study, subjects might develop the internal model
of evaluating themselves in the accuracy domain. Easiness of
motor imagery is simply a score selected from a 1 to 5 scale.
However, to predict classification accuracy, subjects were given
an explanation regarding the method of classification and the
ranges of accuracy (50–100%). Thus, in transforming the subject’s
actual feeling regarding the quality of motor imagery to the
other domain—the accuracy measure—the self-evaluated value
seems to become more like the form of accuracy. From this
result, we learned the following important lessons. First, directly
estimating the target measure (here, BCI performance) that
researchers want to see may be better than correlating the
indirect value (any correlates) with the target measure. Second,
subjects should be given sufficient information on what they are
evaluating.

Based on our results, the ideal case—wherein subjects predict
their performance in a short time without performing any
tasks—may not be achievable; they need time to develop an
accurate sense of how to evaluate their motor imagery quality
and to predict BCI performance. In this context, an interesting
question is how many trials are sufficient for users to build
a sense of predicting BCI performance. Figure 4 gives us a
brief clue. At the 1st and 2nd runs, the correlation between
BCI performance and self-prediction showed dramatic increases,
and the RMSE steeply decreased from 17.7% (pre-task) to
10% at the 3rd run. Because 40 motor imagery trials (for
both left and right imagery) were collected at each run, it is
inferred that 80–120 motor imagery trials (roughly 9–16 min
in time) would be required for subjects to develop the ability
to achieve relatively accurate self-assessment. In conclusion,
BCI-illiterate persons could stop at about half the number of

FIGURE 5 | Correlation coefficient comparison across different methods. For
the neurophysiological predictor, the value from the study by Ahn et al.
(2013b) was adopted.

planned tasks (the planned number of trials: 200 or 240) in our
experiment.

Related to the evolution of self-prediction, another interesting
question is whether users can recall the experience from one
session and accurately evaluate themselves in the following
session. If that were the case, then it would be possible for
participants to accurately predict their performance without
having training time to sense their abilities. Multi-session data
will help to answer that question.

Another interesting question is whether self-prediction is
better as a predictor for BCI performance than other correlates.
In the literature, various types of correlates were investigated
and researchers reported the following correlation coefficients:
r = 0.59 (Burde and Blankertz, 2006) and r = 0.50 (Hammer
et al., 2012) in psychological parameters; r = 0.72 and r = 0.63
(Halder et al., 2011, 2013) in anatomical parameters; and
r= 0.53 (Blankertz et al., 2010) in neurophysiological parameters.
Results from our previous study indicate that low alpha and
high theta are the typical neurophysiological pattern of a
BCI-illiterate user, and a performance predictor combining four
different values of spectral band power (theta, alpha, beta, and
gamma) was proposed and evaluated using the same data.
Figure 5 demonstrates the comparison between the correlation
coefficients of the three methods. Interestingly, the proposed
neurophysiological predictor yielded r = 0.48 and self-prediction
yielded r = 0.64. Even though more thorough investigation of
physiological, anatomical, and psychological correlates should be
conducted using the same dataset, we may conclude from our
findings that self-prediction is quite comparable to the existing
predictors; moreover, it is an easy and quick way to predict BCI
performance because it does not require long preparations for the
installation of systems or complex brain imaging.

As we observed, self-prediction may not be the most
suitable strategy to quickly determine BCI-illiteracy in advance.
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However, the result revealed that the domain, which has
thus far been overlooked, should be taken into account for
investigating BCI-illiteracy. This means that user feedback is just
as important as other factors. Thus, it is an interesting topic to
introduce user feedback in updating and advancing the current
BCI training protocol, control paradigms (e.g., p300 BCI),
algorithms, different imaging modality (Functional near-infrared
spectroscopy and Magnetoencephalography), and hybrid BCIs.

Here, we discuss the limitations of this study. First the
observed self-prediction becomes closer to the session-wise
performance that was calculated from the overall trials from
1st run to the last run. Thus, it is possible that the significant
correlation could be due either to a good estimation of their
performance by the participants or to the fact that subjects
become bored and so stop putting effort into performing the
task. Considering the statistics of accuracy (mean: 66.9%, median:
63.4%, and standard deviation: 11.0%) and prediction (mean:
63.5%, median: 62.0%, and standard deviation: 8.5%), and the
fact that the numbers of subjects whose classification accuracy/or
prediction is below than 60% are N = 18 (accuracy), N = 16
(prediction), and N = 9 (both), the latter reason might influence
the result. If this is true, it could cause the performance to occur
around chance level.

To address this issue, the performance at each run was
estimated using the same method (CSP with six filters and
FLDA), and the evolutions of performance and prediction were
investigated for all subjects. Figure 6 represents the results from
the four representative subjects. As a result, it was not the case
that performance goes to the chance level and prediction is
around chance level, too. However, only 20 trials per class were

collected in this study, so obtaining the trustable classification
accuracy is difficult when comparing the both accuracy and
prediction at each run because the small number of trials
dramatically increases the chance level (Müller-Putz et al., 2008).
In addition, considering the relatively large portion of low
performers (N = 16), further investigation with sufficient number
of trials should be done to reach a solid conclusion on this
issue.

Second, only the task without feedback was evaluated in this
study, but considering the report that training with feedback
(e.g., neuro-feedback based training (Hwang et al., 2009) helps
users to modulate classifiable brain waves in BCI, it is interesting
to see how much influence that feedback from the system has
on building the sense of motor imagery quality; such feedback
may be helpful or may cause users to have a biased model of
self-sensing. We believe that direct comparison of two tasks
with or without feedback would give a greater indication of the
influence of feedback on the internal model, which will be under
investigation.

Third, we used the general techniques (i.e., CSP and FLDA)
common in the BCI field, and sixteen subjects showed accuracy
lesser than 60%, which may be considered a chance level.
Therefore, it is worthwhile to check if such population might have
an influence on the results. However, re-computation without
such subjects showed that the high correlation is still observable
(r = 0.67) as seen on Supplementary Figure 1. More complex
algorithms may find the better features and construct more
accurate decision hyperplane, thus yielding higher classification
accuracy. But considering the existing literature (Samek et al.,
2012; Lotte, 2015; Alimardani et al., 2017), the order of

FIGURE 6 | Evolutions of performance and prediction. Four representative figures show how the performances and predictions evolve across runs. Classification
accuracy (CA) from all the trials (5 runs), classification accuracy (CA run) at each run, and accuracy prediction (AP) at each run are presented.

Frontiers in Human Neuroscience | www.frontiersin.org 9 February 2018 | Volume 12 | Article 59

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-12-00059 February 13, 2018 Time: 15:53 # 10

Ahn et al. Self-Prediction of Performance in MI-BCI

performance across subjects is hardly changed. Therefore, we
believe that a higher-order ML algorithm will not weaken the
significance of the result.

CONCLUSION

We investigated the correlations between the personal
information/conditions and self-assessed motor imagery scores
of study participants with actual (offline) classification accuracy
in MI-BCI. None of the personal information or conditions
were statistically significantly correlated with actual classification
accuracy. However, we observed a high positive correlation
between the self-predicted BCI performance and actual
classification accuracy. Additionally, our results demonstrate that
such self-prediction improves as the subjects experience more of
the motor imagery trials (after roughly 16 min), even though
there was no feedback to subjects regarding performance. In
conclusion, the introduction of a self-prediction by a BCI user
is also useful information for understanding BCI performance
variation.
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