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Abstract: In the biosynthesis of aflatoxin, verA, ver-1, ordB, and hypA genes of the aflatoxin gene
cluster are involved in the pathway from versicolorin A (VA) to demethylsterigmatocystin (DMST).
We herein isolated each disruptant of these four genes to determine their functions in more detail.
Disruptants of ver-1, ordB, and hypA genes commonly accumulated VA in their mycelia. In contrast,
the verA gene disruptant accumulated a novel yellow fluorescent substance (which we named HAMA)
in the mycelia as well as culture medium. Feeding HAMA to the other disruptants commonly caused
the production of aflatoxins B1 (AFB1) and G1 (AFG1). These results indicate that HAMA pigment is a
novel aflatoxin precursor which is involved at a certain step after those of ver-1, ordB, and hypA genes
between VA and DMST. HAMA was found to be an unstable substance to easily convert to DMST
and sterigmatin. A liquid chromatography-mass spectrometry (LC-MS) analysis showed that the
molecular mass of HAMA was 374, and HAMA gave two close major peaks in the LC chromatogram
in some LC conditions. We suggest that these peaks correspond to the two conformers of HAMA;
one of them would be selectively bound on the substrate binding site of VerA enzyme and then
converted to DMST. VerA enzyme may work as a key enzyme in the creation of the xanthone structure
of DMST from HAMA.

Keywords: aflatoxin biosynthesis; enzyme gene; dmtA (aflO); hypA (aflY); ordB (aflX); HAMA intermediate;
stcP; verA (aflN); ver-1 (aflM)

1. Introduction

Aflatoxins (AFs) are highly toxic, carcinogenic, teratogenic, and mutagenic secondary metabolites
produced primarily by certain strains of Aspergillus flavus and Aspergillus parasiticus [1]. Other strains
(A. nomius, A. pseudotamarii, A. bombycis and more) have also been reported to produce AFs,
and aflatoxigenic fungi were shown to be widely distributed mainly in tropical and subtropical
regions [2–6]. The AF contamination of crops such as corn, cotton, and nuts has serious effects on the
health of animals and humans, and it also causes economic problems due to crop losses [7–9].

Aflatoxigenic fungi can potentially produce eight types of AF: the four major AFs, i.e., aflatoxins
B1 (AFB1), B2 (AFB2), G1 (AFG1), and G2 (AFG2) and the four minor AFs, aflatoxins M1 (AFM1),
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M2 (AFM2), GM1 (AFGM1), and GM2 (AFGM2) [10,11]. The former AFs AFB1, AFB2, AFG1 and AFG2

are major AFs because of their high quantities. Among them, AFB1 is the most potent carcinogenic and
toxic substance, and it is classified as group 1 (a human carcinogen) by the International Agency for
Research on Cancer [12]. The contamination of crops and food products with the major AFs is a very
serious problem in food safety [9].

All AFs are produced from acetyl-CoA through complicated branching pathways involving
more than 25 enzymatic reactions [13–17]. The following outline of the pathway has been proposed:
acetyl-CoA→polyketide→norsolorinic acid (NA)→averantin (AVN)→averufin (AVR)→hydroxyversicolorone
(HVN)→versiconal hemiacetal acetate (VHA)→versiconal (VHOH)→versicolorin B (VB)→versicolorin A
(VA)→demethylsterigmatocystin (DMST)→ST→O-methysterigmatocystin (OMST)→AFB1 and AFG1. In the
pathway, the formation of VA from VB by a desaturase is a branching step for the formation of all 1-group
AFs such as AFB1 and AFG1 and that of all 2-group AFs such as AFB2 and AFG2 (Figure 1A) [11,18].
CypA and OrdA enzymes catalyze the branching step for the formation of a G-group AF from the
B-group AF formation pathway [19–21]. OrdA enzyme also catalyze the branching steps for the
formation of M-group AFs (AFM1 and AFM2) from the B-group AF formation pathway and for the
formation of GM-group AFs (AFGM1 and AFGM2) from the G-group AF formation pathway [10].
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genes are suspected to be involved in the step from VA to DMST as well as the step from VB to 
DHDMST. dmtA (aflO) gene, which is a homolog of A. nidulans stcP gene, is involved in the conversion 
from DMST to ST as well as the conversion from DHDMST to DHST. (B) The structures of STM and 
DHSTM. STM is the stereoisomer of DMST, and DHSTM is the stereoisomer of DHDMDT. (C) The 
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Figure 1. Outline of the biosynthetic pathway of aflatoxins (AFs) and the AF gene cluster. (A) The
formations of 1-group AFs (AFB1 and AFG1) from VA and 2-group AFs (AFB2 and AFG2) from VB. In the
biosynthesis of AF, there are pathways for the formation of 1-group AFs (AFB1 and AFG1) from VA
and 2-group AFs (AFB2 and AFG2) from VB. VB is converted to VA, and VA and VB respectively serve
as precursors of 1-group and 2-group AFs. ver-1 (aflM), ordB (aflX), hypA (aflY), and verA (aflN) genes
are suspected to be involved in the step from VA to DMST as well as the step from VB to DHDMST.
dmtA (aflO) gene, which is a homolog of A. nidulans stcP gene, is involved in the conversion from DMST
to ST as well as the conversion from DHDMST to DHST. (B) The structures of STM and DHSTM. STM is
the stereoisomer of DMST, and DHSTM is the stereoisomer of DHDMDT. (C) The AF gene cluster in
the genome of aflatoxigenic fungus. Enzyme genes and regulatory gene(s) are schematically shown
in an approx. 70-kb DNA region. verA gene (closed arrow) and each of ver-1, ordB and hypA genes
(striped arrows), and dmtA gene (open arrow) are indicated. DHDMST: dihydrodemethylsterigmatocystin,
DHST: dihydrosterigmatocystin, DHSTM: dihydrosterigmatocystin, DMST: demethylsterigmatocystin,
ST: sterigmatocystin, STM: sterigmatin, VA: versicolorin A, VB: versicolorin B.
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A. nidulans, A. versicolor and various fungal species are known to produce sterigmatocystin (ST)
as a final product [21–26]. ST is one of the latter intermediates in the biosynthesis of AF. In fact,
the enzymes, the intermediates, and the reactions for the biosynthesis of ST in A. nidulans are the same
as those for AF biosynthesis [10,16,25].

At least 25 genes coding for the enzymes and regulatory factor(s) needed for AF biosynthesis are
clustered in a 70-kb DNA region (Figure 1C) [10,16,17]. Although functions of most of these genes
have been clarified, some remain to be identified. The pathway from VA to DMST is one of these
undetermined steps. Enzymes encoded by hypA (aflY) [27], ordB (aflX) [28], and ver-1 (aflM) [29] are
known to be involved in the pathway, as the deletion of each of them caused an accumulation of VA
with a remarkable decrease or loss of AF production (Figure 1A). The verA (aflN) gene of A. parasiticus
is suspected to be involved in the conversion of VA to DMST, as the deletion of stcS gene of A. nidulans
caused an accumulation of VA in its mycelia with a decrease in the production of ST [30], and the
A. nidulans stcS gene was suggested to be a homolog of verA gene based on the relatively high similarity
(75%) of their amino acid sequences [16].

Hamasaki et al. [31] first isolated sterigmatin (STM) as a metabolite of A. versicolor (Vuillemin)
Tiraboschi, and they suggested that STM is an isomer of DMST because STM has a linear [3,2-b]fusion
structure of the xanthone and dihydrobisfuran moieties (Figure 1B), whereas DMST has a bending
[2,3-c]fusion structure of the same moieties [32]. Fukuyama et al. also suggested that STM is produced
from VA, and that a putative precursor might work to make either DMST or STM, which depends
on the manner of ether linkage formation to build a xanthone ring [33]. Austocystins A–I, which are
secondary metabolites produced by Aspergillus ustus, have linear structures that are similar to that of
STM, and they have been proposed to be derived from VA [34].

In the biosynthesis of AFs, the xanthone formation step corresponds to the production of
carcinogenicity; ST derivatives and AFs are known to have carcinogenicity and acute toxicity [22,35].
In contrast, anthraquinone derivatives such as VA and VB have low or not-yet-identified toxicity [36].
To clarify the important step of the appearance of toxicities, we herein investigated the pathway from
VA to DMST in detail. In this work, we isolated each disruptant of ver-1, hypA, ordB, and verA genes
(Figure 1C) and then characterized the accumulating substances in the culture medium or mycelia.
The results demonstrated that: (1) verA disruptant accumulated mostly a novel intermediate, which we
named HAMA after the late Professor Takashi Hamasaki, and (2) the verA gene is involved in the
pathway from HAMA to DMST through a regiospecific xanthone ring formation. We also investigated
accumulating substances in the deletion mutant of A. nidulans stcP gene [37], which is a homologue
of the dmtA (aflO) gene of A. parasiticus [38]. These genes are involved in the reaction from DMST to
ST. We evaluated these substances to determine whether HAMA is produced before the formation
of DMST in AF biosynthesis as well as ST biosynthesis. We propose possible reaction steps in the
pathway from VA to DMST.

2. Results

2.1. Preparation of verA Disruptant

verA gene of A. parasiticus SYS4 was disrupted via the double-crossover strategy by using the
linear DNA fragments of pVERA-DD, which was constructed with the flanking sequences of verA and
disruption vector (Figure 2A). The verA disruptant was then isolated through the transformation of
SYS4 with the linear DNA fragments of pVERA-DD. We obtained six mutants, three of which were then
confirmed to be the right disruptants by PCRs using primer pairs P4/P5, P1/P2, and P3/P6 (Figure 2B)
(Table 1) and a Southern analysis (Figure 2C). In the latter analysis, the verA gene coding region was
presented on an approx. 3.20 kb EcoRI fragment of the wildtype SYS4 genome, whereas verA disruptant
DNA gave no hybridization band (Figure 2C, Left). When ptrA gene was used as a probe, beside the
band that was suspected to correspond to the putative homologous nmt-1 gene in the A. parasiticus
genome [39], specific ptrA hybridization signals of 2.06 kb for EcoRI digestion were detected only in
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the genomic DNA of verA disruptant (Figure 2C, Right). These results indicate that the verA gene was
replaced with the ptrA-selectable marker in the genomes of the mutants.
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Figure 2. Disruption of verA gene. (A) The strategy for the disruption of the verA gene. The double-crossover
recombination events resulted in the replacement of the verA gene with the selectable marker ptrA gene.
Long arrows: gene direction, short arrows: position of primers used for the confirmation of gene disruption.
(B) A PCR analysis using different combinations of primers was done to confirm whether the verA gene
was deleted in the verA disruptant. The PCR products obtained with the primer pairs (as shown in the
table) were used to confirm the verA disruption. M, 1-kb molecular marker. (C) Southern analysis of
the verA disruptant. Genomic DNA of strain SYS4 (wild stain) or the verA disruptant were digested
with EcoRI and analyzed by Southern hybridization using the verA probe (left) or ptrA probe (right).
The positions of the size markers are indicated by closed triangles. The sizes of the resulting fragments
are indicated by open arrows.

Colonies of verA disruptant did not show any clear difference in phenotype such as mycelia color
or size from those of the wildtype. In contrast, the colonies on the GY agar plate showed white images
on UV photos, indicating that the resulting mutants had lost or decreased AF productivity. verA gene
was thus suggested to be involved in the biosynthesis of AFs.
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Table 1. Primers used in this report.

Primer Sequence Position on AY371490 DNA

P1 5′-GTTTCGACTCCCTCGGC 44119–44135 verA
P2 5′-CTCATCGTACGCTGGCG 45349–45333 verA
P3 5′-TGGGATCCCGTAATCAATTGCCC 38–16 * ptrA
P4 5′-GCAAGAGCGGCTCATCGTCA 1998–2017 * ptrA
P5 5′-ATGTCGGATAATCACCGTTTAG 42020–42041 ver-1
P6 5′-AACCCGAGCCATCTGCACCA 47140–47121 avnA
P7 5′-CCCCGCTCGAGTTTCACCGATGAGCAGGTAG (XhoI) ** 42696–42715 ver-1
P8 5′-AAAACTGCAGGGAGAGTACCAGGTTCGCTT (PstI) ** 43894–43875 verA-up
P9 5′-GGGGTACCCCTGCTGTTACGAGCTATTC (KpnI) ** 45542–45561 verA-down

P10 5′-GAAGATCTGCAAAGTAACCGCATCGTGC (BglII) ** 46994–46975 avnA
P11 5′-ATGGTTCTCCCTACTGCTCC 39983–40002 norA
P12 5′-CATTTTGAGGCAGAACCAAAG 41208–41187 norA
P13 5′-AGGCTCAGTCACTTGTTCC 41368–41386 norA-down
P14 5′-TTATCGAAAAGCGCCACCAT 42919–42900 ver-1
P15 5′-GGTCCGATGCTGAACGG 46718–46734 avnA
P16 5′-CATAGTCCCTGAGGCGG 47828–47812 avnA
P17 5′-GCGTAGGCCAGATTGCG 48662–48678 verB
P18 5′-GGTCCACTGCTATGGCG 49947–49931 verB
P19 5′-GGGGTACCGGGCAATTGATTACGGGATCCCA (KpnI) ** 16–38 * ptrA
P20 5′- AAAACTGCAGTGACGATGAGCCGCTCTTGC (PstI) ** 2017–1998 * ptrA

* Position on GenBank accession number AF217503. ** The added restriction site is underlined.

2.2. Characterizations of the Substances Accumulating in the verA Disruptant

The verA disruptant and wildtype SYS4 were cultured by the tip culture method. The TLC
analysis (Figure 3) of the culture medium showed that the verA disruptant accumulated a novel yellow
fluorescent substance in both the culture medium and mycelia (Figure 3A). Interestingly, we observed
that the yellow color of the substance on the TLC plate changed gradually to a dark red color after the
plate was left overnight, suggesting that this substance may be an unstable one. The TLC analysis
of the culture medium as well as that of the mycelial extract also showed that the verA disruptant
still produced small amounts of AFs (Figure 3A), and when the extract of the culture medium was
analyzed by HPLC, a negligible amount of AFB1 and a small amount of AFG1 were detected (Table 2).

To determine the step(s) involving the verA gene in AF biosynthesis, we performed feeding
experiments using several precursors of AFs. When the verA disruptant was incubated with DMST,
ST, or OMST, these substances were converted to AFB1 and AFG1, whereas when either VHA or VA
was used, AFs were not produced (Table 3), indicating that verA gene is involved in a certain step
between VA and DMST in the biosynthesis of AF.

For the characterization of the yellow pigment, we isolated the pigment from the TLC plates after
the culture media were analyzed by TLC using solution A. When strain NIAH-26 was incubated with
the pigment, significant amounts of AFB1 and AFG1 were produced (Figure 3B), indicating that the
pigment is a precursor of these AFs.

We further analyzed the yellow pigment by TLC. Since the pigment spot appeared to be broad in the
TLC analysis (Figure 3A), we first divided the spot into three parts (Figure 3D, Left panel), and the pigment
was extracted from each part. Each extract was then analyzed by TLC using another solvent. Four dark
red substances were newly detected, and the Rf values of the upper two bands were the same as DMST
and STM, suggesting that the yellow pigment could be a precursor of DMST as well as STM. We herein
named this pigment “HAMA” after Professor. Takashi Hamasaki. Two other substances (indicated by R1
and R2) were also detected (Figure 3D, Right panel). However, we observed that significant amounts of
AFs were not produced by either R1 or R2 in feeding experiments using strain NIAH-26. We speculate
that these are dead-end products produced by HAMA, and they remain to be studied.
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Figure 3. The production of a new intermediate, HAMA, and changes of the intermediate to DMST
and STM. (A) Characterization of metabolite(s) of the verA disruptant. After the tip culture of the verA
disruptant and SYS4, an extract (50 µL) of culture medium (1, 3) and mycelial extract (50 µL) (2, 4) of the
verA disruptant (1, 2) and SYS4 (3, 4) were analyzed by TLC using solvent (A). (B) The production of
AFB1 and AFG1 from HAMA by the tip culture method. NIAH-26 mutant was fed with TLC-purified
HAMA pigment in YES medium, and the resulting culture medium was analyzed by HPLC using
solution (A). (C) HPLC analysis of HAMA. Extract of the culture medium of the verA disruptant was
analyzed by ODS HPLC using solution (D). (D) The change of TLC-purified HAMA to other substances.
The broad yellow fluorescent band (HAMA) on the TLC plate (as shown in panel A) was divided into
three parts (1–3), and each part was extracted and then re-analyzed by TLC using solution B. Four red
substances (STM, DMST, R1, and R2) were observed. a, DMST; b, DHDMST. (E) The non-enzymatic
conversion of HAMA to DMST and STM and contaminated DHHAMA to DHDMST and DHSTM.
The drying of TLC-purified HAMA under N2 gas followed by solubilization was repeated five times,
followed by an HPLC analysis as described in panel C. Standard samples of DMST, STM, and DHDMST
were also analyzed. (F) The production of DMST and STM from HAMA by the repetition of drying
and solubilization. The same procedures as those described in panel E were done from zero to five
times, followed by an HPLC analysis. The amounts of DMST (closed circles), STM (open circles),
DHDMST (closed triangles), and the suspected DHSTM (open triangle) were measured.



Int. J. Mol. Sci. 2020, 21, 6389 7 of 22

Table 2. Aflatoxin production by verA deletion mutant and its wild strain.

Strain
AFs (ng/250 µL Culture Medium) 1

AFB1 AFB2 AFG1 AFG2

verA disruptant n.d. n.d. 0.1 ± 0.0 n.d.
SYS4 363 ± 12 17 ± 1 1056 ± 71 30 ± 2

1 Tip culture using 250 µL YES medium at 28 ◦C for 4 days. AFs in culture medium were measured by HPLC.
Values are means ± differences. n.d.: not detected.

Table 3. Feeding experiments of verA deletion mutant or NIAH-26 with some precursors of aflatoxins 1.

Strain
Total Concentrations of AFs Formed (ng/250 µL Culture Medium) 2

VHA VA DMST ST OMST

verA− n.d. n.d. 13.1 ± 0.0 64.7 ± 3.2 165.4 ± 3.2
NIAH-26 18.4 ± 2.5 11.0 ± 0.2 14.0 ± 0.7 47.0 ± 0.2 169.4 ± 2.9

1 The final concentrations of all the precursors are 30 µM. 2 Values are means ± standard deviations; for VHA,
total concentrations of AFB1, AFB2, AFG1 and AFG2; for other precursors, total concentrations of AFB1 and AFG1.
n.d.: not detected.

To confirm the productions of DMST and STM from the HAMA, we used HPLC to analyze the
samples directly extracted from the culture media of the verA disruptant (Figure 3C). A peak around 2 min
was detected, whereas peaks of DMST and STM were not detected. In contrast, the TLC-purified samples
(after the TLC and the scraping off of the HAMA spot, then extraction followed by drying and solubilization
with a small amount of methanol) showed productions of DMST and STM (Figure 3F, 0-time drying).
When the same substances underwent repeated drying with N2 gas followed by solubilization with
methanol, the amounts of DMST and STM similarly increased with the number of repetitions (Figure 3F).
The HPLC analysis of the five-repetitions samples showed that large amounts of DMST and STM were
produced. Interestingly, a small amount of DHDMST and another substance were also detected, and the
latter substance was suggested to be dihydrosterigmatin (DHSTM) based on the similarity of the elution
patterns of DHDMST and DMST (Figure 3E). These results suggest that the HAMA sample extracted
from the TLC plate were contaminated with a small amount of dihydroHAMA (DHHAMA).

We also investigated the heat stability of the HAMA pigment. After culture medium of the verA
disruptant was autoclaved at 121 ◦C for 15 min, the resulting solution was fed to strain [pks-fas-1]−.
When the treated medium was used, the amounts of AFs were decreased to approx. 10% of those obtained
when we used the intact medium (Table 4, Exp. 1). When the same medium was treated using either
acid condition (pH 1.5) or alkaline condition (pH 11.0), the amounts of AFB1 and AFG1 decreased to
50%–70% of those when we used the intact verA culture medium (Table 4, Exp. 2). These results suggested
that HAMA is unstable against heat treatment and partially sensitive to either acid or alkaline treatment.
Although small amounts of AFB2 and AFG2 were also produced from the HAMA pigment, it was
suggested that HAMA pigment sample was contaminated with small amount of dihydroHAMA.

Table 4. Feeding experiments of atoxigenic mutants with HAMA pigment treated with various conditions.

Strain
AFs (ng/250 µL Culture Medium) 1

AFB1 AFB2 AFG1 AFG2

Exp.1: [pks-fas-1]− strain
Intact 136 ± 3 (100%) 5 ± 0 (100%) 230 ± 2 (100%) 5 ± 0 (100%)

Heat treatment 10 ± 1 (7%) 1 ± 0 (11%) 13 ± 1 (6%) 1 ± 0 (10%)
Exp.2: NIAH-26 mutant

Intact (DW) 210 ± 8 (100%) 4 ± 0 (100%) 129 ± 8 (100%) 2 ± 0 (100%)
Acid (pH 1.5) 185 ± 19 (89%) 4 ± 1 (96%) 82 ± 36 (64%) 2 ± 1 (74%)

Alkaline (pH 11) 102 ± 0 (49%) 2 ± 0 (50%) 55 ± 8 (43%) 1 ± 0 (46%)
1 Tip culture using 250 µL YES medium at 28 ◦C for 4 days. AFs in culture medium were measured by HPLC.
Values are means ± differences.
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2.3. Relationships among the verA, ver-1, hypA and ordB Disruptants

Culture media as well as mycelial extracts of the ver-1, hypA, and ordB disruptants were analyzed
by TLC after tip culture. They predominantly accumulated VA as a major intermediate in their mycelia
(Figure 4A). Each of the disruptants also produced smaller amounts of some substances, which appeared
to be different depending on the disruptant. When each substance was extracted from a TLC spot
and then analyzed by HPLC, we observed that the hypA disruptant accumulated a small amount
of 6-deoxyversicolorin A (deoxyVA) together with VA. The ver-1 and hypA disruptants completely
lost AF productivity, whereas the ordB disruptant produced small amounts of AFs (Figure 4A).
To investigate relationship among ver-1, hypA, ordB, and verA genes in AF biosynthesis, we co-cultured
each combination of two of them and analyzed AFs contained in the resulting culture medium
(Figure 4B,C). All combination enhanced AF production, indicating that all genes have different
functions each other although all accumulated mainly VA.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 9 of 23 
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Figure 4. The relationships among verA gene, ver-1, hypA and ordB genes. (A) After tip cultures, culture
media (1, 3, 5, 7) and mycelial extract (2, 4, 6, 8) of SYS4 (1, 2), or the ordB (3, 4), hypA (5, 6), or ver-1
disruptant (7, 8) were analyzed by TLC using solution B. S1: AF mixture standard, S2: VA authentic
sample. (B) TLC analysis of the AF production by each of the ordB, hypA and ver-1 disruptants or
their co-culture. The culture media (30 µL) of each of the ordB (1), hypA (2) and ver-1 (3) disruptants,
or the co-culture of ordB and hypA disruptants (4), the co-culture of ordB and ver-1 disruptants (5),
the co-culture of the ver-1 and hypA disruptants (6) were analyzed by TLC using solution (A). (C) TLC
analysis of AF production in coculture of verA disruptant and each of ordB deleted mutant (lower).
The culture media of each of ver-1- (1), hypA (2) or ordB (3) disruptant, or the co-culture of verA
disruptant and each of ver-1 (4), hypA (5) or ordB (6) disruptants and SYS4 strain (7) together with AF
standard sample (AFs) were also analyzed. (D) The feeding of disruptants with HAMA in the culture
medium of verA disruptant. Each of NIAH-26 (1), ver-1 (2), hypA (3), and ordB (4) disruptants was
cultured in YES medium (upper panel) or YES medium supplemented with the same volume of the
culture medium of verA disruptant. The resulting culture medium was then analyzed by TLC.



Int. J. Mol. Sci. 2020, 21, 6389 9 of 22

Since the culture medium of the verA disruptant contained a significant amount of HAMA
pigment (Figure 3A), we investigated the AF levels in the ver-1, hypA and ordB disruptants fed with
filter-sterilized culture medium of verA disruptant (Figure 4D). The addition of the medium of the
verA disruptant significantly enhanced the productions of AFB1 and AFG1, indicating that the HAMA
substance is a precursor at a certain step after any steps involving the ver-1, hypA and ordB genes.
The productions of AFB1 and AFG1 by strain NIAH-26 were also confirmed (Figure 4D).

2.4. The LC-MS Analysis of HAMA Pigment

The LC-MS analysis using condition [A] revealed that HAMA purified by TLC had a peak whose
retention time was at 6.11 min in the LC chromatogram (Figure 5A). HAMA’s molecular related ions
in electrospray ionization-mass spectrometry (ESI-MS) spectra were observed at m/z 374.9 [M + H]+

(100%) or 373.0 [M−H]− (100%) and 747.3 [2M−H]− (32%), indicating that the molecular mass of
HAMA is 374 (Figure 5A).

When condition [B] was used for the LC-MS measurement, HAMA after five-times drying under
N2 showed several peaks (Figure 3E,F). Two main peaks were observed at around 15.4 min and
15.8 min on LC chromatograms, and the former peak afforded ion peaks at m/z 375 [M + H]+ (23%)
(Figure 5B-a, Upper) and 373.0 [M−H]− (100%), and 355 [M−H2O−H]− (55%) (Figure 5B-a, lower) in
atmospheric pressure photoionization-mass spectrometry (APPI-MS) spectra. The latter peak gave ion
peaks at m/z 375 [M + H]+ (100%), 357 [M −H2O + H]+ (11%) (Figure 5B-b, upper) and 373.0 [M −H]−

(100%), 355 [M−H2O−H]− (58%) in APPI-MS spectra (Figure 5B-b, Lower). These results indicated that
the HAMA molecular mass is 374, and HAMA gave a dehydrated fragment of 356 during ionization.
The absorption spectra of the former substance and the latter one by photodiode array (PDA) detection
also demonstrated that their chromophores are similar to each other (Figure 5B, Bottom).

The retention times of other smaller peaks (22.7 min and 23.8 min) on LC chromatograms were
coincident to those of authentic samples of DMST and STM, respectively, and their molecular masses
were commonly 310 in APPI-MS spectra (Figure 5B-c,d). These LC-MS data demonstrated that the
substances produced through the repetition of drying followed by solubilization were confirmed to be
DMST and STM. We also analyzed the extract of the verA disruptant culture medium to examine the
fresh sample of HAMA in more detail using condition [B]. We obtained the same results as those of the
repeated dried sample (Figure 5B, LC) except that the peaks of DMST and STM were remarkably small.

To confirm the reproducibility of HAMA’s twin peaks, we further analyzed the same fresh extract
of the verA disruptant culture medium by LC-MS using condition [C]. Two main peaks were observed
at 27.2 min and 32.0 min on LC chromatograms (Figure 5C). The APPI-MS spectra obtained for either
peak commonly gave ions of m/z 375 [M + H]+ (100%) (Figure 5C-e,f). These results indicated that
HAMA is composed of two isomers or conformers, and their molecular masses are both 374.

2.5. Accumulation of Small Amounts of STM Together with DMST in A. nidulans stcP-Disruptant

Strain TAHK64.42 is a stcP disruptant of A. nidulans FGSC26 [37], and stcP gene is a homolog of
dmtA gene of A. parasiticus [38]. After these strains were incubated in oat flake medium, metabolites
produced by either strain were analyzed by TLC (Figure 6A). Strain TAHK64.42 newly produced a
large amount of DMST and a small amount of STM. The production of STM in this strain was also
confirmed by an HPLC analysis (Figure 6B). The detection of STM suggested that HAMA accumulated
together with DMST in the stcP disruptant and would be non-enzymatically changed to STM during
the extraction procedure in this work. We speculate that HAMA was formed before a formation step of
DMST in the biosynthesis of ST.
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Figure 5. The LC-MS analysis of HAMA produced by the verA disruptant. (A) The LC-ESI-MS of HAMA
pigment. After HAMA pigment was purified by Diaion HP20, the resulting substance was analyzed by
LC-ESI-MS using condition [A]. HAMA (arrow) showed a single peak on LC chromatograms, and its
molecular mass was indicated to be 374 on MS chromatogram. (B) The LC-APPI-MS of HAMA and
its derivatives. The HAMA preparation after the repetition of five-times drying and solubilization
(which was the same as the sample in Figure 3E,F), was analyzed by LC-APPI-MS using condition [B].
The mass spectra (middle) and absorption spectra (lower) of each peak (a~d) on the LC chromatogram
(upper) are shown. The quasi-molecular ion peaks of each substance and the ion peaks caused by
dehydration of the quasi-molecular ion peaks are indicated as solid arrows and dotted ones in the mass
spectra, respectively. (C) LC-APPI-MS of the extract of the culture medium of the verA disruptant.
After the culture medium of the verA disruptant was extracted with ethyl acetate, the resulting
extract was analyzed by LC-APPI-MS using condition [C]. The mass spectra of peaks (e,f) on the LC
chromatogram (upper panel) are shown respectively.
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Figure 6. The accumulation of STM together with DMST in A. nidulans stcP disruptant. stcP gene is a
homolog of A. parasiticus dmtA. (A) After A. nidulans FGSC26 (wild strain) (1) and TAHK64.42 stcP
disruptant (2) were cultured in oat flakes medium for 5 days, and the resulting media were extracted
with a solution containing acetone:chloroform (1:1, v/v). The resulting extracts were analyzed by TLC
using a solution of benzene:ethyl acetate (7:3, v/v). The TLC plate was then sprayed with 10% aluminum
chloride in ethanol followed by heating at 80 ◦C for 5 min. Authentic standards of STM (a), DMST (b),
and ST (c) were also analyzed. Similar results were reported by Kelkar et al. (1996). (B) The part
corresponding to the spot of STM on the TLC plate (A) was extracted and then the extract was analyzed
by HPLC.

3. Discussion

3.1. verA Gene and HAMA Intermediate

This work demonstrated that verA gene is involved in building the xanthone moiety of DMST
or DHDMST in the biosynthesis of AF. The postulated pathway of the conversion of VA to DMST
is shown in Figure 7. The verA disruptant accumulated a novel intermediate, HAMA, which is a
precursor of AFB1/AFG1 (Figure 3B). The molecular mass of HAMA was 374, and HAMA changed
non-enzymatically to DMST and STM at the ratio of 1:1 (Figure 3E,F). Since TLC-purified HAMA also
contained much smaller amounts of DHDMST and a metabolite presumed to be DHSTM (Figure 3E),
DHHAMA seemed to be contaminated in the HAMA sample. We thus suspect that verA gene is
involved in the reaction from HAMA to DMST as well as the reaction from DHHAMA to DHDMST in
AF biosynthesis. STM and DHSTM have not been isolated from aflatoxigenic fungi because the HAMA
and DHHAMA that are transiently formed as intermediates of AFs are immediately changed to DMST
and DHDMST, and to AFs. In contrast, STM was isolated from A. nidulans stcP disruptant because
the conversion step from DMST to ST was completely blocked by the gene disruption (Figure 6A).
Kelker et al. [37] showed that a significant amount of the substance thought to be STM together with
DMST was produced in the A. nidulans stcP disruptant. Like A. nidulans, A. versicolor species produce
ST as an end-product, and Hamasaki et al. first isolated STM from A. versicolor (Vuillemin) Tiraboschi.
The accumulations of ST and other later intermediates in ST biosynthesis may be a key to the successful
isolation of STM.
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Figure 7. The postulated pathway of the conversion of VA to DMST via the formation of HAMA
(intermediate 7). ver-1, hypA and ordB are involved in the pathway from VA to HAMA, because each
gene disruptant converted HAMA to AFB1 and AFG1. HAMA is shown as intermediate 7a or 7b
based on the molecular mass (374); 7a and 7b are different conformers of HAMA. The LC-MS analysis
showed that HAMA is composed of two types of conformers, and each conformer corresponds to
either an STM-like structure and a DMST-like structure. Although either conformer of HAMA is
speculated to be non-enzymatically converted to DMST or STM, VerA giostereospecifically converts
either conformer to intermediate 8 through dehydration and decarboxylation and then converts
the resulting intermediate 8 to DMST through dihydroxylation (pathway a). Intermediate 8 is also
non-enzymatically converted to DMST (pathway a) and STM (pathway b) at the ratio of 1:1 in their
quantities. The same reaction steps may be involved in the formation of DHDMST from VB except that
all intermediates are dihydro-derivatives of the intermediates of the 1-group AFs.

Aspergillus ustus produces austocystins A–I as its secondary metabolites. Like STM, these
substances have a linear fusion structure of the xanthone and dihydrobisfuran moieties. Since A. ustus
does not produce DMST, another enzyme for regiospecific ring closure to make the linear structure of
austocystins A–I would work in this species. A comparison of this possible enzyme to VerA enzyme
would be useful for gaining a better understanding of the stereospecific reactions of the intermediates.

We also observed that the heat treatment of the culture medium of verA disruptant with autoclaving
greatly decreased (7–13%) the production of AF when the treated culture medium was used in the
feeding experiment (Table 4, Exp. 1), suggesting that heat treatment caused a disruption of HAMA’s
structure. In contrast, the acid or alkaline treatment of the culture medium caused a partial decrease
(89–43%) of AF production in the feeding experiments (Table 4, Exp. 2). We suspect that this partial
inhibition is due to the productions of DMST and STM from HAMA by the pH changes. The structural
changes of HAMA caused by these treatments remain to be studied.

The HPLC analysis revealed that the verA disruptant produced a slight amount of AFG1 (Table 2).
However, the TLC analysis of the culture medium and the mycelial extract of the verA disruptant
indicated that they produced small but significant amounts of AFB1 and AFG1, suggesting that the
disruptant might be a leaky mutant (Figure 3A, lanes 1 and 2). However, these results are not easily
understood because verA gene encodes a cytochrome P450 monooxygenase, and the reaction for
making the xanthone structure seems to be too unique for another enzyme to be substituted for VerA
enzyme. It is possible that a small amount of HAMA accumulates in cells of the verA disruptant
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and then non-enzymatically change to DMST in the cells, and the resulting DMST is fed by the verA
disruptant to produce AFB1 and AFG1. A future study should determine whether the verA disruptant
is leaky.

3.2. The Postulated Pathway from VA to HAMA

A. parasiticus verA (aflN) gene was originally suspected to be a homolog of A. nidulans stcS gene
based on the homology (75%) of their deduced amino acid sequences [16]. Our present findings
confirmed that the verA gene is not a homolog of A. nidulans stcS gene. The pathway from VA to
DMST contains a step for the formation of the xanthone structure from the anthraquinone moiety
in the biosynthesis of AF. We propose that the ver-1, ordB, and hypA disruptants are involved in the
conversion of VA to HAMA pigment, and that the verA gene is involved in the reaction from HAMA to
DMST (Figure 7).

Although the ver-1 and hypA disruptants did not produce any AFs, the ordB disruptant produced
small amounts of AFs (Figure 4A), which was previously reported [27]. The co-culture of two of
verA, ver-1, ordB and hypA disruptants remarkably enhanced the production of AFs (Figure 4B,C),
indicating that these genes have differing functions in AF biosynthesis. Ehrlich et al. [27] suggested
that the common accumulation of VA by the ver-1, ordB and hypA disruptants may be due to their work
as an enzyme complex in AF biosynthesis. In the present study, we searched for any related enzymatic
activities in the pathway from VA to DMST by using cell-free systems of each disruptant, and we did
not detect any significant enzyme activities. The detailed enzyme reactions remain to be investigated.

The pathway from VA to DMST has been speculated to be composed of the epoxidation of the
anthraquinone moiety of VA, reduction, Baeyer-Villiger oxidation, and decarboxylation [40]. We herein
hypothesize the existence of a reaction scheme in which intermediates 1–8 are involved in the pathway
from VA to DMST (Figure 7). Since ordB is thought to encode a metal-oxidase [28], we suggest
that OrdB enzyme may catalyze the epoxidation of VA and the subsequent epoxide ring-opening
step of intermediate 1. In contrast, ver-1gene had been suggested to encode an NADPH-dependent
reductase [29]. Since the reactions from intermediates 2 to 4 are composed of two successive reduction
reactions, we suspect that the Ver-1 enzyme catalyzes these reactions.

We observed that these disruptants also accumulated minor products together with VA and that the
minor products were different depending on each disruptant. Among them, we determined that hypA
disruptant accumulated a small amount of 6-deoxyversicolorin A, and the same result was obtained by
Erlich et al. [27]. In contrast, ver-1 and ordB disruptant accumulated small amounts of other substances,
which were not identified herein. Although HypA enzyme has no typical homologous domain to
other proteins, Erlich et al. [27] expected that the amino acid sequence of HypA enzyme would have
partial similarity to those of some enzymes related to a Baeyer-Villiger reaction. We speculated that
HypA enzyme may catalyze the reaction from intermediate 5 to intermediate 6 and the next hydrolytic
ring opening of intermediate 6 to afford HAMA 7. The involvement of HypA enzyme in this step
may explain why the hypA disruptant produced a small amount of 6-deoxyVA together with the
major product, VA. The 6-deoxyVA is suspected to have been produced from intermediate 5 through a
dehydration reaction. Since strain NIAH-26 fed with 6-deoxyVA did not produce any AFs, we speculate
that 6-deoxyVA is a dead-end product derived from an intermediate for AF production.

3.3. The Postulated Pathway from HAMA to DMST

VerA enzyme catalyzes the reactions from HAMA 7 to DMST (Figure 7). The enzyme catalyzes
two steps: the concerted decarboxylation and dehydration of HAMA 7 to afford intermediate 8, and the
regiospecific ring-forming dehydrogenation of 8 to give DMST. In the LC-MS analyses, HAMA gave
two peaks (Figure 5), suggesting some possibilities regarding its structural features; one is that HAMA
gives two conformers (7a and 7b) because of a restricted rotation around the bond with steric hindrance
as well as a hydrogen bond between the ketone carbonyl and phenolic hydroxyl as shown in Figure 7.
The other possibility is that HAMA has two chiral centers on the cyclohexenone moiety and gives two
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diastereomers. The reaction steps from VA to HAMA are enzyme-catalyzed steps and are suspected to
be stereospecific. Therefore, the former has higher possibility.

Both conformers 7a and 7b could be changed to the same intermediate 8. We also speculate that
one of the two conformers 7a and 7b would be selectively bound on the substrate binding site of VerA
enzyme, and then converted to intermediate 8 and DMST. The remaining conformer would be changed
to the other conformer that is suitable for the VerA enzyme reaction through a rotation around the
bond at C-9 and C-9a of the HAMA molecule.

Our present results demonstrated that HAMA can non-enzymatically change to DMST and STM
at the ratio of ~1:1 in their quantities (Figure 3D–F and Figure 5B). The yellow color of the spots of
HAMA on the TLC plates changed to dark red, which is the same color as those of ST derivatives such
as DMST and STM under UV light. The repetitions of the drying and solubilization of the HAMA
increased the amounts of DMST and STM. These results indicated that decarboxylation, dehydration,
and dehydrogenation can occur spontaneously. Since STM did not serve as a precursor of AFs in the
feeding experiment with NIAH-26 mutant, we speculate that STM is an artificial dead-end product
from intermediate 8.

Therefore, VerA enzyme is the key enzyme for the formation of the xanthone structure of various
ST derivatives. Since acute toxicity and carcinogenicities have been reported after xanthone structure
formation, VerA enzyme is also involved in the appearance of these toxicities. We also speculate
that because aflatoxigenic fungi produce 2-group AFs (AFB2 and AFG2) together with 1-group AFs
(AFB1 and AFG1), VerA enzyme is involved in the reaction from VB to DHDMST through the formation
of DHHAMA.

4. Materials and Methods

4.1. Fungal Strains

A. parasiticus SYS4 (NRRL-2999), the wild-type AF-producing strain, was used as a recipient strain
for gene disruption. A. parasiticus NIAH-26, a UV-irradiated mutant from strain SYS4, produces all
enzymes in the AF biosynthesis pathway from norsolorinic acid to AFs, although it produces neither
AFs nor any precursors [41,42]. We used the NIAH-26 mutant for the feeding experiments. We isolated
disruptants of verA, ver-1, hypA and ordB genes herein and used them for the characterization of
function of verA gene. A. parasiticus [pks-fas-1]−, which has the deletion of the 18-kb region from the pks
gene to fas-1 in the AF gene cluster of strain NR-1 [21], was used for the examination of the stability of
the HAMA substance. Strains A. nidulans FGSC26 and TAHK64.42 (stcP deletion mutant of FGSC26)
were a kind gift from Dr. Nancy Keller [37].

4.2. Metabolites

Aflatoxin B and G mixture was purchased from Sigma-Aldrich Co. (St. Louis, MO, USA). NA [43],
AVN [41], and VHA were obtained as reported [44]. VA [45,46], ST [46], DMST, DHDMST [47],
and STM [33] were prepared from mycelia of A. versicolor (Vuillemin) Tiraboschi as described in those
studies. OMST was prepared by the methylation of ST with methyl iodide and sodium carbonate in
acetone [48].

The concentrations of the metabolites in methanol were determined from UV absorption spectra
by using the following molar absorption coefficients (λmax) [22,36]: AVN, 6700 M−1 cm−1 (453 nm);
VHA, 7300 M−1 cm−1 (480 nm); VA, 8166 M−1 cm−1 (452 nm); ST, 16,900 M−1 cm−1 (324 nm); DMST,
19,100 M−1 cm−1 (335 nm); DHDMST, 19,400 M−1 cm−1 (335 nm); OMST, 16,500 M−1 cm−1 (310 nm);
and STM, 16,900 M−1 cm−1 (324 nm).

4.3. Media and Culture Conditions

For the production of AFs and metabolites produced by fungi, YES medium (2% yeast extract,
20% sucrose) or GY agar medium (2% glucose, 0.5% yeast extract, and 2.0% agar) was used. For the
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culture of A. nidulans strains, oat flake medium (3 g of oat flakes and 0.5 mL of water) (Keller medium)
was used.

For the standard culture followed by a thin-layer chromatography (TLC) or high-performance
liquid chromatography (HPLC) analysis, the tip culture method was used [41]. Spores (approx. 1 × 10−4)
of each SYS4 and various gene disruptants were inoculated into 250 µL of YES medium in a 1-the
ml pipetman tip. After culture at 28 ◦C for 4 days, culture media and the mycelia were separated
by centrifugation and then used for further analyses. For the preparation of larger amounts of
intermediates for the physico-chemical analyses of HAMA, the verA disruptant was cultured in 100 mL
of YES medium at 28 ◦C for 4 days [49]. Aliquots of the medium were used for the TLC and the LC-MS.

4.4. Preparation of verA Disruptant

To construct the verA disruption vector, three steps were taken: the 2-kb PstI/KpnI polymerase
chain reaction (PCR) fragment (pcr1) of the selectable marker gene ptrA [50] was amplified with
primer pair P19/P20 (Table 1) and inserted into the corresponding sites in the pSP72 vector (Figure 2B).
Then, a 1.2-kb fragment of the upstream of verA and the 3′ coding region of ver-1 (pcr2) and a 1.45-kb
fragment of the downstream of verA and the 3′ coding region of avnA (pcr3) were amplified using
A. parasiticus SYS4 genomic DNA as the template. The two primer pairs P7/P8 and P9/P10 with
their restriction endonuclease sites are underlined and the enzymes are indicated in parentheses in
Table 1. The XhoI-PstI fragment from pcr2 and the KpnI-BglII fragment from pcr3 were cloned into the
corresponding sites in the pSP72 bearing ptrA to give the disruption vector, pVERA-DD. The sequence
of pVERA-DD was checked by a restriction analysis. For transformation, pVERA-DD was linearized
with Cfr9I to release the 4.5-kb insertion part from the pSP72 vector.

For fungal transformation, the preparation of the protoplasts from A. parasiticus SYS4 and the
transformation with DNA were performed as described by Wen et al. [49] with some modifications.
For the transformation of Cfr9I-digested pVERA-DD, 4–8 µg of DNA was added to 0.1 mL of protoplasts.
The pyrithiamine (PT)-resistant transformants were screened on CDA regeneration medium with
0.1 µg mL−1 pyrithiamine [50]. Approximately 90–120 PT-resistant transformants per 6 µg of DNA
was obtained. The transformants were then transferred to a GY agar plate and cultured.

The desired verA disruptant was then selected by assessing the impairment of AF production by
UV photography [51]. On a UV picture taken under 365-nm UV light, the AF production-impaired
disruptants appeared as white colonies, and the AF-producers were identified as gray or black colonies.
Confirmation of the deletion was performed by PCR analysis. DNA of the white mutant was prepared
using FastPrep FP100A (Qbiogene, Carlsbad, CA, USA) as described [49].

To investigate the replacement of the verA gene with the ptrA marker gene by PCR, we used three
PCR primer pairs (Table 1): P3/P6 and P4/P5 for testing the insertion of ptrA into SYS4 genomic DNA,
and P1/P2 for testing the deletion of verA. After we compared the PCR results for transformants with
those for the recipient strain, the selected verA disruptant was purified three times by single colony
isolation on GY plates. The mutation in these selected verA−/SYS4 transformants was re-confirmed by
PCR. The deletion of the verA gene in the genome was also confirmed by a Southern analysis.

Total genomic DNA of verA mutant and strain SYS4 was subjected to restriction enzyme
digestion with EcoRI and separated by agarose gel electrophoresis, followed by blotting to a
Hybond-N+ membrane (GE Healthcare, Buckinghamshire, UK). The filters were hybridized with
the verA and ptrA probes. The 0.83-kb verA probe was amplified from genomic DNA using primer
pairs verA-F442 [5′-GTTTCGACTCCCTCGGC-3′] and verA-R2922 [5′-TGCGGCCCTGAGCTTCT-3′].
The 2.0-kb ptrA probe was amplified from pPTRI plasmid (Takara Bio, Shiga, Japan) using the primers
as described [52]. Hybridization and detection were performed using the Alkphos Direct Labelling
and Detection System (GE Healthcare, Chicago, IL, USA) according to the supplier’s manuals.
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4.5. Preparation of ver-1, ordB, and hypA Deletion Mutants

To delete the ordB gene in the genome of A. parasiticus SYS4, we constructed the ordB gene disruption
plasmid, pORDB-L/R, in a two-step procedure. A 1.4-kb fragment (ordB-R) of the 3′-flanking region of ordB
gene including the 3′ non-coding sequence of the gene and the coding sequence of moxY gene and a 1.4-kb
fragment (ordB-L) of the 5′-flanking region of the ordB gene including the 3′-non-coding region and the
coding sequence of hypA gene were amplified by PCR using two sets of primer pairs with endonuclease
restriction sites underlined to facilitate sub-cloning. Pair 1: ordB-L-F [5′-GAAGACCGCGGAGAATGG-3′]
and ordB-L-KpnI-R [5′-CGGGGTACCGCCCACCTCTTCGTACCTAG-3′]. Pair 2: ordB-R-HindIII-R
[5′-CCCCAAGCTTGCAATTGTGTAGTCTTCTCTGG-3′] and ordB-R-SalI-F [5′-AACGCGTCGACGTTGA
CGGAGGATCTGTTAGC-3′].

The resulting PCR products were successively cut with KpnI for the 3′-flanking region and
HindIII/SalI for the 5′-flanking region, and then inserted into the pSP72-ptrAKpnI/EcoRV and HindIII/XhoI
sites to give a pORDB-L/R, which was then linearized by BglII and Eam1105I. The final linear replacement
construct, which contained the 2-kb selectable marker ptrA flanked by a 1.4-kb fragment of the
3′-flanking region and a 1.35-kb fragment of the 5′-flanking region was used for transforming the SYS4
strain. Fungal protoplast preparation and transformation with DNA were performed as described [49].
The PT-resistant transformants were screened for CDA regeneration medium with 0.1 mg L−1 PT as
described above or as described by Kubodera et al. [50] and then transferred to a GY agar plate to
detect decreases in AF production and accumulations of the precursors. The genomic DNAs of the
resulting RT-resistant transformants were prepared for a PCR analysis to confirm the detection of the
ordB gene in the transformants.

To delete the hypA gene in the genome of A. parasiticus SYS4, we constructed the hypA gene
disruption plasmid, pHYPA-L/R, in a two-step procedure. A 1.3-kb fragment (hypA-R) of the 3′-flanking
region of the hypA gene including the 3′-non-coding sequence of the gene and the coding sequence
of ordB gene and a 1.4-kb fragment (hypA-L) of the 5′- flanking region of the hypA gene including
the 5′-non-coding region of the gene and the coding sequence of nadA gene were amplified by PCR
using two sets of primer pairs with endonuclease restriction sites underlined to facilitate sub-cloning.
Pair 1: hypA-L-SalI-R [5′-AACGCGTCGACGGTTCTGCTTGGCTGGG-3′] and hypA-L-HindIII-F
[5′-CCCCAAGCTTCATGATACAGATTGAGTGCGAC-3′]. Pair 2: hypA-R-KpnI-F [5′-CGGGGTACCC
GTATCTCAGTTATGCAATGTCTC-3′] and hypA-R-R [5′-AGTCCAATGCCGTCAAC-3′].

The resulting PCR products were successively cut with SalI/HindIII for the 3′-flanking region and
KpnI for the 5′-flanking region, and then inserted into the pSP72-ptrA XhoI/HindIII and KpnI/EcoRV
sites to give a pHYPA-L/R, which was then linearized by BglII. The final linear replacement construct,
which contained the 2-kb selectable marker ptrA flanked by a fragment of the 3′-flanking region and a
fragment of the 5′-flanking region was used for transforming the SYS4 strain. The transformation,
screening, and characterization of the PT-resistant transformants were performed as described above.

To delete the ver-1 gene in the genome of A. parasiticus SYS4, we made the ver-1 gene
disruption construct in a two-step procedure. A 1.1-kb fragment of the 5′-flanking region of
ver-1 gene including the 5′ non-coding upstream sequence of the gene and the coding sequence
of norA gene and a 1.1-kb fragment of the 3′-flanking region of the ver-1 gene including the
3′-non-coding downstream region of ver-1 and the coding sequence of verA gene were amplified by
PCR using two sets of primer pairs with endonuclease restriction sites underlined to facilitate
sub-cloning. Pair 1: norA-XhoI-F [5′-ATGCATTTGCTCGAGCCAACGGACTTACCC-3′] and
ver-1-up-PstI-R [5′-AAAACTGCAGCTCTGCCTCTATCCAAAGCC-3′]. Pair 2: ver-1-down-KpnI-F
[5′-GGGGTACCCGCTATATACTCGTGGGTGA-3′] and verA-BglII-R [5′-GCCGGACGAGAATTGCTG
GGAGATCTTCAG-3′]. A 2-kb selectable marker ptrA gene was amplified by PCR using the
primer pairs pPTRI-KpnI-F [5′-GGGGTACCGGGCAATTGATTACGGGATCCCA-3′] and pPTRI-PstI-R
[5′-AAAACTGCAGTGACGATGAGCCGCTCTTGC-3′] and pSP72-ptrA. The resulting three PCR
products were combined by ligase, and the final linear replacement construct was used for transforming
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SYS4 strain. The transformation, screening, and characterization of the PT-resistant transformants
were performed as described above.

4.6. TLC and HPLC Analyses of AFs

After the tip cultures of SYS4 or each of the disruptants and then centrifugation, metabolites in
the culture medium were extracted with an equal volume of chloroform, and the resulting extract was
analyzed by TLC or HPLC. For detection of metabolites in mycelia, the mycelia in the tip was extracted
with 800 µL acetone, and the resulting acetone extract was air-dried by keeping it at room temperature
in dark condition. The resulting debris was solubilized by adding 100 µL of benzene:acetonitrile
(98:2, v/v), and the extract was analyzed by TLC.

The extracts of culture medium and mycelial extract were spotted onto a silica gel TLC
plate (Silica Gel 60; Merck, Darmstadt, Germany) and then developed with solution A containing
chloroform:ethyl acetate: 90% formic acid (6:3:1, v/v/v). Fluorescence of the metabolites on the TLC
plate was observed under 365-nm UV light and photographed with an Olympus C-745 digital camera.
In some cases, the TLC plate was observed under 300-nm UV light and photographed with Fluor-S™
MultiImager (Bio-Rad, Hercules, CA, USA) for the detection of AFs. For the characterization of
substances derived from HAMA or metabolites, strain NIAH-26, ordB-, hypA-, and verA-disruptants
were also analyzed by TLC using solution B containing benzene:ethyl acetate (8:2, v/v) with 10%
acetic acid.

For the measurement of the amounts of AFs using HPLC, the chloroform extract of the medium
was analyzed with an HPLC apparatus (model SCL-10Avp; Shimadzu, Kyoto, Japan) equipped with a
fluorescence monitor (excitation wavelength, 365 nm; emission wavelength, 425 nm; model RF-535,
Shimadzu, Kyoto, Japan) and a silica gel column (0.46 × 15 cm; Shim-pack CLC-SIL; Shimadzu,
Kyoto, Japan) at 35 ◦C. The flow solvent was solution C: toluene, ethyl acetate, formic acid (90%),
and methanol (178:15:4:3, v/v/v/v), and the flow rate was 1 mL min−1 [21]. The retention times of the
AFs were compared with those of standard samples (aflatoxin B-aflatoxin G mixture; Sigma-Aldrich,
St. Louis, MO, USA).

4.7. Feeding Experiments for Aflatoxin Production

We used the tip culture method for the feeding experiment (Figure 3A). Conidiospores
(approx. 1.5 × 105) of either verA disruptant or strain NIAH-26 was inoculated into 250 µL of YES
medium supplemented with 30 µM VHA, VA, DMST, ST, or OMST and cultured at 28 ◦C for 4 days.
The AFs in the media were measured by HPLC. For the feeding experiment with HAMA, strain NIAH-26
was incubated by tip culture using YES medium supplemented with TLC-purified HAMA. In addition,
NIAH-26, ver-1 disruptant, hypA disruptant, and ordB disruptant were each individually incubated in
tip cultures using YES medium supplemented with an equal volume of filter-sterilized 4-day cultured
medium of verA disruptant for 4 days. The resulting medium was analyzed by either TLC or HPLC.

4.8. Co-Incubation of Two Disruptants among verA, ver-1, ordB, and hypA Disruptants

Conidiospores (approx. 1.5 × 105) of each two of four verA, ver-1, ordB and hypA disruptants were
inoculated into the same tip culture and incubated at 28 ◦C for 4 days. After the separation of culture
medium from mycelia by centrifugation, the culture medium was analyzed by silica-gel TLC.

4.9. Preparation of HAMA Pigment

For the preparation of HAMA pigment, the culture medium of the verA disruptant was extracted
with an equal volume of ethyl acetate, and the resulting extract was used for TLC or LC-APPI-MS
analysis. For the purification of HAMA, HAMA pigment in the culture medium of the verA disruptant
was purified by using Diaion HP20 (Mitsubishi Chemical Co. Tohyo, Japan), and the resulting extract
was concentrated and used for LC-ESI-MS. For small scale purification of HAMA pigment, the extract
of the culture medium of verA disruptant was analyzed by TLC, and the yellow part (HAMA) on the
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TLC plate was scraped and then extracted with ethyl acetate. The resulting extract was concentrated
and then used for characterization of HAMA.

4.10. Characterization of HAMA Pigment

For the detection of the formations of DMST and STM from HAMA, we further analyzed HAMA
pigment (which had been purified by TLC using solution A) by performing a TLC analysis using
solution B again (Figure 3D). We measured the ethyl acetate extract of the culture medium of the verA
disruptant or the TLC-purified HAMA by HPLC using the SCL-10Avp HPLC apparatus equipped with a
UV-VIS spectrophotometric detector (model SPD-6AV, Shimadzu, Kyoto, Japan) and an octadecyl silane
column (0.46 × 15 cm; STR ODS-II; Shinwa Chemical Industries, Kyoto, Japan) at room temperature.
Absorption at 330 nm was monitored, and the solvent system was solution D: 75% methanol aqueous
solution with a flow rate of 1 mL min−1 by monitoring absorption at 330 nm. The retention times of
DHDMST, DMST, and STM were compared with those of the authentic standards (13.8 min, 15.0 min,
and 19.8 min), respectively.

To test the stability of HAMA, we examined the heat stability of the pigment after the culture
medium of the verA disruptant was autoclaved at 121 ◦C for 15 min and then cooled. The [pks-fas]−

strain was cultured with the treated HAMA, and the resulting culture medium was analyzed by HPLC.
The acid and alkaline stabilities of the pigments were also examined by changing the pH of the culture
medium of verA disruptant to pH 1.5 or pH 11.0 by adding 1 M HCl or 1 M NaOH, followed by
incubation at room temperature for 3 h. After the pH of the solution was readjusted by adding the
same volume of 1 M NaOH or 1 M HCl, respectively, the resulting solution was used for the feeding
experiment with strain NIAH 26 using the tip culture method.

For the determination of the effect of the repetition of drying followed by solubilization, we dried
the extract of the TLC-purified HAMA after the elution of the TLC spot with ethyl acetate with
N2 gas in a microtube; the debris was then solubilized in methanol. These procedures of drying and
solubilization were repeated several times. The resulting solutions were analyzed by HPLC using the
ODS column and solution D.

4.11. LC-MS Measurements

The pigment HAMA that accumulated in verA disruptant was analyzed by liquid
chromatography-mass spectrometry (LC-MS) using three conditions as follows:

Condition [A]: HPLC condition column: YMC-UltraH Pro C18 (2.0 mm I.D. × 50; YMC America,
Allentown, PA, USA), solvent A: 0.1% formic acid in water, solvent B: 0.1% formic acid in CH3CN;
gradient: 0 min 10% B, 2 min 10% B, 10 min 100% B, 13 min 100% B, 15 min 10% B; Detection:
DAD 220–340 nm MaxPlot; MS + ESI (m/z 100–1000), −ESI (m/z 100–1000).

Condition [B]: The LC-MS 2010A system (Shimadzu, Kyoto, Japan) consisted of an LC-VP
separation module equipped with an SPD-M10AVp photodiode array (PDA) detector and a
single-quadrupole mass spectrometer with an atmospheric pressure photoionization (APPI) source
probe. Solvent A, 5 mM ammonium acetate in water; solvent B, methanol; gradient: 0 min 10%,
2 min 10%, 17 min 95%, 22 min 95%, 23 min 10%, and 30 min 10%. MS + APPI (m/z 100–500),
−APPI (m/z 100–500) An Inertsil column (150 mm × 2.1 mm, 5 mm, Supelco, Bellefonte, PA, USA) was
used, and the flow rate was 0.2 mL min−1.

Condition [C]: the LC-MS conditions were the same as those in condition [B] except that the carrier
solvent was set as an isocratic mixture of methanol and 5 mM ammonium acetate in water (40:60, v/v).

4.12. Substances Accumulated by the stcP Disruptant of A. nidulans

We analyzed the metabolites produced by A. nidulans TAHK64.42 (stcP disruptant) and FGSC26
(the wild strain) as described [37] with minor modifications. Conidiospores (approx. 1.5 × 105) of
either strain were cultured in oat flake medium (3 g oat flakes and 0.5 mL water) at 28 ◦C for 5 days.
Metabolites of fungus ware extracted twice with the same volume of acetone-chloroform solution.



Int. J. Mol. Sci. 2020, 21, 6389 19 of 22

The resulting pooled extract was concentrated and then analyzed by silica-gel TLC using benzene:acetic
acid (95:5, v/v). Compounds on the TLC plate were visualized by spraying 10% (wt./vol) aluminum
chloride solution in ethanol and heating. For the quantitative measurement of the metabolites, the part
corresponding to either spot of STM or DMST was scraped and extracted with ethyl acetate. The extract
was then analyzed by HPLC using an ODS column and solution D.

5. Conclusions

We clarified that verA gene in the aflatoxin gene cluster is involved in the step to make the
xanthone structure of demethylsterigmatocystin as well as dihydrodemethylsterigmatocystin in
aflatoxin biosynthesis.

Author Contributions: Conceptualization, H.Z. and K.Y.; productions and characterizations of gene disruptants,
H.Z., J.C. and H.H.; methodology, H.Z. and K.Y.; LC-MS analysis, H.N. (Hiroyuki Nakagawa) and
H.N. (Hiromitsu Nakajima); reaction schemes, H.N. (Hiromitsu Nakajima) and K.Y.; writing—original draft
preparation, K.Y.; writing—review and editing, H.N. (Hiromitsu Nakajima) and K.Y.; supervision, K.Y.; project
administration, K.Y.; funding acquisition, K.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the JSPS Postdoctoral Fellowship program of the Japan Society for the
Promotion of Science, and by the Research Project for Improving Food Safety and Animal Health from Ministry of
Agriculture, Forestry and Fisheries, Japan

Acknowledgments: We thank Nancy Keller for the gifts of A. nidulans TAHK64.42 and FGSC26, and Yoko Shima
for doing the Southern analyses. The DNA search of the GenBank database was performed with the assistance
of the Computer Center of Agriculture, Forestry and Fisheries Research, Ministry of Agriculture, Forestry and
Fisheries, Japan.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AF aflatoxin
HAMA a novel precursor of AF, which accumulates in the mycelia as well as the culture medium of the

verA disruptant
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DMST demethylsterigmatocystin
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PCR polymerase chain reaction
TLC thin-layer chromatography
HPLC high-performance liquid chromatography
LC-MS liquid chromatography-mass spectrometry
DNA deoxyribonucleic acid
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