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Abstract: Deep eutectic solvents (DES) are an important class of green solvents that have been
developed as an alternative to toxic solvents. However, the large-scale industrial application of DESs
requires fine-tuning their physicochemical properties. Among others, surface tension is one of such
properties that have to be considered while designing novel DESs. In this work, we present the
results of a detailed evaluation of Quantitative Structure-Property Relationships (QSPR) modeling
efforts designed to predict the surface tension of DESs, following the Organization for Economic
Co-operation and Development (OECD) guidelines. The data set used comprises a large number
of structurally diverse binary DESs and the models were built systematically through rigorous
validation methods, including ‘mixtures-out’- and ‘compounds-out’-based data splitting. The most
predictive individual QSPR model found is shown to be statistically robust, besides providing
valuable information about the structural and physicochemical features responsible for the surface
tension of DESs. Furthermore, the intelligent consensus prediction strategy applied to multiple
predictive models led to consensus models with similar statistical robustness to the individual QSPR
model. The benefits of the present work stand out also from its reproducibility since it relies on fully
specified computational procedures and on publicly available tools. Finally, our results not only
guide the future design and screening of novel DESs with a desirable surface tension but also lays
out strategies for efficiently setting up silico-based models for binary mixtures.

Keywords: DES; surface tension; in silico-based models; QSPR; validation; consensus modeling

1. Introduction

The last two decades have witnessed a significant shift in the design and development
of new chemicals for large-scale industrial applications. One of such efforts has been driven
towards the replacement of flammable and environmentally hazardous substances with
green and sustainable solvents. More benign solvents, even if dispensed in a large amount
into the environment, are known to produce less harmful effects [1–3]. Deep eutectic
solvents (DES) represent a class of “green solvents” with tremendous potential to replace
conventional toxic chemicals. Indeed, apart from having a wide range of applications, DESs
exhibit much less environmental toxicity, even when compared to their predecessor, ionic
liquids (ILs) [4,5]. Thus, it is not surprising that the emergence of DESs at the beginning of
this century drew considerable attention from the scientific community, as is confirmed by
the growing number of publications related to DESs in the last two decades [4,5]. DESs may
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simply be defined as the low melting point mixture of at least two compounds, one acting
as a hydrogen bond acceptor (HBA) and another as a hydrogen bond donor (HBD) in a
specific molar ratio [6,7]. Their low melting point, which is a result of complex hydrogen
bonding interactions between the components of DESs, allows them to remain in the
liquid phase at room temperature [8]. Besides being less eco-toxic in nature, DESs are
generally easy to prepare, cost-effective and biocompatible [7–9]. However, even with
many advantages, the suitability of any chemical for long-term industrial applications
often depends on its fundamental physical properties, such as density, viscosity, surface
tension, vapor pressure, the speed of sound etc. [4,5], and DESs are of no exception. The
physicochemical profile of a DES can readily be tailored by choosing different combinations
of their starting components or by modifying their chemical structures [10,11]. Still, the
number of possible combinations that can be envisaged to form DESs is extremely high. As
such, without detailed knowledge of the relation between structure and properties, their
fine-tuning is barely applicable in practice and often limited to a trial-and-error procedure.

Surface tension is one of the most crucial physical properties that must be considered,
as it is required for the set-up of industrial processes, such as the design of heating systems,
distillation columns and heat exchangers [12]. Therefore, the measurement of their surface
tension is essential to assess the suitability of DESs for industrial applications. Normally,
with increasing temperature, the surface tension of a DES decreases, but it is well-known
that its components and their molar ratio are also responsible for their resulting surface
tension [13].

Previously, we have reported a general thermodynamic model to estimate the surface
tension for DESs of different nature [14]. The model has been developed with an up-
to-date data bank containing surface tension values for a large number of structurally
diverse DESs. The question that yet remains is whether a more predictive model for the
surface tension of DESs can be achieved by alternative in silico-based modeling approaches
such as the one proposed here, Quantitative Structure-Property Relationships (QSPR). In
fact, the application of QSPR modeling techniques has long stood as particularly useful
to estimate a wide range of properties of different materials [15–21]. Thus, many QSPR
modeling studies have been devoted to different physicochemical properties of DESs.
Very recently, for example, Wang et al. developed QSPR models based on Conductor-like
Screening Model for Real Solvents (COSMO-RS) descriptors for characterizing the CO2
solubility in DESs [22]. The authors found that the linear model was unable to successfully
fit the whole dataset but a random forest non-linear model showed greater reliability,
judging from the Absolute-Average-Relative-Deviation (AARD) value of 7.8% attained
for that data (59 DESs). Balali and co-workers developed also QSPR models for probing
the thiophene distribution between choline chloride (ChCl)-based DES and hydrocarbon
phases in ternary systems [23]. The proposed linear models displayed good accuracy
and included topological descriptors, which indicate the influence of the degree of the
structure of HBDs on the thiophene distribution. In another study, Khajeh et al. employed
QSPR modeling for predicting the melting and freezing points of DESs [24]. Their results
showed that both properties of 181 DESs could be predicted with good accuracy (R2~0.80)
by the derived linear models. Multiple attempts have been undertaken as well to set
up linear and non-linear QSPR-based models for estimating the density and viscosity of
DESs [25–27]. All the later models resorted to COSMO-RS descriptors and showed great
predictivity performance (R2 > 0.95). However, these models have been based on a small
number of data points pertaining to just certain families of DESs (e.g.: 49 hydrophilic [26]
or 54 hydrophobic [27] DESs), which thus limits their general applicability.

The present work is encouraged by our very recent QSPR modeling efforts on the
density of DESs [28], which yielded statistically more robust models than a thermodynamic
model developed with the same dataset [29]. On one hand, such QSPR efforts demonstrated
to offer more options and versatility for setting up predictive models as compared to
thermodynamic modeling. On the other hand, QSPR models demand several statistical
conditions be satisfied just as inspected here as per the guidelines of the Organization for
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Economic Co-operation and Development (OECD) [30] to expand their overall applicability
as well as statistical reliability [31]. Moreover, in order to address the requirement of robust
validation strategies applicable for the binary mixtures, we have recently designed an
open-source standalone Python-based tool “QSAR-Mx” (freely available to download at
https://github.com/ncordeirfcup/QSAR-Mx, last accessed on 28 April 2022) [28]. This
work extensively utilizes such a tool to set up the predictive QSPR models for probing
the surface tensions of DESs. Therefore, the scope of the current work goes beyond the
development of QSPR models by proposing and comparatively testing novel methodologies
that can be utilized in the future towards reliably predicting the properties of binary
mixtures.

2. Materials and Methods
2.1. Dataset Collection and Splitting

The dataset employed for the development of the QSPR models was adopted from
our previously published work on DES surface tension estimation [14]. It contains 553 data
points, compiled from 112 different binary and ternary DESs of diverse compositions. How-
ever, here we solely focused on binary DESs and therefore the current dataset was reduced
to 530 data points pertaining to 99 different binary DESs. This dataset was combined with
an additional set comprising 89 data points that were collected from measurements reported
in the literature since 2020 [32–35] and that, thus, were not included in our previously
thermodynamic model. The final dataset comprises 619 unique data points coming from
113 different types of binary DESs. It is worth noting that the experimental surface tension
of each DES in the dataset was measured at atmospheric pressure in a large temperature
range (278.15–358.15 K), rendering the temperature an important independent variable to
consider in the QSPR modeling for understanding how it influences such physical property.

Predictive validation is a required but delicate task in any QSPR modeling—i.e., to
assess model adequacy to new mixtures, and it is related directly to the dataset division
scheme adopted. In fact, as shown by Muratov et al. [36], the random division of the original
dataset for validation purposes is unacceptable since it can lead to unreliable QSPR models
and to an over-optimistic estimation of their predictive performance. The authors have
thus proposed and described in detail different validation strategies for the QSPR modeling
of mixtures [36]. In this work, two such validation strategies were utilized to search for the
most predictive QSPR models, namely: the mixtures-out (MO) and compounds-out (CO)
schemes. Briefly, in the MO scheme, mixtures of the modeling set are distributed among
the training and the test sets without repetition. By contrast, in the CO scheme, at least
one chemical of the dataset is never placed in the training set. Naturally, these validation
strategies are only applicable to binary mixtures and require some guidance to follow. Due
to the complexity of the data matrices, any random MO- or CO-based division scheme
may not yield the most predictive model since variables selection depends largely on the
training set [28]. Even though the CO-based validation is considered to be the most robust
strategy [36], it may give rise to underfitted models with poor statistical quality. At the
same time, while the MO-based validation is less robust, this strategy definitely provides
more meaningful solutions than any random data distributions or other validation division
schemes such as the points-out one proposed by the same authors [28,36–38].

As referred to above, we have recently developed a Python-based tool named QSAR-
Mx [28], specifically devised to address and automate some crucial steps involved in the
QSPR modeling of binary mixtures. A detailed description of the functionalities of this tool
can be found in its instruction manual (accessible from https://github.com/ncordeirfcup/
QSAR-Mx, last accessed on 28 April 2022). Essentially, QSAR-Mx lets the user generate
multiple MO- and CO-based data distributions and then develop models with the latter
and select the most predictive ones based on their statistical metrics. Firstly, the user should
choose two parameters—i.e., seed and interval, for generating the MO- and CO-based data
distributions. In the MO division scheme, QSAR-Mx detects unique mixtures present in the
dataset and then sorts them by the number of occurrences in descending order. From the
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sorted list, the mixtures are grouped according to the seed (the starting point for selection)
and interval values given. The unique mixtures selected are then incorporated into the test
set. Likewise, in the CO scheme, the QSAR-Mx tool begins by sorting the unique chemicals
that belong to component-1 of the mixtures, followed by sorting them in descending order
and lastly, by choosing some chemicals based upon the maximum values of the seed and
interval chosen. This procedure is then replicated for the unique chemicals belonging to
component-2 of the mixtures. The unique chemicals selected are then placed in the test set.
One should notice however here that the following QSPR models were always derived with
generated data distributions in which the training set size was always greater than the test
set size and, simultaneously, the size of the latter was at least 15% of the former. It should
be also mentioned that the QSAR-Mx tool has been slightly modified since our previous
work [28] because we found that the MO-based data distributions vary from one run to
another. The new version of QSAR-Mx is now able to generate the same data distributions
(i.e., MO-based training and test sets) every time, independently of the seed and interval
given, leading thus to more reproducible modeling results.

In this work, to begin with, we divided the whole dataset into a modeling set and an
external validation set (535 and 84 data points, respectively), using the CO-based division
scheme with values for the seed and interval of 3 and 4, respectively. The modeling dataset
was subsequently divided into training and test sets by MO- and CO-based schemes, setting
both the maximum seed and maximum interval as 6. The DESs in the training set coming
from the two schemes were employed separately for the development of the QSPR models,
and those from the test sets were only used to test such models. The DESs in the external
validation set were utilized for extra validation of the final most predictive QSPR models
found. Details about the investigated DESs along with their experimental surface tension
values, and corresponding references are given in Table S1 of the Supplementary Materials.

2.2. Mixture Descriptors

Due to the unique nature of binary DESs, the calculation of their descriptors requires
additional steps to take into account the specificity of each component as well as the molar
fractions. Here, we resorted to the strategy previously suggested by Oprisiu et al. [37], in
which the descriptors are initially calculated for each component and then modified on the
basis of ‘mixture descriptors weighted by molar fraction’ formulas. As such, two types of
modified descriptors (from now on, referred to as WM descriptors), i.e., Dpmix and Dnmix,
were computed by the following formulas:

Dpmix = x1 D1 + x2 D2 (1)

Dnmix = |x1 D1 − x2 D2| (2)

where Di stands for the descriptor of each component i (i = 1, 2) and xi for the respective
molar fraction in the mixture.

Both formulas have already been successfully applied to generate predictive models
for various properties of DESs [9,28,38] and implemented in the QSAR-Mx tool. Basically,
QSAR-Mx includes two methods for calculating such mixture descriptors. Starting from the
descriptors previously obtained for each component (D1 and D2), ‘Method-1’ calculates only
the Dpmix descriptors whereas ‘Method-2’ provides both the Dpmix and Dnmix descriptors.
In the present work, we used both of the aforementioned methods separately and then
performed a comparative analysis to elucidate the method that provides the best solution
as far as the predictivity of the overall model is concerned.

To start with, the 3D structures of each DES component were obtained by inputting the
SMILES (Simplified Molecular Input Line Entry Specification) strings into the application
MarvinView (https://docs.chemaxon.com/display/docs/marvinview.md, last accessed on
15 March 2022) and subsequently standardized by the ChemAxon Standardizer tool with the
following options: strip salts, aromatize, neutralize and add explicit hydrogen atoms [39].
Here, we have resorted to the 0D-2D descriptors available in the Dragon software [40] for

https://docs.chemaxon.com/display/docs/marvinview.md


Molecules 2022, 27, 4896 5 of 18

describing each DES component. Actually, 3D descriptors were excluded due to the high
computational effort required for structure optimization of each component, especially
for large datasets, and the fact that those may also give rise to misleading information
not ensuring reliable property prediction by 3D QSPR [28,41]. Finally, along with the
WM descriptors, three independent variables were also included, namely: the measuring
temperature, T (in K), the presence/absence of chlorine ions, and the presence/absence
of bromine ions. The importance of temperature for the modeling was referred to before.
Note in addition that only the cationic part was considered during the calculation of WM
descriptors for the DES HBA component. Hence, two binary indicator variables (i.e., the
presence (1) or absence (0) of halide ions) were required to be included to account for the
anionic part of the HBA components.

2.3. Modeling Techniques and Evaluation

As to the modeling techniques, we started by opting for a regression-based approach
like in our previous work [28] thanks to its easy interpretation but also high reliability.
Specifically, the regression coefficients were obtained by the multiple linear regression
analysis (MLR) implemented in our in-house QSAR-Mx tool and by selecting the variables
through the sequential forward selection (SFS) algorithm using the Sequential Feature
Selector module of Mlxtend (http://rasbt.github.io/mlxtend/) [42]. The following different
conditions were applied for scoring the SFS selection:

(a) determination coefficient (R2), no cross-validation;
(b) negative mean absolute error (NMAE), no cross-validation;
(c) negative mean Poisson deviance (NMPD), no cross-validation;
(d) determination coefficient (R2), five-fold cross-validation (CV) or ten-fold CV.

Yet, a correlation cutoff of 0.95 and variance cutoff of 0.001 were always set to discard
highly intercorrelated and near-constant descriptors. Additionally, the selection of the opti-
mal number of descriptors for the MLR models was controlled by the %MAELOO reduction
policy, also implemented in QSAR-Mx. The %MAELOO reduction scheme guarantees that
no new descriptor is added to the model during feature selection if its inclusion does not
reduce the leave-one-out (LOO) cross-validation and mean absolute error (MAELOO) by at
least 5% of the previous model. As such, this policy guarantees that the optimal number
of descriptors is present in the model and, at the same time, that models generated with
multiple model development strategies may be compared from a neutral ground [28].

To check if higher accuracy could be achieved when estimating the surface tension of
DESs, non-linear models were also developed using five different machine learning (ML)
techniques, i.e.: (i) k-Nearest Neighbors (k-NN), (ii) Random Forests (RF), (iii) Support
Vector Machines (SVM), (iv) Neural Network Multilayer Perceptron (NN-MLP), and (v)
Gradient boosting (GB) [43–47]. Such ML-based models were set up by resorting to the
tools available in the Scikit-learn programs (https://scikit-learn.org/stable/) with QSAR-
Mx (last accessed on 28 April 2022) and for each of them, hyperparameter tuning was
performed by varying their crucial parameters (see the list in Table S2). The best parameters
for a given ML estimator were determined by a 5-fold cross-validation scheme using the
same training sets as before. In the same manner, the external predictivity of the promising
non-linear models found was firstly accessed and further validated using the same test and
external sets.

As described above, QSAR-Mx generates multiple models based on three types of
inputs provided by the user, namely: (i) descriptor calculation strategy (Method-1 or -2),
(ii) dataset division schemes (MO- or CO-based data-division), and (iii) scoring conditions.
No matter the model generation strategy followed, any QSPR regression model requires an
evaluation with robust diagnostic tools to assess and compare its acceptability as well as
quality over other models.

In this work, the internal predictivity of the developed QSPR regression models was
primarily checked by statistical parameters, such as the MAELOO and Q2

LOO (LOO cross-
validation R2) [48,49]. Keeping in mind the importance of the compounds-out validation,

http://rasbt.github.io/mlxtend/
https://scikit-learn.org/stable/
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we have recently introduced two new statistical parameters based on the so-called leave-
chemical-out (LCO) cross-validation, which is conceptually similar to the well-known
leave-many-out CV but more effective whenever dealing with mixtures [28]. These new
parameters, i.e., Q2

LCO and MAELCO, are mostly important for the MO-based data dis-
tributions. Indeed, even though the latter often produce more predictive models than
the CO-based data distributions, their predictivity remains questionable due to the lack
of CO-based validation. Both Q2

LCO and MAELCO have actually helped us monitor the
model performance upon the removal of each component (belonging either to HBA or
to HBD) one by one from the training set with further model redevelopment using the
remaining components. A detailed description of these two parameters can be found in our
previous work [28]. Importantly, while assessing the quality of the models, the difference
between Q2

LOO and Q2
LCO should also be evaluated. In fact, a large discrepancy between

the values of the latter suggests that the mixtures based on one or more components are
not predicted well enough by the QSPR model. Besides the above-mentioned statistics, the
internal predictivity of the final regression models was also evaluated by using scaled rm

2

validation metrics, such as rm
2

(LOO) and ∆rm
2

(LOO) [50]. Basically, rm
2 metrics are based on

the correlation between the observed and predicted values, with and without setting to
zero the intercept of the least square regression lines. In addition, the AARD calculated for
each data distribution was also used for checking the overall errors of the derived models.
Although not quite common in QSPR modeling, the latter allowed us to compare the
quality of our QSPR models with that of previously reported thermodynamic models [29].
To access the external predictive ability of the models, similar statistical validation metrics
were also employed, i.e., the mean absolute error for the test set or external validation set
(MAEtest and MAEext) and the variance explained for external prediction (R2

Pred) [44] along
with the scaled rm

2
(test), ∆rm

2
(test), rm

2
(ext), and ∆rm

2
(ext) metrics [50].

Other aspects that deserve special attention are the absence of highly collinear de-
scriptors and the lack of chance correlations in the final derived models. Highly collinear
variables were simply checked by inspecting the cross-correlation matrix of the models’
descriptors. On the other hand, the Y-randomization technique identifies models with
chance correlations, using the cRP

2 parameter [51], after the sequence of the response vector
has been randomly modified. Here, the procedure was repeated 1000 times, and new
models were developed with the randomly reordered responses employing the same set of
variables. The uniqueness of the final regression model and its lack of chance correlations
is confirmed by the value obtained for cRP

2, which should be closer to one [51].
Finally, apart from inspecting the models’ robustness and predictivity, one should also

define their applicability domain (AD), that is, the response and chemical structure space
for which the models form reliable predictions without extrapolating. In this work, the AD
of the developed models was determined by the leverage approach [52], which renders
a measure of the similarity of a particular substance from all other substances (distance
between its descriptor values and the average for all descriptor values). So, one can plot
the standardized residuals against the leverage values for each DES of the several sets.
From such a plot, the so-called William’s plot [52], we were able to identify the response
and structural DES outliers. All plots shown in the present work were conceived with
Matplotlib [53].

2.4. Consensus Modeling

The task here is to explore whether the overall quality of predictions for new substances
might be improved by an “Intelligent” selection of multiple models. Towards that end,
the most predictive QSPR models derived were subjected to consensus modeling, using
the software tool Intelligent Consensus Predictor (freely available through the web https:
//dtclab.webs.com/software-tools, last accessed on 23 March 2022) developed by Roy
et al. [54]. The four strategic techniques of this tool were applied, namely: Consensus
Models (CM) 0–3, just as in our previous work [28], and as fully described in the work
by the authors [54]. In short, CM0 is the simplest strategy and consists in computing

https://dtclab.webs.com/software-tools
https://dtclab.webs.com/software-tools
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the arithmetic average of predicted response values from all input individual models. In
contrast, CM1 is based on the simple arithmetic average of predictions from all qualified
individual models. CM2 corresponds to weighted average predictions from all qualified
models, formerly giving appropriate weightage to those models. Finally, CM3 applies
compound-wise predictions based on the best selection coming from the qualified models.
Independently of the consensus modeling methodology, our main purpose was thus to
combine multiple statistically robust models to improve the predictivity over the external
validation set.

3. Results
3.1. Model Calibration and Evaluation

Figure 1 depicts the workflow chart followed in the present QSPR modeling, which
was mostly carried out using our recently developed tool, QSAR-Mx. As can be seen, all
the involved steps and methodology employed to cope with the major goal of this work
are shown, i.e., to build reliable predictive QSPR regression models from the compiled data
that could be used to estimate the surface tension of DESs.
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In total, 258 models were set up by varying data splitting schemes, descriptor calcula-
tion methods (Method-1 or Method-2) and SFS-MLR modeling. Among these, 136 models
pertained to the MO-based division scheme, whereas the remaining 112 models were
generated with the CO-based division scheme. The overall predictive quality of each of
these regression models was judged by means of the average value computed for the statis-
tical parameters Q2

LOO, Q2
LCO and R2

Pred. Essentially, the two parameters—Q2
LOO and

R2
Pred—account for the internal and external predictivity of the QSPR models, respectively.

Nevertheless, the parameter Q2
LCO was also included to ensure that the most predictive

models do not suffer overfitting due to bias towards some specific components of the binary
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DES mixtures. Naturally, the higher the average value obtained from these three parame-
ters is, the more predictive the model is. Considering this, we selected the top 15 unique
models for further processing. A summary of the statistical results of these models is given
in Table 1. Interestingly, out of these 15 models, 14 were derived from MO-based data
distributions, and only one model arose from CO-based distributions. Undoubtedly, that
clearly shows that MO-based data distributions are more likely to produce more predictive
models in comparison to the CO-based data distributions since the latter provides a more
rigorous validation strategy.

As referred to before, in the entire model-building process, the data distributions
were varied for the selection of the most predictive models. Therefore, the generated test
sets serve as a validation set to estimate the external predictivity of the models but, at
the same time, as calibration sets for the selection of the best models. In contrast, the
external validation sets (containing 84 data points) were treated as the ‘true validation set’
for assessing the external predictivity of the models. The latter was built with the CO-based
data-distribution scheme, thus holding a significant challenge to the generated models as
far as their external predictivity is concerned. A comparison of the predictivity of the top
15 models is shown in Table 2.

As can be clearly observed from Table 2, only a few models show satisfactory pre-
dictions against the external validation set. Nevertheless, six of these models had R2

Pred
values greater than 0.50, as well as average %AARD values lower than 12. Moreover, three
models, namely M09, M10 and M12, supplied the most satisfactory predictivity towards
such external validation set with R2

Pred > 0.65 and %AARD < 10. Therefore, these three
models were considered the best models obtained for predicting the surface tension of
DESs. Remarkably, M10, the only CO-based model included in the top 15, emerged as one
of the most predictive models. Still, on the basis of overall predictivity, M12 was selected
as the best individual QSPR model, even taking into account its slightly lower internal
predictivity, compared to M10, and its slightly lower external predictivity towards the test
set, as compared to M09. Even so, M12 afforded a balanced prediction against all three sets
with an average %AARD value of 7.126, which is lower than that obtained for the other
two models. At the same time, model M12 provides the best solution if the average value
of Q2

LOO, Q2
LCO and R2

Pred (against the two validation sets) is considered. In fact, for M12,
this average value was found to be 0.859, while for M09 and M10, the average values were
estimated as 0.820 and 0.831, respectively.

In summary, the best predictive model found for the DESs’ surface tension (a six-
variable equation, model M12) can be expressed as detailed below, while the meaning of
the selected WM descriptors is given in Table 3.

σ = +89.611 (±3.452)

+0.405 (±0.026) P_VSA_MR_6pmix

−5.034 (±0.874) Eig02_EA(dm)pmix

−23.145 (±3.320) CATS2D_02_ANpmix

+8.835 (±0.174) BLTF96pmix

−25.191 (±2.352) MATS5snmix

−0.104 (±0.011) T

(1)
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Table 1. Statistical results of the top 15 unique QSPR regression models generated.

Model Seed; Interval Descriptor a Split b Scoring c Ntr
d Q2

LOO
e Q2

LCO
f MAELOO

g Nts
h R2

Pred
i MAEtest

j Avg k

M01 2; 5 Method-1 MO NMAE 408 0.884 0.854 2.586 127 0.907 3.863 0.882
M02 4; 5 Method-2 MO NMAE 435 0.873 0.849 2.658 100 0.899 3.966 0.874
M03 1; 4 Method-2 MO NMAE 408 0.898 0.854 2.775 127 0.865 2.569 0.872
M04 5; 4 Method-2 MO NMAE 409 0.898 0.855 2.771 126 0.862 2.584 0.872
M05 4; 5 Method-1 MO NMAE 435 0.871 0.839 2.635 100 0.898 4.039 0.869
M06 3; 5 Method-1 MO NMAE 443 0.881 0.849 2.671 92 0.871 4.073 0.867
M07 1; 3 Method-1 MO NMAE 359 0.901 0.862 2.369 176 0.836 4.223 0.866
M08 4; 5 Method-1 MO R2 435 0.883 0.858 2.854 100 0.855 4.695 0.865
M09 4; 3 Method-1 MO NMAE 360 0.906 0.854 2.322 175 0.83 4.389 0.864
M10 1; 2 Method-2 CO R2 301 0.931 0.903 1.660 234 0.754 6.030 0.862
M11 4; 5 Method-2 MO 5-fold 435 0.865 0.841 3.000 100 0.876 4.282 0.861
M12 4; 3 Method-2 MO R2 360 0.908 0.882 2.608 175 0.783 5.134 0.858
M13 4; 5 Method-1 MO 5-fold 435 0.871 0.845 2.706 100 0.857 4.626 0.858
M14 1; 4 Method-1 MO 10-fold 408 0.869 0.849 3.340 127 0.847 2.050 0.855
M15 5; 4 Method-1 MO 10-fold 409 0.869 0.85 3.336 126 0.844 2.052 0.855

a Descriptor calculation method used. b Data splitting scheme utilized. c Scoring condition applied. d Number of data points in the training set. e Leave-one-out cross-validation
determination coefficient. f Leave-chemical-out cross-validation determination coefficient. g LOO cross-validation mean absolute error. h Number of data points in the test set. i Variance
explained for external prediction. j Mean absolute error of the test set. k Average value of Q2

LOO, Q2
LCO and R2

Pred.
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Table 2. Internal and external predictivity for the top 15 regression models against the training, test
and external validation sets a.

Model b
Training Set Test Set External Validation Set

Ntr Q2
LOO Q2

LCO %AARD Nts R2
Pred %AARD Nex

c R2
Pred %AARD

M01 408 0.884 0.854 5.541 127 0.907 11.843 84 −0.335 15.931
M02 435 0.873 0.849 6.11 100 0.899 7.517 84 0.464 12.176
M03 408 0.898 0.854 6.063 127 0.865 5.418 84 −0.196 15.833
M04 409 0.898 0.855 6.057 126 0.862 5.446 84 −0.19 15.818
M05 435 0.871 0.839 5.965 100 0.898 7.538 84 0.392 11.838
M06 443 0.881 0.849 6.052 92 0.871 7.65 84 0.516 11.021
M07 359 0.901 0.862 5.222 176 0.836 9.331 84 −7.225 27.7
M08 435 0.883 0.858 6.6 100 0.855 8.456 84 0.466 11.45
M09 360 0.906 0.854 5.202 175 0.83 9.872 84 0.688 8.527
M10 301 0.931 0.903 4.208 234 0.754 12.754 84 0.734 7.777
M11 435 0.865 0.841 6.875 100 0.876 7.78 84 0.568 10.047
M12 360 0.908 0.882 5.805 175 0.783 11.155 84 0.862 4.418
M13 435 0.871 0.845 6.204 100 0.857 8.442 84 0.544 11.093
M14 408 0.869 0.849 7.344 127 0.847 3.943 84 0.352 11.642
M15 409 0.869 0.85 7.339 126 0.844 3.929 84 0.353 11.638

a For the meaning of Ntr, Nts, Q2
LOO, Q2

LCO, R2
Pred and %AARD, please check the footnotes of Table 1. b The

more predictive models are marked in bold. c Number of data points in the external validation set.

Table 3. The five WM molecular descriptors selected for model M12—Equation (3).

Symbol Definition [55–58] Class

P_VSA_MR_6pmix P_VSA-like on Molar Refractivity, at bin size 6 P_VSA-like descriptor a (Dpmix type)

Eig02_EA(dm)pmix
eigenvalue n. 2 from edge adjacency matrix, weighted by

dipole moment Edge adjacency indices (Dpmix type)

CATS2D_02_ANpmix CATS2D Acceptor-Negative at lag 2 2D CATS b (Dpmix type)
BLTF96pmix Verhaar Fish base-line toxicity from MLOGP (mmol/L) Molecular properties (Dpmix type)
MATS5snmix Moran autocorrelation of lag 5, weighted by I-state c 2D autocorrelations (Dnmix type)

a P_VSA-like descriptors stand for the van der Waals surface area (VSA) with a particular property (P), in this
case, the molar refractivity (MR) [57]. b Chemically Advanced Template Search (CATS) descriptors expressly
designed to identify scaffold hops [58]. c I-states are based on the Kier-Hall atomic electronegativity modified by
the number of σ bonds, number of hydrogen atoms, number of electrons in π orbitals, and number of lone pair
electrons [55,56].

In this equation, Xpmix and Xnmix stand for WM descriptors of the type Dpmix in line
with Equation (1) and Dnmix following Equation (2), respectively, T is the temperature
(in K) under which the surface tension has been measured, and σ is the surface tension
(in mN/m).

A summary of the extended statistical results for model M12 is given in Table 4. The
determination coefficient values (R2 = 0.916 and R2

Adj = 0.915), the sample size (Ntr = 360),
the Fisher ratio (F = 642.4), but especially the high ratio between the number of data points
to adjustable variables (ρ = 60) [59] are indicative of the model’s statistical significance and
fitness. Model M12 also provides a satisfactory internal and external predictivity as follows
from the cross-validation, rm

2 and R2
Pred metrics values (see Table 4). Moreover, built with

only six descriptors, it led to %AARD values of 5.805, 11.155 and 4.418 against the training,
test and validation sets, respectively. The model prediction ability was further checked by
analyzing the relative deviations (%RD = 100*(σPred − σexp)/σexp) between the predicted
and experimental DES surface tension values for all three sets. As Figure 2 shows, model
M12 performs more accurately regarding the training and external validation sets than the
test set. Yet, the latter also demonstrates a normal behavior considering the shape of the RD
distribution according to the proposed model, also displayed in Figure 2. This histogram
plot clearly depicts that most of the RD error values are within ±20% and that those are
normally distributed, suggesting that the model estimations are not biased.
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Table 4. MLR statistical results for model M12—Equation (3) a.

Training Set Test Set External Set

Ntr = 360; Nts = 175; Nex = 84;
R2 = 0.916; R2

Adj = 0.915; F(6353) = 642.4; R2
Pred = 0.783; R2

Pred = 0.862;
Q2

LOO = 0.908; MAELOO = 2.608;
Q2

LCO = 0.882; MAELCO = 3.122;
MAE = 5.134; MAE = 1.777;

rm
2

(LOO) = 0.869, ∆rm
2

(LOO) = 0.066;
rm

2
(test) = 0.573,

∆rm
2

(test) = 0.197;
rm

2
(ext) = 0.767,

∆rm
2

(ext) = 0.097;
%AARD = 5.805; cRP

2 (1000 runs) = 0.908 %AARD = 11.155 %AARD = 4.418
a R2: Determination coefficient; R2

Adj: Adjusted R2; F(6,353): Fisher’s statistic; MAELOO and MAELCO: Leave-
one-out and leave-chemicals-out cross-validation mean absolute error, respectively; rm

2
(LOO) and ∆rm

2
(LOO):

LOO cross-validation rm
2 and its associated deviation, respectively; rm

2
(test) and ∆rm

2
(test): rm

2 of the test set
and its associated deviation, respectively; rm

2
(ext) and ∆rm

2
(ext): rm

2 of the external test set and its associated
deviation, respectively. For the meaning of Ntr, Nts, Nex, Q2

LOO, Q2
LCO, R2

Pred, and %AARD, check the footnotes
of Tables 1 and 2.
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Figure 2. Relative deviations (%RD) between the predicted and observed DES surface tensions (left)
and histogram plot of the distribution of %RD values (right).

Figure 3 shows the plot of the predicted surface tensions obtained from model M12 vs.
the observed experimental ones. As seen, the majority of the data points are sufficiently
close to the diagonal line, denoting the model’s reliability and soundness of its predictions.
Indeed, the model’s performance is even better than that of the previously developed
thermodynamic model for the DES surface tension [14], which, despite having fewer data
points (a total of 530 data points, considering only the 99 unique binary DES), led to
%AARD values of 8.87 and 14.81 for the training and test sets, respectively. However,
the purpose and outcomes of the current QSPR modeling are different from that of any
thermodynamic model, as the former demands several different conditions to be satisfied,
apart from validation, to establish the statistical robustness of the model. For example, so
far, we have demonstrated the acceptable results on the reliability of the QSPR model M12,
but it is also important to inspect the non-intercollinearity among any two of its descriptors.
The latter was found to be 0.238, indicating that the variables included in the model are
indeed not interrelated to each other. Furthermore, the model was itself checked for its
uniqueness by the Y-based randomization technique, which was performed by scrambling
the endpoint responses for the training set. The high value obtained for cRP

2 (=0.908)
implies that the model is not correlated by chance. Another crucial aspect is related to the
applicability domain of the model that here was assessed by analyzing the Williams plot
(plot of standardized residual vs. leverages). As seen in Figure 3, eight data points from
the training set and thirteen from the test set can be considered structural outliers of the
model, but no structural outliers were found in the external validation set. Interestingly,
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most of these structural outliers were well predicted by the model and were thus retained,
as previously suggested by Gramatica et al. [49]. In addition, only twelve data points of the
entire dataset were found to be response outliers, which also proves the high predictive
accuracy of the model [60].
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3.2. Model Interpretation

In our previous investigation on density [28] we observed that, in spite of providing
less mechanistic interpretability, graph-based topological descriptors often help in char-
acterizing the physicochemical properties. In the present work, a number of topological
descriptors were also proven to be significant for describing the surface tension of DESs.
Figure 4 shows the relative importance of each descriptor of model M12, estimated on the
basis of the absolute value of its regression coefficients.
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Figure 4. Relative importance of the descriptors found in the best individual model M12.

As can be observed, the WM descriptor MATS5snmix was found to have the highest
importance and besides, it is the only Dnmix type descriptor in the model. Being derived
from graph-based topological descriptors, MATS5dnmix points out that the differences in
topological geometry of the DESs’ components may play a significant role in the surface
tension of these solvents. The Dpmix type WM descriptor CATS2D_02_ANpmix is the second
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most influencing descriptor of the model. Chemically Advanced Template Search (CATS)
descriptors are a useful group of descriptors that account for the topological distance
among scaffold features in the molecules [58]. CATS2D_02_AN, in particular, means that
the acceptor and negatively charged groups are separated by a small topological distance
(=2). In this case, higher values of this descriptor are found to be negatively correlated to
the surface tension. Descriptor BLTF96pmix appears as the third most important descriptor
in the model. Unlike the first two descriptors of topological nature, this descriptor is
based on an important molecular property—lipophilicity [55,56]. Since this descriptor
belongs to the Dpmix type, it may be inferred that higher lipophilicity of the components
would trigger higher surface tension for the DESs. Apart from lipophilicity, another well-
known physicochemical property—dipole moment—was also found to have important
contributions in ascertaining the DES surface tension. The importance of the dipole moment
is derived from the presence of descriptor Eig02_EA(dm)pmix. The fifth most important
descriptor belongs to the class of P_VSA descriptors, which represent the amount of van
der Waals surface area (VSA) having a property (P) in a certain range [56]. In the case of
the descriptor P_VSA_MR_6pmix, the property is the molar refractivity (MR) at a larger
range (bin size 6). The positive relation of P_VSA_MR_6pmix with the dependent property
is highly significant as it suggests that increased MR (i.e., polarizability) within the van
der Waals surface of each component contributes towards a higher surface tension for the
respective DESs. Finally, the last descriptor of the model is the temperature of surface
tension measurements, T. As expected, with increasing temperature the surface tension is
found to decrease, which fits well with the experimental findings. Still, to further check
how model M12 actually addresses the influence of temperature, we randomly selected six
DESs with a range of surface tension values. From Figure 5, it can be clearly seen that both
experimental and predicted properties followed the same trend, i.e., the surface tension
gradually decreases as the temperature is increased.
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Figure 5. Comparison of surface tension calculated by the M12 model with literature data in the
temperature range from 278.15-358.15 K for six DESs at atmospheric pressure. DES1: DL-menthol
and octanoic acid (3:1); DES2: tetrabutylammonium chloride and arginine (8:1); DES3: tetraprpy-
lammonium bromide and ethylene glycol (1:6); DES3: tetraprpylammonium bromide and ethylene
glycol (1:6); DES4: N,N-diethylethanolammonium chloride and glycerol (1:5); DES5: choline chloride
and glycerol (1:5); DES6: choline chloride and D-glucose (1:1).
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3.3. Non-Linear Models

Albeit M12 emerged as the most accurate linear model in estimating the DES sur-
face tension, the question that still remains is whether a non-linear model based on its
descriptors might have better performance. Table 5 shows a statistical summary of the
performance of the non-linear models resulting from applying the five different machine
learning techniques, i.e.: k-NN, RF, SVM, NN-MLP and GB [49–53]. It can be observed that
most of these ML techniques failed to produce predictive models and their results are not
accurate either. Still, the SVM technique yields a predictive model and thus has the highest
performance among the other ML techniques, though both the internal and the external
predictivity of the latter remain inferior to the linear model. These results indicate that
for the selected set of descriptors, the multiple linear regression-based model has the best
accuracy in estimating the surface tension of DESs as well as sufficient predictivity that
cannot be achieved with other model development techniques.

Table 5. Summary of the statistical parameters obtained from non-linear models based on different
machine learning methods.

Method a Training Set (Q2
5-fold) Test Set (R2

Pred) External Set (R2
Pred)

k-NN 0.176 0.597 not determined
RF 0.473 0.746 not determined

SVM 0.874 0.774 0.767
MLP 0.541 0.269 not determined
GB 0.453 0.471 not determined

a k-NN: k-Nearest Neighbors; RF: Random Forests; SVM: Support Vector Machines; NN-MLP: Neural Network
Multilayer Perceptron; GB: Gradient boosting.

3.4. Consensus Modeling

Finally, we applied the intelligent consensus modeling [54] to see whether the surface
tension predictions for the external validation set could be improved. To do so, sets of the
three most predictive linear models—M09, M10 and M12—were subjected to consensus
predictions in different combinations, namely: (a) C1-based using models M09, M10 and
M12; (b) C2-based using models M10 and M12; (c) C3-based using models M09 and M10;
and (d) C4-based with models M09 and M12. In each case, the modeling dataset containing
535 data points was treated as the training set whereas the external validation set was used
to check the external predictivity of the consensus model. The results of all consensus
modeling attempts are presented in Table 6.

Table 6. External predictivity of the best individual model M12 and consensus models (C1-C4) built
with different combinations of the top three models (M09, M10 and M12).

Consensus
Models Models CM a R2

Pred
b rm

2
(test)

c MAEtest
d %AARD e

C1 M09, M10, M12 0 0.864 0.801 1.869 4.459
C2 M10 and M12 2 0.823 0.812 2.089 4.732
C3 M09 and M10 2 0.853 0.787 1.979 4.393
C4 M09 and M12 None —– —– —– —–

M12 —– —– 0.862 0.767 1.777 4.418
a Method of Intelligent consensus prediction that yielded the best external validation result. b Variance explained
for the external prediction. c Metric rm

2 for the test set. d Mean absolute error for the test set. e Absolute average
relative deviation.

Interestingly, the resulting models C1 and C4 lead to similar predictivities. Yet, none
of the later consensus models display an external predictivity considerably better than that
of the best individual model, M12. The R2

Pred and %AARD values obtained for consensus
model C1 are 0.864 and 4.459, respectively, and similarly for C3 (i.e., 0.854 and 4.393). As
can be seen, both C1 and C3 may therefore be projected as alternative models to M12.
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However, let us mainly focus on C3, since it reveals that M09 and M10 may indeed work as
complementary models for each other towards improving the external predictivity. Details
about the M09 and M10 models are provided in Table S3 of the SI.

Since M09 was developed with the same data distribution as M12, these two mod-
els have four descriptors in common, namely: CATS2D_02_ANpmix, P_VSA_MR_6pmix,
BLTF96pmix, and T. Obviously, these four descriptors have a high significance in describing
the surface tension of DESs. Significantly, CATS2D_02_ANpmix, which was found to be the
second most important descriptor of M12, appears to be the most influential descriptor
of M09. It undoubtedly indicates that this descriptor may be considered the most crucial
descriptor in predicting the surface tension of DESs. Presumably, due to the similarity
between M12 and M09, consensus modeling with these two models failed to provide
any better solution. Model M10, in contrast, is established as a unique model because,
save for T, none of its descriptors is found either in M09 or in M12. Most likely due to
this reason, its combination with the other two models produces good consensus models.
Unlike models M09 and M12, model M10 yields are slightly higher but still have acceptable
intercollinearity between descriptors, with a maximum R2 value of 0.713. The selected
descriptors for models M09 and M10 are described in detail in Table S4 of the SI.

4. Conclusions

The present work aimed to establish a systematic and well-designed QSPR modeling
for predicting the surface tension of a wide range of DESs, following the OECD guidelines.
Towards such aim, the largest surface tension data bank of binary DESs known to date,
comprising 619 data points from 113 unique DESs of various families was gathered from the
literature. In addition, special emphasis was put on employing robust validation strategies
for setting up the QSPR models. In so doing, the best QSPR models were set up with
multiple data distributions resulting from MO- and CO-data splitting schemes along with a
weighted mixture type of descriptors, using our in-house open access tool QSAR-Mx. After
considering several statistical parameters, the top three individual linear regression models
stand out for their accuracy and robustness. The most predictive individual linear model
was however selected based on the predictivity towards the external validation set.

Similar to our previous study on the development of a thermodynamic model [14],
the surface tension of DESs was found to be a particularly difficult property to predict.
This may be related to the challenging nature of the accurate experimental estimation of
surface tensions, associated with the presence of surface-active impurities and differences
in the measuring protocols [33]. Nevertheless, our most predictive individual QSPR
regression model (i.e., model M12) yielded a satisfactory overall %AARD value (=7.126),
especially when compared to the aforementioned thermodynamic model (%AARD = 10.31,
considering only the binary DESs therein) [14]. This model depicted also the structural and
physicochemical features related to the surface tension of DESs. Just as in our previously
developed model for the density of DESs [28], graph-based topological descriptors were
found to be highly useful in this respect. Some physicochemical factors, such as the
lipophilicity, polarizability and dipole moment of the DESs’ components, were found to
be responsible for ruling their surface tensions. We also attempted to generate consensus
models based on the top three individual linear models. Interestingly, consensus models
based on the two other best individual models—M09 and M10—were found to be equally
predictive towards the external validation set.

Overall, this work definitely provides valuable information about the structural and
physicochemical features required for predicting the surface tension of binary DESs. At
the same time, it also lends important guidelines to set up predictive and validated linear
interpretable QSPR models for the various properties of binary mixtures. The high predic-
tivity of the models ensures that these models may be used on the industrial scale to at
least predict the surface tension of the DESs that are newly developed or under-developed
to assess their suitability as an industrial solvent. The models may also be used to screen a
large number of DESs (obtained from databases) to predict the DESs with desirable surface
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tension properties. What is more, all the proposed models are easily reproducible since
they rely on fully specified computational procedures and were built with non-commercial
software tools. Finally, both the individual and consensus models developed in this work
shall help the future screening as well as the design of new sustainable DES, with major
time and cost savings.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27154896/s1, Table S1. List of all investigated DESs
and experimental surface tension data. (XLSX); Table S2. Hyperparameter tuning of the different
machine learning techniques. (PDF); Table S3. Detailed description of the M09 and M10 models.
(PDF); Table S4. Descriptors used in the M09 and M10 models. (PDF)

Author Contributions: Conceptualization, A.K.H., R.H., A.R.C.D. and M.N.D.S.C.; methodology,
A.K.H., R.H. and M.N.D.S.C.; software, A.K.H.; formal analysis, A.K.H. and R.H.; investigation,
A.K.H., R.H. and I.V.V.; writing—original draft preparation, A.K.H. and R.H.; writing—review and
editing, I.V.V. and M.N.D.S.C.; supervision, A.R.C.D. and M.N.D.S.C.; project administration, A.R.C.D.
and M.N.D.S.C.; funding acquisition, A.R.C.D. and M.N.D.S.C. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by UIDB/50006/2020 with funding from FCT/MCTES through
national funds.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the data files pertaining to the QSPR modeling are available from
the authors. The training, test and external datasets were taken from cited publications, and the DES
chemical structures along with the collected surface tension data are provided in the Supporting
Information (Table S1). Dragon 7.0, MarvinView, and Standardizer were used in this study under
academic license (see Material and methods section). Three other open source software tools were
also used in this study, namely: QSAR-Mx, a Python-based tool developed by the authors that is
available to download at https://github.com/ncordeirfcup/QSAR-Mx (last accessed on 28 April
2022); Mlxtend, a Python library of useful tools that is accessible from https://rasbt.github.io/
mlxtend/; scikit-learn, a Python library of useful machine learning tools that is accessible from
https://scikit-learn.org/stable/; and Intelligent Consensus Predictor, a Java-based tool available
through the web https://dtclab.webs.com/software-tools (last accessed on 23 March 2022)(see
Material and methods section).

Acknowledgments: The authors are thankful to ChemAxon for providing the academic licenses of
MarvinView and Standardizer to AKH.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds (full dataset used for modeling) are available from
the authors.

References
1. Clarke, C.J.; Tu, W.C.; Levers, O.; Brohl, A.; Hallett, J.P. Green and Sustainable Solvents in Chemical Processes. Chem. Rev. 2018,

118, 747–800. [CrossRef]
2. Sheldon, R.A. Green Solvents for Sustainable Organic Synthesis: State of the Art. Green Chem. 2005, 7, 267–278. [CrossRef]
3. Sheldon, R.A. Fundamentals of Green Chemistry: Efficiency in Reaction Design. Chem. Soc. Rev. 2012, 41, 1437–1451. [CrossRef]

[PubMed]
4. García, G.; Aparicio, S.; Ullah, R.; Atilhan, M. Deep Eutectic Solvents: Physicochemical Properties and Gas Separation Applications.

Energy Fuels 2015, 29, 2616–2644. [CrossRef]
5. Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep

Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. [CrossRef] [PubMed]
6. El Achkar, T.; Greige-Gerges, H.; Fourmentin, S. Basics and Properties of Deep Eutectic Solvents: A Review. Environ. Chem. Lett.

2021, 19, 3397–3408. [CrossRef]
7. Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride/Urea Mixtures.

Chem. Commun. 2003, 70–71. [CrossRef]

https://www.mdpi.com/article/10.3390/molecules27154896/s1
https://www.mdpi.com/article/10.3390/molecules27154896/s1
https://github.com/ncordeirfcup/QSAR-Mx
https://rasbt.github.io/mlxtend/
https://rasbt.github.io/mlxtend/
https://scikit-learn.org/stable/
https://dtclab.webs.com/software-tools
http://doi.org/10.1021/acs.chemrev.7b00571
http://doi.org/10.1039/b418069k
http://doi.org/10.1039/C1CS15219J
http://www.ncbi.nlm.nih.gov/pubmed/22033698
http://doi.org/10.1021/ef5028873
http://doi.org/10.1021/acs.chemrev.0c00385
http://www.ncbi.nlm.nih.gov/pubmed/33315380
http://doi.org/10.1007/s10311-021-01225-8
http://doi.org/10.1039/b210714g


Molecules 2022, 27, 4896 17 of 18

8. Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep Eutectic Solvents: Syntheses, Properties and Applications. Chem. Soc.
Rev. 2012, 41, 7108–7146. [CrossRef]

9. Halder, A.K.; Cordeiro, M.N.D.S. Probing the Environmental Toxicity of Deep Eutectic Solvents and Their Components: An In
Silico Modeling Approach. ACS Sustain. Chem. Eng. 2019, 7, 10649–10660. [CrossRef]

10. Palmelund, H.; Andersson, M.P.; Asgreen, C.J.; Boyd, B.J.; Rantanen, J.; Löbmann, K. Tailor-Made Solvents for Pharmaceutical
Use? Experimental and Computational Approach for Determining Solubility in Deep Eutectic Solvents (DES). Int. J. Pharm. X
2019, 1, 100034. [CrossRef]

11. Nam, M.W.; Zhao, J.; Lee, M.S.; Jeong, J.H.; Lee, J. Enhanced Extraction of Bioactive Natural Products Using Tailor-Made Deep
Eutectic Solvents: Application to Flavonoid Extraction from Flos Sophorae. Green Chem. 2015, 17, 1718–1727. [CrossRef]

12. Chen, Y.; Chen, W.; Fu, L.; Yang, Y.; Wang, Y.; Hu, X.; Wang, F.; Mu, T. Surface Tension of 50 Deep Eutectic Solvents: Effect of
Hydrogen-Bonding Donors, Hydrogen-Bonding Acceptors, Other Solvents, and Temperature. Ind. Eng. Chem. Res. 2019, 58,
12741–12750. [CrossRef]

13. Ghaedi, H.; Ayoub, M.; Sufian, S.; Shariff, A.M.; Lal, B. The Study on Temperature Dependence of Viscosity and Surface Tension
of Several Phosphonium-Based Deep Eutectic Solvents. J. Mol. Liq. 2017, 241, 500–510. [CrossRef]

14. Haghbakhsh, R.; Taherzadeh, M.; Duarte, A.R.C.; Raeissi, S. A General Model for the Surface Tensions of Deep Eutectic Solvents.
J. Mol. Liq. 2020, 307, 112972. [CrossRef]

15. Le, T.; Epa, V.C.; Burden, F.R.; Winkler, D.A. Quantitative Structure-Property Relationship Modeling of Diverse Materials
Properties. Chem. Rev. 2012, 112, 2889–2919. [CrossRef]

16. Mikolajczyk, A.; Gajewicz, A.; Rasulev, B.; Schaeublin, N.; Maurer-Gardner, E.; Hussain, S.; Leszczynski, J.; Puzyn, T. Zeta
Potential for Metal Oxide Nanoparticles: A Predictive Model Developed by a Nano-Quantitative Structure-Property Relationship
Approach. Chem. Mater. 2015, 27, 2400–2407. [CrossRef]

17. Kim, M.; Li, L.Y.; Grace, J.R. Predictability of Physicochemical Properties of Polychlorinated Dibenzo-p-Dioxins (PCDDs) Based
on Single-Molecular Descriptor Models. Environ. Pollut. 2016, 213, 99–111. [CrossRef] [PubMed]

18. Moura, A.S.; Halder, A.K.; Cordeiro, M.N.D.S. From Biomedicinal to In Silico Models and Back to Therapeutics: A Review on the
Advancement of Peptidic Modeling. Future Med. Chem. 2019, 11, 2313–2331. [CrossRef] [PubMed]

19. Sepehri, B. A Review on Created QSPR Models for Predicting Ionic Liquids Properties and Their Reliability from Chemometric
Point of View. J. Mol. Liq. 2020, 297, 112013. [CrossRef]

20. Muratov, E.N.; Bajorath, J.; Sheridan, R.P.; Tetko, I.V.; Filimonov, D.; Poroikov, V.; Oprea, T.I.; Baskin, I.I.; Varnek, A.; Roitberg, A.;
et al. QSAR Without Borders. Chem. Soc. Rev. 2020, 49, 3525–3564. [CrossRef]

21. Awfa, D.; Ateia, M.; Mendoza, D.; Yoshimura, C. Application of Quantitative Structure–Property Relationship Predictive Models
to Water Treatment: A Critical Review. ACS EST Water 2021, 1, 498–517. [CrossRef]

22. Wang, J.; Song, Z.; Chen, L.; Xu, T.; Deng, L.; Qi, Z. Prediction of CO2 Solubility in Deep Eutectic Solvents using Random Forest
Model Based on COSMO-RS-Derived Descriptors. Green Chem. Eng. 2021, 2, 431–440. [CrossRef]

23. Balali, M.; Sobati, M.A.; Gorji, A.E. QSPR Modeling of Thiophene Distribution Between Deep Eutectic Solvent (DES) and
Hydrocarbon Phases: Effect of Hydrogen Bond Donor (HBD) Structure. J. Mol. Liq. 2021, 342, 117496. [CrossRef]

24. Khajeh, A.; Shakourian-Fard, M.; Parvaneh, K. Quantitative Structure-Property Relationship for Melting and Freezing Points of
Deep Eutectic Solvents. J. Mol. Liq. 2021, 321, 114744. [CrossRef]

25. Benguerba, Y.; Alnashef, I.M.; Erto, A.; Balsamo, M.; Ernst, B. A Quantitative Prediction of the Viscosity of Amine Based DESs
Using Ss-profile Molecular Descriptors. J. Mol. Struct. 2019, 1184, 357–363. [CrossRef]

26. Lemaoui, T.; Hammoudi, N.E.H.; Alnashef, I.M.; Balsamo, M.; Erto, A.; Ernst, B.; Benguerba, Y. Quantitative Structure Properties
Relationship for Deep Eutectic Solvents Using Sσ-profile as Molecular Descriptors. J. Mol. Liq. 2020, 309, 113165. [CrossRef]

27. Lemaoui, T.; Darwish, A.S.; Attoui, A.; Hatab, F.A.; Hammoudi, N.E.H.; Benguerba, Y.; Vega, L.F.; Alnashef, I.M. Predicting the
Density and Viscosity of Hydrophobic Eutectic Solvents: Towards the Development of Sustainable Solvents. Green Chem. 2020, 22,
8511–8530. [CrossRef]

28. Halder, A.K.; Haghbakhsh, R.; Voroshylova, I.V.; Duarte, A.R.C.; Cordeiro, M.N.D.S. Density of Deep Eutectic Solvents: The Path
Forward Cheminformatics-Driven Reliable Predictions for Mixtures. Molecules 2021, 26, 5779. [CrossRef]

29. Haghbakhsh, R.; Bardool, R.; Bakhtyari, A.; Duarte, A.R.C.; Raeissi, S. Simple and Global Correlation for the Densities of Deep
Eutectic Solvents. J. Mol. Liq. 2019, 296, 111830. [CrossRef]

30. Organization for Economic Co-Operation and Development (OECD). Guidance Document on the Validation of (Quantitative) Structure-
Activity Relationship ((Q)SAR) Models; OECD Series on Testing and Assessment 69; OECD Document ENV/JM/MONO2007;
OECD Publishing: Paris, France, 2014; pp. 55–65.

31. Toropov, A.A.; Toropova, A.P. QSPR/QSAR: State-of-Art, Weirdness, the Future. Molecules 2020, 25, 1292. [CrossRef]
32. Omar, K.A.; Sadeghi, R. Novel Deep Eutectic Solvents Based on Pyrogallol: Synthesis and Characterizations. J. Chem. Eng. Data

2021, 66, 2088–2095. [CrossRef]
33. Nunes, R.J.; Saramago, B.; Marrucho, I.M. Surface Tension of dl-Menthol:Octanoic Acid Eutectic Mixtures. J. Chem. Eng. Data

2019, 64, 4915–4923. [CrossRef]
34. Lapeña, D.; Bergua, F.; Lomba, L.; Giner, B.; Lafuente, C. A Comprehensive Study of the Thermophysical Properties of Reline and

Hydrated Reline. J. Mol. Liq. 2020, 303, 112679. [CrossRef]

http://doi.org/10.1039/c2cs35178a
http://doi.org/10.1021/acssuschemeng.9b01306
http://doi.org/10.1016/j.ijpx.2019.100034
http://doi.org/10.1039/C4GC01556H
http://doi.org/10.1021/acs.iecr.9b00867
http://doi.org/10.1016/j.molliq.2017.06.024
http://doi.org/10.1016/j.molliq.2020.112972
http://doi.org/10.1021/cr200066h
http://doi.org/10.1021/cm504406a
http://doi.org/10.1016/j.envpol.2016.02.007
http://www.ncbi.nlm.nih.gov/pubmed/26878604
http://doi.org/10.4155/fmc-2018-0365
http://www.ncbi.nlm.nih.gov/pubmed/31581914
http://doi.org/10.1016/j.molliq.2019.112013
http://doi.org/10.1039/D0CS00098A
http://doi.org/10.1021/acsestwater.0c00206
http://doi.org/10.1016/j.gce.2021.08.002
http://doi.org/10.1016/j.molliq.2021.117496
http://doi.org/10.1016/j.molliq.2020.114744
http://doi.org/10.1016/j.molstruc.2019.02.052
http://doi.org/10.1016/j.molliq.2020.113165
http://doi.org/10.1039/D0GC03077E
http://doi.org/10.3390/molecules26195779
http://doi.org/10.1016/j.molliq.2019.111830
http://doi.org/10.3390/molecules25061292
http://doi.org/10.1021/acs.jced.1c00023
http://doi.org/10.1021/acs.jced.9b00424
http://doi.org/10.1016/j.molliq.2020.112679


Molecules 2022, 27, 4896 18 of 18

35. Abdallah, M.M.; Müller, S.; González de Castilla, A.; Gurikov, P.; Matias, A.A.; Bronze, M.d.R.; Fernández, N. Physicochemical
Characterization and Simulation of the Solid–Liquid Equilibrium Phase Diagram of Terpene-Based Eutectic Solvent Systems.
Molecules 2021, 26, 1801. [CrossRef] [PubMed]

36. Muratov, E.N.; Varlamova, E.V.; Artemenko, A.G.; Polishchuk, P.G.; Kuz’min, V.E. Existing and Developing Approaches for
QSAR Analysis of Mixtures. Mol. Inform. 2012, 31, 202–221. [CrossRef] [PubMed]

37. Oprisiu, I.; Novotarskyi, S.; Tetko, I.V. Modeling of Non-Additive Mixture Properties Using the Online CHEmical Database and
Modeling Environment (OCHEM). J. Cheminformatics 2013, 5, 4. [CrossRef]

38. Halder, A.K.; Cordeiro, M.N.D.S. Development of Predictive Linear and Non-linear QSTR Models for Aliivibrio Fischeri Toxicity
of Deep Eutectic Solvents. IJQSPR 2019, 4, 50–69. [CrossRef]

39. ChemAxon. Standardizer; Version 15.9.14.0 Software; ChemAxon: Budapest, Hungary, 2010.
40. Mauri, A.C.V.; Pavan, M.; Todeschini, R. Dragon Software: An Easy Approach to Molecular Descriptor calculations. MATCH

Commun. Math. Comput. Chem. 2006, 56, 237–248.
41. Hechinger, M.; Leonhard, K.; Marquardt, W. What is Wrong with Quantitative Structure–Property Relations Models Based on

Three-Dimensional Descriptors? J. Chem. Inf. Model. 2012, 52, 1984–1993. [CrossRef]
42. Raschka, S. MLxtend: Providing Machine Learning and Data Science Utilities and Extensions to Python’s Scientific Computing

Stack. J. Open Source Softw. 2018, 3, 638. [CrossRef]
43. Cover, T.; Hart, P. Nearest Neighbor Pattern Classification. IEEE Trans. Inform. Theory 1967, 13, 21–27. [CrossRef]
44. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
45. Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A Training Algorithm for Optimal Margin Classifiers. In Proceedings of the Fifth Annual

Workshop on Computational Learning Theory ACM, Pittsburgh, PA, USA, 27–29 July 1992; pp. 144–152.
46. Guang-Bin, H.; Babri, H.A. Upper Bounds on the Number of Hidden Neurons in Feedforward Networks with Arbitrary Bounded

Nonlinear Activation Functions. IEEE Trans. Neural Netw. 1998, 9, 224–229. [CrossRef] [PubMed]
47. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
48. Golbraikh, A.; Tropsha, A. Beware of Q2! J. Mol. Graph. Model. 2002, 20, 269–276. [CrossRef]
49. Gramatica, P. On the Development and Validation of QSAR Models. Methods Mol. Biol. 2013, 930, 499–526. [PubMed]
50. Roy, P.P.; Paul, S.; Mitra, I.; Roy, K. On Two Novel Parameters for Validation of Predictive QSAR Models. Molecules 2009, 14,

1660–1701.
51. Ojha, P.K.; Roy, K. Comparative QSARs for Antimalarial Endochins: Importance of Descriptor-Thinning and Noise Reduction

Prior to Feature Selection. Chemom. Intell. Lab. Syst. 2011, 109, 146–161. [CrossRef]
52. Gramatica, P. Principles of QSAR Models Validation: Internal and External. QSAR Comb. Sci. 2007, 26, 694–701. [CrossRef]
53. Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [CrossRef]
54. Roy, K.; Ambure, P.; Kar, S.; Ojha, P.K. Is It Possible to Improve the Quality of Predictions from an “Intelligent” Use of Multiple

QSAR/QSPR/QSTR Models? J. Chemom. 2018, 32, e2992. [CrossRef]
55. Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors; Wiley-VCH: Weinheim, Germany, 2000.
56. Todeschini, R.; Consonni, V. Molecular Descriptors for Chemoinformatics, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2009.
57. Labute, P. A Widely Applicable Set of Descriptors. J. Mol. Graph. Model. 2000, 18, 464–477. [CrossRef]
58. Reutlinger, M.; Koch, C.P.; Reker, D.; Todoroff, N.; Schneider, P.; Rodrigues, T.; Schneider, G. Chemically Advanced Template

Search (CATS) for Scaffold-Hopping and Prospective Target Prediction for ‘Orphan’ Molecules. Mol. Inform. 2013, 32, 133–138.
[CrossRef] [PubMed]

59. García-Domenech, R.; Julián-Ortiz, J.V. Antimicrobial Activity Characterization in a Heterogeneous Group of Compounds. J.
Chem. Inf. Comput. Sci. 1998, 38, 445–449. [CrossRef] [PubMed]

60. Khan, K.; Khan, P.M.; Lavado, G.; Valsecchi, C.; Pasqualini, J.; Baderna, D.; Marzo, M.; Lombardo, A.; Roy, K.; Benfenati, E.
QSAR Modeling of Daphnia magna and Fish Toxicities of Biocides Using 2D Descriptors. Chemosphere 2019, 229, 8–17. [CrossRef]
[PubMed]

http://doi.org/10.3390/molecules26061801
http://www.ncbi.nlm.nih.gov/pubmed/33806853
http://doi.org/10.1002/minf.201100129
http://www.ncbi.nlm.nih.gov/pubmed/27477092
http://doi.org/10.1186/1758-2946-5-4
http://doi.org/10.4018/IJQSPR.2019100104
http://doi.org/10.1021/ci300246m
http://doi.org/10.21105/joss.00638
http://doi.org/10.1109/TIT.1967.1053964
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1109/72.655045
http://www.ncbi.nlm.nih.gov/pubmed/18252445
http://doi.org/10.1214/aos/1013203451
http://doi.org/10.1016/S1093-3263(01)00123-1
http://www.ncbi.nlm.nih.gov/pubmed/23086855
http://doi.org/10.1016/j.chemolab.2011.08.007
http://doi.org/10.1002/qsar.200610151
http://doi.org/10.1109/MCSE.2007.55
http://doi.org/10.1002/cem.2992
http://doi.org/10.1016/S1093-3263(00)00068-1
http://doi.org/10.1002/minf.201200141
http://www.ncbi.nlm.nih.gov/pubmed/23956801
http://doi.org/10.1021/ci9702454
http://www.ncbi.nlm.nih.gov/pubmed/9611784
http://doi.org/10.1016/j.chemosphere.2019.04.204
http://www.ncbi.nlm.nih.gov/pubmed/31063877

	Introduction 
	Materials and Methods 
	Dataset Collection and Splitting 
	Mixture Descriptors 
	Modeling Techniques and Evaluation 
	Consensus Modeling 

	Results 
	Model Calibration and Evaluation 
	Model Interpretation 
	Non-Linear Models 
	Consensus Modeling 

	Conclusions 
	References

