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Optimization of targeted node set in complex networks under percolation and selection
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Most of the existing methods for the robustness and targeted immunization problems can be viewed as greedy
strategies, which are quite efficient but readily induce a local optimization. In this paper, starting from a percolation
perspective, we develop two strategies, the relationship-related (RR) strategy and the prediction relationship (PR)
strategy, to avoid a local optimum only through the investigation of interrelationships among nodes. Meanwhile,
RR combines the sum rule and the product rule from explosive percolation, and PR holds the assumption that
nodes with high degree are usually more important than those with low degree. In this manner our methods have
a better capability to collapse or protect a network. The simulations performed on a number of networks also
demonstrate their effectiveness, especially on large real-world networks where RR fragments each of them into
the same size of the giant component; however, RR needs only less than 90% of the number of nodes which are
necessary for the most excellent existing methods.
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I. INTRODUCTION

There has recently been an enormous amount of interest
focusing on the targeted immunization and robustness prob-
lems of network science [1–5], like investigating the critical
threshold of structural collapse if an intentional attack happens
[6], or probing the optimal targeted-immunized threshold if a
virus is in possible transmission [7]. These problems appear
in, but are not limited to, effectively preventing viruses in
computer or population related networks [8,9], information
transmission in social networks [10–12], or the breakdown of
some infrastructure networks [13,14].

For a network, the solution to the critical or optimal
threshold is mathematically equivalent to finding the minimum
set of nodes which can fragment the network into a certain
situation, e.g., the size of the giant component is less than a
given value after the removal of the minimum set. To achieve
this, numerous methods have been proposed in the last few
years, consisting of random immunization [15], acquaintance
strategies [7,16], targeted methods [3,4,17–19], etc. [20–23],
ranging from the need of local information to the whole
network demand. With respect to random immunization, the
immunization nodes are randomly selected from a certain
network—without any priority about them. Similarly, random
selection is also applied in the acquaintance strategy, but
only one of the neighbors of a certain node is chosen to be
immunized [7]. In addition, the targeted method is a widely
accepted approach which first identifies the importance of
each node and then removes the nodes in descending order of
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importance until the network reaches the immunized demand
[3,4,18,19].

Within networks, there are numerous relationships among
nodes. Generally, high-degree nodes tend to connect to other
high-degree nodes in assortatively mixed networks, while they
mostly have low-degree neighbors in disassortative networks
[24]. Moreover, a node with a low degree might play a critical
role, whereas those with high degree might not be of signifi-
cance comparatively (e.g., the betweenness centrality of nodes
[25]). In the course of immunization, some subinfluential nodes
would become influential after a few nodes are removed, while
some others might lose their importance instead [heuristic
immunized strategies [3,4,18], including the high adaptive
degree centrality strategy, etc.]. All of such methods, e.g.,
the Collective Influence method (CI) [3] (better results always
obtained with larger radius �), show that a better immunization
strategy could be discovered when more interrelationships of
nodes are considered. This may be also a good interpretation
why the high adaptive betweenness centrality strategy (HAB)
is significantly effective in most situations, as well as the
belief propagation-guided decimation (BPD) method [4,26]
in artificial networks. But HAB has a limitation due to its
high time complexity [O(n2m)] and BPD is not so effective
in real-world networks because there are always many loops.

Most of those methods can also be viewed as greedy
strategies, i.e., they repeat the process that recalculates the
importance of nodes in the remaining network and then remove
the most influential one or a part of it. For an optimization
problem, the greedy strategy is quite efficient but readily
induces a local optimum. In addition, taking Fig. 1(a) as
an example, the removal of a node would affect the status
(remove or not) of other nodes. These facts motivate us to
use another approach: can the local optimization be effec-
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FIG. 1. Brief illustrations of the proposed methods. (a) In this network almost all of the methods mentioned in this paper will remove v1

(marked with “+′’) in the demand case of splitting this network into isolated ones, while the optimal removal set should be the nodes marked
by “×” apparently. Now, assuming that v2 is removed first, then most of these methods will easily find the optimal solution in the remaining
network. But the same situation cannot be induced by removing v3. In other words, the removal of v2 or v3 will influence the status of v1

(remove or not), and as a result it directly determines whether the optimal solution can be reached. (b) An example of RR under the sum rule
and τ = 2. In this temporary network (κ = 16), we consider two assumed cases: (1) (v3,v4) then (v1,v5) and (2) (v2,v4), then (v1,v5), i.e., two
rounds of selection. For the first choice between v3 and v4 in case 1, the occupied node is either v3 or v4 since ξ (v3) = ξ (v4) = 5. After this,
node v1 would be chosen because of 1 = ξ (v1) < ξ (v5) = 3 (might induce the optimal solution of qc). In contrast, v2 would be selected to be
occupied at first [3 = ξ (v2) < ξ (v4) = 5], and then v5 [4 = ξ (v1) > ξ (v5) = 3] in case 2 (might be associated with the optimization of F ). In
this example, we can also find how the status of a node influences the status of other nodes, e.g., v2 to v1 and v5. (c, d) An example of the PR
method. In (c), some low-degree nodes are chosen and occupied first. (d) ξ (v5)= 4/14 and here Cv5 = {c1,c2} marked by color shadow.

tively avoided by investigating the interrelationship among
nodes?

Here, also from a percolation perspective [3,19,27,28], we
propose two strategies: the relationship-related (RR) method
and the prediction relationship (PR) method, which are capable
of achieving excellent performance compared to other existing
strategies. The main idea of the developed strategies is to
explore and utilize the interrelationship among the nodes. In
addition, RR combines the sum rule and the product rule from
explosive percolation [29], while PR holds the assumption
that nodes with high degree are usually more important than
those with low degree. In this way, our approaches can achieve
a better capability of avoiding of local optimum and obtain
smaller thresholds than other methods. To demonstrate the
effectiveness of the proposed strategies, we conduct numerous
simulations on a number of networks. The results show that
our methods have significant advantages over other strategies,
especially on large real-world networks where RR can collapse
each of them into the same size of the giant component with less
than 90% nodes of CI, BPD, or the Explosive Immunization
method (EI) [19]. Moreover, our methods might also be used
for the feedback vertex set (FVS) problem [26,30,31].

II. METHOD

We consider an undirected network composed of n = |N |
nodes tied by m = |M| edges where N and M are the node
set and the edge set, accordingly. Let Sa be an arbitrary
configuration (sequence) ofN , namely, {Sa(i),i ∈ [1,n]} ≡ N
where Sa(i) corresponds to a unique node of the network. Then
the threshold qSa

c regarding Sa is defined to be

qSa

c := min
q

{q ∈ [0,1]|G(Sa; q) � ε}, (1)

in which ε is a given value and G(Sa; q) represents the
probability that a node is part of the giant (largest) connected
component in the remaining network after the removal of
all nodes in {Sa(i),i ∈ [1,�n × q�]}, including the incidental

edges. Denoting by FSa ,

FSa := 1

n

1∑
q

G(Sa; q), (2)

the average size fraction of giant components of Sa , the solu-
tion associated with the targeted immunization or robustness
problem is to search the optimal sequence Sθ , which satisfies

Sθ ≡
{{Si |qSi

c � qSa

c ,∀i,a}, if ε is given,

{Si |FSi � FSa ,∀i,a}, otherwise,
(3)

where i,a ∈ [1,n!] mean all the configurations of N . Appar-
ently, finding the optimal solution is NP-hard.

A. Relationship-related (RR) method

Inspired by Ref. [29], we develop RR method in a per-
colation process, i.e., change the process from the removal
of the most influential node to the occupation of the least
important node. In other words, we start the RR method
with an arbitrary configuration Sa,0 of the node set N and
a nonoccupied network [or a given strategy, e.g., high-degree
centrality strategy (HD)], and then reverse the order of Sa,0 to
be a new sequence S ′

a,0, satisfying

S ′
a,0(i) ≡ Sa,0(j ), (4)

where i + j = n + 1,∀i,j ∈ [1,n]. Let r be the proportion
of possible candidates and τ ∈ Z+ be the selection times,
respectively. Denoting the number of occupied nodes with
κ , we then obtain Sa,1 based on S ′

a,0 through the following
procedures:

(i) Each time randomly select one node vi from the nearest
nonoccupied node set N u(κ):

N u(κ) = {S ′
a,0(j )|j ∈ [κ + 1, min(�κ + r × n�,n)]}. (5)

(ii) Independently repeat the selection (i) τ times to form
the candidate node set N c(κ), and then choose the node vc

from N c(κ) which minimizes ξ (·) to be occupied (randomly
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choose one if there are several nodes with the same minimum):

vc = arg minvj
ξ (vj ),vj ∈ N c(κ), (6)

where ξ (vj ) is defined as the following two cases (respectively
correspond to the sum rule and the product rule [29]):

ξ (vj ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 +
∑

ci∈Cvj

Gci
,

1 +
∏

ci∈Cvj

Gci
,

(7)

in which Gci
is the size of the component ci and Cvj

denotes the
component set that node vj would connect in the temporary
network consisting of all the occupied nodes {Sε

a,0(j )|j ∈
[1,κ]} and the related edges.

(iii) Update S ′
a,0 by swapping S ′

a,0(κ + 1) and vc, i.e.,
exchange the places of S ′

a,0(κ + 1) and vc in S ′
a,0.

(iv) Repeat the processes (i)–(iii) until all nodes are occu-
pied, and we will get a new sequence Sa,1 by reversing S ′

a,0.
Next, replace Sa,1 with Sa,0 based on Eq. (3), namely,

replace Sa,1 with Sa,0 if ε is given and q
Sa,1
c > q

Sa,0
c , otherwise,

replace Sa,1 with Sa,0 if FSa,1 > FSa,0 . In this manner, we
further obtain Sa,2 based on Sa,1 as well as Sa,T with other
r and τ where T denotes the time step. An illustration of RR
is shown in Fig. 1(b).

Now let us focus our attention on the parameters r and τ

as well as the two kinds of selection strategies [Eq. (7)]. A
large r indicates that the selection happens on a large range
of possible candidates, which on the one hand can make RR
converge quickly at the early stage, but on the other hand it
will induce RR saturating and no longer improving after T

reaches some value since τ � r × n. The value of τ is the main
contribution to the time consumption of RR. To overcome this,
here we associate the r and τ with T (may have other choices):

r = rs

T δr + 1
,

τ = τs + �T δτ + 0.5�, (8)

where rs and τs are the initial values of r and τ , δr is the decrease
rate of r and δτ denotes the increases rate of τ , respectively.

With respect to the two kinds of selection strategies, our
simulation results demonstrate that the sum rule is more
efficient than the product rule in small networks but less
efficient in large network. Hence, we combine them and use
the following adaptive probability to determine which one is
adopted in each T :

psr = πsr

πsr + πpr

, (9)

where psr is the selection probability of the sum rule, otherwise
the product rule. πsr and πpr correspond to the number of
positive replacements under the sum rule and the product rule,
respectively. In other words, if the sum rule promotes a better
result (smaller F or qc), then πsr = πsr + 1, vice versa. In this
paper, we initialize πsr and πpr with 1.

B. Prediction relationship (PR) method

The PR method is developed based on an assumption that
high-degree nodes are normally more influential than those

nodes with low degree, i.e., PR tries to keep the occupied
components away from as many high-degree nodes as possible.
To achieve this, we first identify each node based on the
distribution of node degree:

Hvi
= 1 −

∑
kvj

<kvi

p(kvj
) =

∑
kvj

�kvi

p(kvj
), (10)

where p(kvj
) is the probability of nodes with degree kvj

. Then,
similar to RR, construct the ξ (·) function with

ξ (vi) =
∑
ci∈Cvi

∑
vj ∈ci

∑
vz∈
u(vj )

Hvz
+

∑
vz∈
u(vi )

Hvz
(11)

in which 
u(vj ) denotes all of the vj ’s nearest-unoccupied
neighbors (here view vi as occupied node). An example of PR
is shown in Figs. 1(c) and 1(d).

C. RR and PR for the feedback vertex set (FVS) problem

Following Ref. [4], we further develop RR and PR to obtain
the optimal FVS of a given network, which can help RR and
PR to obtain better qc than the direct calculation in model
networks. Let FVS be a subset of N , after the removal of it
there is no loop in the remaining network (N \ FVS). Denoting
with nFVS the number of nodes in FVS, the goal of optimizing
FVS is to minimize nFVS. How can we achieve this in RR and
PR?

Considering the candidate node set N c(κ) [see Sec. II A
(ii)], we construct the subset N c

FVS(κ) of it in the following
way:

N c
FVS(κ) = {vj |arg minvj

ψ(vj ),vj ∈ N c(κ)}, (12)

where ψ(vj ) is defined as

ψ(vj ) =
∑

ci∈Cvj

(|
o(vj ,ci)| − 1) (13)

in which |
o(vj ,ci)| is the number of occupied nodes that
belong to the component ci as well as the nearest neighbors of
vj . Then we rewrite Eq. (6) as

vc = arg minvj
ξ (vj ),vj ∈ N c

FVS(κ), (14)

where vc corresponds to the node chosen to be occupied. In
addition, another strategy is adopted for the FVS problem: if
ψ(vc) = 1 (this means that there are two neighbors of vc in
the same component, i.e., the selected occupied node vc will
induce a loop), then we further exchange the places of vc and
one of its two corresponding neighbors (randomly) after the
swap process [see Sec. II A (iii)]. Finally, without a loss of
generality, we replace Sa,1 with Sa,0 if Sa,0 has smaller nFVS

than Sa,1.
Obviously, there is no loop in the temporary network (com-

posing of {S ′
a,0(j )|j ∈ [1,κ]}) if all occupied nodes satisfy

ψ(vc) = 0 [Eq. (14)] in the occupied process. In other words,
the minimization of nFVS is equivalent to the maximization of
κ under the constraint of ψ(vc) = 0.

III. RESULTS

In this section, if there is no special explanation, � of CI
[3] is fixed to 4, each result of EI [19] is obtained with K = 6
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and 2000 candidates, and BPD [4] is conducted with x = 12.
Note that the results of BPD are slightly different from the
results in Ref. [4], since we fix the “Degree threshold” with the
“Degree of top percent” in the BPD code (Table II). To validate
the effectiveness of the proposed methods in more detail,
here we test RR and PR by considering different optimization
objectives, F and qc, respectively. In addition, both RR and
PR are based on HD with rs = F HD, τs = 10, δr = 0.001 and
δτ = 0.01 for networks with n � 104, δr = 0.01, and δτ =
0.01 for networks with 104 < n � 105, δr = 0.1, and δτ = 0.1
for networks with 105 < n � 106, and δr = 0.5 and δτ = 0.5
for networks with n > 106, accordingly. The threshold qc is
assumed to be obtained with G(S; q) < 0.01.

We first conduct our validation on a number of real-world
networks from various fields: one Power Grid network [32,33]
(Power), three Collaboration networks [34] (including ca-
GrQc, ca-AstroPh, and ca-CondMat), one Internet peer-to-peer
network [34,35], Autonomous systems graphs [36] (including
as-733 and as-Skitter), the Scottish cattle movements network
[19], two Citation networks [36,37] (including hep-th and
cit-HepTh), two Communication networks (including email-
Enron [38,39] and email-EuAll [34]), one Location-based
online social network [40] (loc-Gowalla), the Amazon prod-
uct co-purchasing network [41] (com-Amazon), the Google
web graph [39] (web-Google), and two Road networks [39]
(including roadNet-PA and roadNet-TX). The choices of these
networks consider both the density of edges [1] and the
assortativity of degrees [24,42], which are associated with
robustness of a network. Some basic information regarding
these networks is given in Table I. Note that for all networks
studied here, the directed edges are simply replaced with
undirected edges, and self-loops and isolated nodes are entirely
deleted.

In Fig. 2 the proportion G(q) of the largest component
versus the fraction q of removed nodes is plotted by com-
paring RR, CI, BPD, and EI on the CA-AstroPh network, the
Cit-HepPh network, the TXroad network, and the as-Skitter
network. In almost all the situations studied here, RR exhibits
notable superiority of less nodes to be removed for same size
of giant component compared to the other strategies. Further
regarding certain metrics (Fig. 3 and Table II), RR also shows
better threshold qc in most networks and represents minimal
average giant fraction F in all cases compared to HD, CI,
BPD, and EI, especially for the four largest networks where
both F and qc of RR are significantly smaller than the other

TABLE I. Basic information of the real-world networks where
CC is the clustering coefficient [32] and AC denotes the assortativity
coefficient [24], respectively.

Networksa n m CC AC

Power 4941 6594 0.0801 0.0035
CA-GrQc 5242 14 484 0.5296 0.6593
p2p-Gnutella08 6301 20 777 0.0109 0.0356
as-733 6474 12 572 0.2522 − 0.1818
Scottish 7228 24 784 0.2798 − 0.1985
CA-AstroPh 18 771 198 050 0.6306 0.2051
CA-CondMat 23 133 93 439 0.6334 0.1340
hep-th 27 240 341 923 0.3119 − 0.0302
Cit-HepPh 34 546 420 877 0.2848 − 0.0063
Email-Enron 36 692 183 831 0.4970 − 0.1108
loc-Gowalla 196 591 950 327 0.2367 − 0.0293
Email-EuAll 265 214 364 481 0.0671 − 0.1781
com-Amazon 334 863 925 872 0.3967 − 0.0588
web-Google 875 713 4 322 051 0.5143 − 0.0551
PAroad 1 088 092 1 541 898 0.0465 0.1227
Txroad 1 379 917 1 921 660 0.0470 0.1304
as-Skitter 1 696 415 11 095 298 0.2581 − 0.0814

aThe source data of these networks is from either
http://www.snap.stanford.edu/data or http://www.konect.uni-
koblenz.de/networks/opsahl-powergrid.

strategies, e.g., RR needs less than half of nodes of HD, CI,
and BPD to split the two road networks into fragments with
G(S; q) < 0.01. In addition, PR can also achieve smaller qc in
12/17 networks than HD, CI, BPD, and EI.

We further evaluate the performance of the proposed strate-
gies (both RR and PR) by focusing on artificial model networks
[including Erdős-Rényi (ER) [45] and scale-free (SF) [33]
networks]. Note that here RR is in the normal way (optimizing
F ) and PR is to optimize FVS (following the idea of BPD).
As illustrated in Fig. 4, RR significantly outperforms CI of
lower G(q) curves on both ER and SF networks. Considering
the threshold qc on the ER networks, we respectively obtain
qc = 0.1767 by BPD, qc = 0.1843 through EI (slightly larger,
0.0005, than the results in Ref. [19]) and qc = 0.1809 with
PR. Meanwhile, PR with qc = 0.0977 is closer to BPD with
qc = 0.0965 compared to EI with qc = 0.0996 in the SF
networks. Besides, the results of qc versus the average degree
〈k〉 are exhibited in Fig. 5. Interestingly, when tied by K = 6,
EI performs worse and worse with the increase of 〈k〉. The

FIG. 2. The fraction G(q) of the size of the giant component versus the fraction of removed nodes q for CI, BPD, EI, and RR for (a) the
CA-AstroPh network, (b) the Cit-HepPh network, (c) the TXroad network, and (d) the as-Skitter network (where CI with � = 2). Each result
of EI and RR is obtained by averaging 20 realizations.
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c )/qSa
c where Sa corresponds to HD, CI, BPD, or EI. Each result

of EI and RR is obtained by averaging 20 realizations.

reason why this happens is ascribed to the fact that k(eff)
vi

(used
to measure the spreading ability of a node [19]) is harder and
harder to identify the nodes with similar degree as 〈k〉 rising,

k(eff)
vi

= kvi
− Lvi

− Mvi

({
k(eff)
vj

∣∣vj ∈ 
(vi)
})

, (15)

where 
(vi) consists of all vi’s nearest neighbors, Lvi
is

the number of leaves (nodes with degree 1) in 
(vi) and
Mvi

({k(eff)
vj

|vj ∈ 
(vi)}) is the number of strong hubs (nodes

with k(eff)
vj

� K). In other words, more and more nodes have a
degree larger than K when the network becomes dense. Hence,
we also report the results of EI with K = 〈k〉 + 2 (EI2) in Fig. 5
(but this adaptation is invalid for real-world networks). To
summarize: considering the threshold, PR performs better than
both CI and EI but slightly worse [(qPR

c − qBPD
c )/qPR

c < 2.58%
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FIG. 4. The fraction G(q) of the size of the largest cluster versus
the fraction of removed nodes q (over 50 sample networks) for CI,
BPD, EI, PR, and RR on (a) ER networks with 〈k〉 = 3.5 and n = 106,
and (b) SF networks with γ = 3.0, 〈k〉 = 4.0, and n = 106.

for all cases] than BPD in the model networks. In contrast to
this, RR obtains a quite small F compared to other methods,
e.g., (F CI − F RR)/F CI ≈ 8.25% in Fig. 4(a) and 10.10% in
Fig. 4(b), respectively.

The different performances of BPD in model and real-
world networks arouse our interest in another question: how
do the loops influence the effectiveness of BPD, since the
belief propagation (BP) algorithm is actually sensitive to the
existence of circles in a network and most of the real-world
networks have a lot of loops (see Table I)? We still employ
the paradigmatic ER and SF models to construct our basis
networks. Then, for each network, the following strategies
are used to enhance the clustering coefficients, i.e., increase
the local loops. (i) Randomly choose one node vi and its
two corresponding neighbors vj and vk subject to (vj ,vk) =
0, which means that there is no edge between vj and vk ,
namely, (vi,vj ) = (vi,vk) = 1 and vj �= vk . (ii) In the same

TABLE II. The threshold qc (G(S; q) < 0.01), the average giant fraction F and the size of the feedback vertex set nFVS of HD, CIa, BPDa,
EI, PR, and RR on the 17 real-world networks. Here CI is with � = 3 for the Email-EuAll network and � = 2 for the as-Skitter network. Each
result of EI, PR, and RR is obtained by averaging 20 independent realizations. The bold numbers are the minimal value of each objective among
these methods for a same network.

qc × n F nFVS

Networksa HD CI BPD EI PR RR CI EI PR RR BPD PR RR

Power 975 570 316 337.10 440.90 282.55 0.0449 0.0112 0.0154 0.0076 516 485.60 487.65
CA-GrQc 912 1760 398 428.25 390.20 372.10 0.0527 0.0347 0.0356 0.0289 1449 1426.20 1427.00
p2p-Gnutella08 2045 1444 1300 1508.95 1331.20 1372.55 0.1415 0.1651 0.1486 0.1386 1256 1276.85 1281.00
as-733 243 192 162 169.35 187.80 152.85 0.0150 0.0097 0.0117 0.0087 216 208.00 208.60
Scottish 877 2036 434 471.05 432.85 442.70 0.0542 0.0259 0.0256 0.0231 444 436.35 438.00
CA-AstroPh 8544 4865 4198 4320.60 4055.60 4013.10 0.1562 0.1579 0.1368 0.1200 8626 8529.65 8525.80
CA-CondMat 5726 3217 2569 2700.80 2559.30 2534.35 0.0832 0.0774 0.0694 0.0625 8323 8230.20 8228.40
hep-th 18 097 11 184 10 294 11 002.85 9913.35 9732.10 0.2541 0.2742 0.2437 0.1915 12 344 12 097.45 12 103.15
Cit-HepPh 22 533 14 164 13 455 14 498.90 13 089.05 12 982.90 0.2645 0.2860 0.2533 0.2056 15 405 15 133.45 15 139.80
Email-Enron 4097 3074 2621 2764.35 2619.00 2572.90 0.0292 0.0314 0.0263 0.0217 7853 7748.70 7746.35
loc-Gowalla 53 828 31 386 26 951 26 916.70 25 703.10 25 015.30 0.0868 0.0916 0.0812 0.0625 38 841 37 690.20 37 739.00
Email-EuAll 1431 1193 1064 6985.80 1104.30 1077.20 0.0056 0.0019 0.0012 0.0008 1187 1182.80 1193.65
com-Amazon 78 308 42 108 29 572 27 471.15 28 056.55 26 342.10 0.0793 0.0619 0.0583 0.0424 85 274 82 364.55 82 263.80
web-Google 253 099 82 525 50 861 41 948.85 41 175.95 33 573.35 0.0526 0.0322 0.0312 0.0227 208 876 205 231.85 20 5435.45
PAroad 273 899 71 134 21 172 17 204.05 11 150.15 10 124.80 0.0417 0.0034 0.0019 0.0012 194 443 176 535.00 177 536.80
Txroad 307 413 82 744 20 873 16 800.10 10 676.50 9365.95 0.0342 0.0019 0.0011 0.0007 239 909 217 066.25 217 823.05
as-Skitter 322 128 151 846 74 286 70 901.00 62 059.25 63 977.35 0.0394 0.0287 0.0239 0.0215 228 775 224 356.65 22 5329.90

aThe source code of CI is from Ref. [43]. The source code of BPD is from Ref. [44].
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FIG. 5. The threshold qc in dependence on the average degree 〈k〉
(50 sample networks for each 〈k〉) for CI, BPD, EI1, EI2, and PR for
(a) ER networks with n = 105 and (b) SF networks with γ = 3.0 and
n = 105.

way to respectively choose one of the neighbors of vj and vk ,
assuming they are vjj and vkk satisfying (vj ,vjj ) = (vk,vkk) =
1, (vjj ,vkk) = 0, and vjj �= vkk . (iii) Cut (delete) the edges
(vj ,vjj ) and (vk,vkk) and at the same time add two new edges
(vj ,vk) = (vjj ,vkk) = 1. (iv) repeat (i)-(iii) until the network
reaches our demand, i.e., a given clustering coefficient. In this
manner, the clustering coefficients of these networks can be
improved and, apparently, the degree distribution of them is
kept constant. As illustrated in Fig. 6, the fraction nFVS/n

of PR rise more slowly than BPD with the increase of the
clustering coefficients CC in both ER and SF networks, while
the threshold qc of PR decreases more quickly than BPD. This
may indicate that PR is more suitable than BPD for real-world
networks. Therefore, we also show the performances of BPD,
PR, and RR for the FVS problem in Table II where PR finds a
smaller FVS than BPD in almost all the networks (16/17).

Moreover, we consider the two largest networks, the TXroad
network (with maximal degree 12) and the as-Skitter network
(with maximal degree 35 455), to demonstrate the efficiency
of the proposed methods. Since it is hard to analyze the
computational complexity of RR and PR in detail, we here
put them as well as CI and BPD (open-source codes written by
either C or C++ program) in the same simulated environment
and compare their time consumptions. As illustrated in Fig. 7,
both PR and RR get smaller thresholds than CI and BPD within
a quite short time, in particular, RR takes only 3.6 s to obtain
a better result than CI and BPD in the TXroad network. Note
that the running time of CI and BPD reported here may be as
a reference but not as a standard.
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FIG. 6. The threshold qc and the fraction nFVS/n of the feedback
vertex set versus the clustering coefficients CC for BPD and PR in (a)
ER networks with n = 104 and 〈k〉 = 3.5, and (b) SF networks with
γ = 3.0, 〈k〉 = 4.0, and n = 104.
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FIG. 7. The running time [measured by second (s)] of CI, BPD,
PR (with τs = 5) and RR (with τs = 10) on (a) the TXroad network
and (b) the as-Skitter network. The horizontal dash lines correspond
to the thresholds of either CI or BPD. The values marked beside the
vertical dash lines are related to the computational time indicating
that the proposed methods begin to have smaller thresholds than
both CI and BPD. All the results are obtained by averaging 20
implementations.

Finally, the susceptible-infectious-recovery (SIR) epidemic
spreading model [5,18,46] is used to investigate the spreading
process of a virus on the email-Enron network and the loc-
Gowalla network by comparing the CI, EI, and RR methods.
For a given network under SIR simulation, its nodes belong to
either the susceptible, infected, or recovered state. And before
the start of the simulation, a part of nodes are previously
identified and removed from the network based on a certain
strategy. Then one random node is selected from the remaining
network as the infected source and the others are to be
susceptible. In each time step, the infected nodes infect their
susceptible neighbors with the infection rate λ, and then they
recover with rate η. The recovered nodes are removed from the
network too. This process is repeated until there is no infected
node in the network. The simulation results are shown in Fig. 8
where λ and η are fixed to 0.2 and 0.05, respectively. On both
networks, RR has a significantly lower value (9.5 to 20.0 times)
of recovered individuals than EI under the same immunized
fraction q [Figs. 8(a) and 8(b)]. Considering the final recovered
fraction Rf [Figs. 8(c) and 8(d)], RR also outperforms CI and
EI in almost all situations.

IV. CONCLUSION

In this paper, two methods as effective strategies have
been developed for the robustness and target immunization
problems based on percolation transition. The proposed strate-
gies choose the removed (immunized) fraction by repeatedly
investigating and capturing the interrelationship among nodes.
To evaluate the effectiveness of both proposed methods,
we conduct numerous simulations on two types of model
networks as well as 17 real-world networks from different
fields. The results, especially most of the empirical networks,
clearly illustrate that our strategy considerably outperforms
the existing well-known strategies, like CI [3] and EI [19]. In
addition, our strategies might open up a new path to investigate
more effective solutions to the robustness and immunization
problems as well as obtain the minimal feedback set [4] in
network science.
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FIG. 8. The SIR simulation results of CI, EI and RR respectively on the Email-Enron network (a, c) and the loc-Gowalla network (b,
d), including (a–b) the rate ρ of infected (I ) and recovered (R) individuals versus the spreading time step tSIR under the immunized fraction
q = qRR

c , and (c–d) the final recovered fraction Rf versus the fraction of immunized nodes q. In each network, 104 independent selections are
conducted.
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