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Abstract: The acceleration of climate change has been associated with an alarming increase in the
prevalence and geographic range of tick-borne diseases (TBD), many of which have severe and long-
lasting effects—particularly when treatment is delayed principally due to inadequate diagnostics
and lack of physician suspicion. Moreover, there is a paucity of treatment options for many TBDs
that are complicated by diagnostic limitations for correctly identifying the offending pathogens.
This review will focus on the biology, disease pathology, and detection methodologies used for
the Borreliaceae family which includes the Lyme disease agent Borreliella burgdorferi. Previous work
revealed that Borreliaceae genomes differ from most bacteria in that they are composed of large
numbers of replicons, both linear and circular, with the main chromosome being the linear with
telomeric-like termini. While these findings are novel, additional gene-specific analyses of each class
of these multiple replicons are needed to better understand their respective roles in metabolism and
pathogenesis of these enigmatic spirochetes. Historically, such studies were challenging due to a
dearth of both analytic tools and a sufficient number of high-fidelity genomes among the various taxa
within this family as a whole to provide for discriminative and functional genomic studies. Recent
advances in long-read whole-genome sequencing, comparative genomics, and machine-learning have
provided the tools to better understand the fundamental biology and phylogeny of these genomically-
complex pathogens while also providing the data for the development of improved diagnostics and
therapeutics.

Keywords: tick-borne diseases; Lyme disease; borrelia; pangenomics; diagnostics; distributed
genome hypothesis

1. Introduction

Even in this era of modern medicine, including mass vaccination achievements and
antibiotic treatment regimens, vector-borne diseases such as Lyme borreliosis, Malaria,
Dengue fever, yellow fever, and bubonic plague still prevail. This group of ancient and
persistent diseases is transmitted to humans through the bite of infected arthropod vectors
including mosquitoes, lice, flies, and ticks. These vectors acquire their associated pathogens
through blood feedings from multiple hosts throughout complex life cycles. This life-cycle
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complexity leads to difficulties in diagnoses and treatments, creating a persistent healthcare
burden that has resulted in a push to identify biomarkers for the development of improved
diagnostics, vaccines, and therapeutics [1].

Research on these fronts has been divided unevenly across different vector species. While
a great deal of research has been performed on diseases transmitted by mosquitoes, tick-borne
diseases (TBD) are less studied. As their name implies, TBDs are primarily transmitted
through the bite of infected ticks. While these small ectoparasitic arachnids have long been
documented to cause disease, some as early as 1550 B.C., their true clinical significance was not
realized until 1893, when a publication by Smith and Killborne linked Rhipicephalus annaltus
to the transmission of the protist parasite Babesia bigemina in cattle [2–6]. Despite this finding,
research on ticks and their corresponding TBDs progressed slowly until the latter half of
the 20th century.

Moreover, research in the field progressed on TBDs unevenly, often centering on the
most prevalent pathogen (or what was thought to be the most prevalent pathogen) or
vector in a given region rather than the wide array of TBD pathogens and their vectors.
This is most clearly seen with Lyme borreliosis (Lyme disease), caused by the Borreliella
burgdorferi sensu lato spirochetes and their known vectors, Ixodes scapularis and I. pacificus,
within the Northeastern and Pacific regions of the United States (US), respectively. Research
efforts initially centered on the mammalian immune response towards these spirochetes,
leading to developments of first-generation diagnostics that have some efficacy but are
fraught with poor sensitivity [7,8]. While this work is important, more research is needed
to improve the efficacy of Lyme borreliosis diagnostics, including biomarker discovery,
nucleic-acid-based methods, and improved serological methods. This review will cover
the TBD field as it stands, with emphasis on borreliosis, specifically Lyme borreliosis, and
outline plausible paths for the development of better diagnostics and therapeutics.

2. The Macro and Micro Ecology of Ticks: Their Role in the Environment and Their
Microbiomes

The Agrasidae have 186 recognized species and are commonly referred to as ‘soft’ ticks
due to the absence of a scutum, a hard protective plate, and the exposure of their mouths [9].
The second, larger Ixodidae tick family has 720 recognized species. These arachnids are
commonly known as ‘hard’ ticks due to the presence of their scutum (Figure 1). While both
families have distinct morphologies, all can thrive in various geographic niches ranging
from the tropics to the subarctic [10]. Though many tick species are found in a range of
climates, most tick species are concentrated in tropical/subtropical regions [10].
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Recently, due mainly to climate change, the geographic range of many tick species has
expanded poleward beyond their traditional habitats [11,12]. This restructuring has resulted
from a variety of reasons including prey migration, local environmental degradation, and
increased temperatures associated with global warming [11–14]. The latter facilitates
increased tick survival through winters within previously uninhabitable regions [15–20].
Evidence of this change is seen in numerous tick species. A tick species that is able to live
in both hemispheres and extreme climates is Ixodes uriae, a seabird tick [21,22] that is now
prevalent in Nordic Countries and can transmit Borrelia burgdorferi, Borrelellia garinii, and
Borrelia bavariensis [23–25]. Similarly, Haemaphysalis longicornis, the Asian Longhorn tick,
has recently arrived in the US [26,27]. This invasive species has rapidly integrated within
its new ecosystem and has joined the list of clinically relevant tick species found within
the US (Table 1) [26,28]. Additionally, several native North American tick species are also
migrating further north. Some have been documented to parasitize wildlife in the harsh
frontiers of Alaska [29,30].

As the habitat zones of ticks change, so does the epidemiology of the pathogens
they transmit [2]. This review will focus on the most significant tick species that carry
human pathogens (Table 1) including I. scapularis (black-legged tick) and its west-coast
sister species I. pacifius (western black-legged tick); Dermacentor variabilis (American dog
tick); and Amblyomma americanum (Lone star tick).

The most well-known of these is I. scapularis. This species is fascinating for its biology
and its role in medical history. The clinical significance of the deer tick was realized when
it was linked with outbreaks of a rheumatoid arthritis-like disease in children in Lyme,
Connecticut [31]. This mysterious outbreak lasted for years and went well into the onset of
the AIDS epidemic. It was originally postulated as a viral disease [32,33]. In the years that
followed, this was disproven when a ‘treponema-like’ spirochete was isolated from the
blood of local fauna and afflicted individuals [34–37]. This spirochete was named Borrelia
burgdorferi in honor of the lead scientist Dr. Wilhelm Burgdorfer [38]. In the years that
followed, the maladies caused by B. burgdorferi were called Lyme disease, now referred to
as Lyme borreliosis (Lb) to specify the clinical infection [36,37]. Throughout the remainder
of this review, Lb shall be the predominant term used.

Despite identifying the Lb etiological agent, its true vector remained unknown. Early
investigations for the Lyme borreliosis vector focused on the prevalent New England
tick species known to transmit pathogens including D. variabilis and Ixodes dammini. The
latter Ixodes species was first hypothesized as the host of B. burgdorferi—a concept later
proven true after successful isolation of the spirochete [34]. At the time, I. dammini was
the sole known vector. Soon, this finding was contested based on growing evidence of
Lb beyond the boundaries of New England. Subsequently, it was demonstrated that I.
dammini was not a separate species from I. scapularis and that the use of I. dammini as
junior subjective of I. scapularis should be avoided to minimize confusion in the research
and medical communities [39,40]. Later studies on other Ixodes species then highlighted I.
pacificus as a western vector [41–43].
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Table 1. Leading anthropophilic ticks within the United States.

Amblyomma
americanum

Amblyomma
maculatum

Dermacentor
andersonii

Dermacentor
variabilis Ixodes cookei Ixodes pacificus Ixodes scapularis Rhicephalus

sanguineus
Ornithodoros

hermsii

Common name 1 Lone Star Tick Gulf Coast Tick Rocky Mountain
Wood Tick

American Dog
Tick Groundhog Tick Western

Blacklegged tick
Blacklegged

Tick/Deer Tick Brown Dog Tick

Type 3 Hard Hard Hard Hard Hard Hard Hard Hard Soft

Prey 1,3 rodents, domestic
animals

rodents, domestic
animals

rodents, domestic
animals domestic animals

groundhogs,
skunks, rodents,
racoons, foxes,

weasels, domestic
animals

mice, voles,
weasels, deer,
birds, lizards

mice, deer, birds domestic animals rodents

Feeding style 3 3-host tick 3-host tick 3-host tick 3-host tick 3-host tick 3-host 3-host 3-host tick
Dimorphic 3 Yes Yes Yes Yes Yes Yes Yes Yes Yes

Zone 1,2 East and Southern
US

South-mid US,
Southern Arizona

East of Rocky
Mountains, US,

pacific coast
Eastern U.S Western US

Eastern, Upper
Midwest, and
Southern US

World-wide, *
Southern border

of U.S

Northwest coast,
Texas, Florida

Peak activity 1,2 Early Spring- Late
fall

Early Spring- Late
fall

Spring and
Summer

Early spring-Mid
Fall

Early spring-Mid
Fall

Early spring-Mid
Fall Year-round

States 1,2

AL, AR, CT, DE,
FL, GA, IL, IN, IA,
KS, KY, LA, ME,

MD, MA, MS, MO,
NE, NH, NJ, NY,
NC, OH, OK, PA,

RI, SC, TN, TX, VT,
VA, WV, DC

AL, AR, FL, GA,
KS, LA, MS, MO,
NC, OK, SC, TN,

TX, VA

AZ, CA, CO, ID,
KS, MT

NE, NV, NM, ND,
OK, OR, SD, UT,

WA, WY

AL, AR, CA, CT,
DE, FL, GA, IL, IN,

IA, KS, KY, LA,
ME, MD, MA, MI,
MN, MS, MO, MT,

NE
NH, NJ, NY, NC,
ND, OH, OK, PA,

RI, SC, SD, TN,
TX, VT, VA, WV,

WI, WY, DC

ME AZ, CA, NV, OR,
UT, WA

AL, AR, CT, DE,
FL, GA, IL, IN, IA,
KS, KY, LA, ME,

MD, MA, MI, MN,
MS, MO, NH, NJ,
NY, NC, ND, OH,

OK, PA, RI, SC,
SD, TN, TX, VT,
VA, WV, WI, DC

AL, AK, AZ, AR,
CA, CO, CT, DE,

FL, GA, HI, ID, IL,
IN, IA, KS, KY, LA,

ME, MD
MA, MI, MN, MS,
MO, MT, NE, NV,
NH, NJ, NM, NY,
NC, ND, OH, OK,

OR, PA. RI, SC,
SD, TN, TX, UT,

VT, VA, WA, WV,
WI, WY, DC

Habitat 1,2 Wooded areas Coastal areas
scrublands, lightly
wooded areas, and

open grasslands

Human
settlements

Human
settlements

1 Center for Disease Control and Prevention 2022. 2 National Environmental Health Association 2022. 3 Soneshine, Daniel E. (1992). Biology of Ticks Volume I. Oxford University Press.
* This tick species is found within the United States and several countries within Europe.
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Once I. scapularis was recognized as a vector of interest, it was critical to garner more
information about its underlying biology and how it impacted pathogen transmission.
From these studies, it was determined that I. scapularis required the successful completion
of a blood meal to progress through each of its life stages (larva, nymph, adult) [44,45].
During feeding, the ticks obtain the necessary nutrients for growth and survival and acquire
microbes that assist in these functions [2,46,47]. This need for feeding for growth and
survival is most evident during the initial stages of life. At the nymphal stage, I. scapularis
ticks will primarily feed on small, woodland creatures like Peromyscus leucopus, the white-
footed mouse, during which it may acquire B. burgdorferi (Figure 2) [16,48–52]. Additionally,
other tick-borne pathogens may be acquired from blood meals such as Anaplasma, Bartonella,
Ehrlichia, and Babesia spp. [48,53–55]. As I. scapularis nymphs molt into adults they may
become more species restrictive and feed on larger prey like Odocoileus virginianus, the
white-tailed deer, or Ursus americanus, the American black bear [56–58]. Additionally, they
may also prey upon non-competent hosts such as reptiles, or on incidental hosts such
as domestic animals, wildlife, and humans [59–61]. Historically, I. scapularis was most
prevalent along the eastern seaboard of North America (Table 1), but with climate change
its range has expanded both northward and westward.
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Figure 2. Transmission and acquisition of Borreliellal spirochetes. The image was created in BioRender
by KM Socarras 2022.

Another hard tick species, D. variabilis, thrives on many hosts during all of its life
stages. Like Ixodes ticks, this hard tick preys on small mammals early in its life cycle before
parasitizing larger prey as it matures. While this vector was known as a North American
anthropophilic ectoparasite, scientific interest rose with the sudden emergence of Rocky
Mountain Spotted Fever outbreaks earlier in the 20th century [33,51,62]. Compounded
with the precipitous upsurge of Lb, researchers initially considered this arachnid, and
its close cousin D. andersonii, as potential vectors of the disease. In later transmission
studies, however, both ectoparasites were disqualified as being capable of transmitting
the etiological agents of Lb, and to date, no Borrelia spirochetes have been detected within
Dermacentor spp. ticks. Due to the nature of this tick and other TBD pathogens it has been
known to carry, it remains clinically relevant and is found ubiquitously throughout North
America (Table 2).
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Table 2. Leading tick-borne pathogens within the United States and their vectors.

Babesia
microti

Anaplasma
phagocy-
tophilum

Borrelia
burgdorferi

Borrelia
miyamotoi

Borrelia
mayonii

Ehrlichia
chafeensis

Ehrlichia
muris

Ehrlichia
ewingii

Francisella
tularensis

Rickettsia
parkeri

Rickettsia
rickettsii

Bourbon
virus Coltivirus Heartland

virus
Powassan

virus

Type Parasite Bacteria Bacteria Bacteria Bacteria Bacteria Bacteria Bacteria Bacteria Bacteria Bacteria Virus Virus Virus Virus

Disease
Name 1 Babesiosis Anaplasmosis Lyme

Borreliosis
Relapsing

Fever
Lyme

borreliosis Ehrlichiosis Ehrlichiosis Ehrlichiosis Tularemia
R. parkeri
spotted

fever

Rocky
Mountain
Spotted
Fever

Bourbon
virus

disease
Colorado
Tick Fever

Heartland
virus

disease

Powassan
virus

disease
Discovery

1 1990 [63] 1932 [64] 1982 1995 [65] 2016 [66] 1986 [67] 2009 [68] 1996 1912 [69] 1937 [70] 1906 2014 [71] 1950 [72] 2012 [73] 1990 [74]

Reservoir 1

Small
mammals:

[55]
Peromyscus

leucopus,
Procyon

lotor,
Blarina

brevicauda,
Tamias
striatus

Peromyscus
leucopus,

Odocoileus
virginianus

Peromyscus
leucopus,

Odocoileus
virginianus,

Tamias
striatus,
Blarina

brevicauda,
Sorex

cinereus,
Sciurus

carolinensis,
etc. [53]

Peromyscus
leucopus,

Apodemus
spp.,

Microtus
spp.,

Tamias spp.,
Sciuridae
spp., etc.

[75]

Peromyscus
leucopus,

Tamiasciu-
rus

hudsonicus
[76]

Odocoileus
virginianus

Peromyscus
leucopus

Odocoileus
virginianus Rodents Unknown Deer

Tick Vector
1 I. scapularis I. scapularis I. scapularis I. scapularis I. pacificus A.

americanum I. scapularis A.
americanum

A.Americanum,
D. variabilis,

D.
andersonii

D.
andersonii

D. variabilis,
R.

sanguineus,
D.

andersonii

A.
americanum

D.
andersonii

A.
americanum

I. scapularis,
I. cookei

1 Center for Disease Control and Prevention 2022. In contrast, the lone star tick, A. americanum, is found only in select regions in North America. This arachnid has a notably aggressive
feeding behavior towards prey during all life stages. It targets primarily large prey such as O. virginianus, but also domestic animals and humans. While doing so, it can transmit several
tick-borne pathogens such as Ehrlichia ewingii and E. chaffeensis (Table 2) [67,77]. To date, this tick has not been documented as capable of transmitting Borrelial spirochetes and as such is
not considered a Lb vector [78].
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Lastly, the most significant tick on the western North American seaboard is I. pacifi-
cus [79,80]. Similar to its east coast cousin, I. scapularis, I. pacificus is a generalist feeder that
thrives on a variety of hosts (Table 1). In doing so, it can acquire and transmit a broad range
of microbes, including the Borrelial spirochetes (Table 2) [81–83]. I. pacificus has been found
to quest greater distances than other tick species during all life stages [84]. This facilitates
nymph and adult I. pacificus to better track prey for blood meals.

As mentioned, each of the discussed tick species are vectors for multiple TBD pathogens,
and their acquisition/transmission of each microbe is heavily influenced by their food
supply, life stage, and environment. The community of these microbes within a metazoan is
called the microbiome. The term refers to commensal, symbiotic, and pathogenic microbes
that coexist in a defined space [85]. The tick microbiome includes viruses, eubacteria,
archaea, and eukaryotes, and together with metazoan hosts they form a holobiome [86–89].
Until very recently, microbiome studies focused solely on the bacterial components of the
microbiome due to the ease of targeting the bacterial 16S rRNA gene, which is conserved
throughout the entire domain. This high degree of sequence conservation permits the
identification of all species within the domain through a single PCR amplification followed
by DNA sequencing. However, earlier approaches lacked specificity due to technical
limitations.

Previously, many bacteria within the tick microbiome have been found critical for
development, survival, the balancing of complex metabolic pathways, and the execution of
numerous functions of the host they preside in [51,90]. Thus, many of the most significant
microbiome exist in mutualistic relationships with their hosts. In ticks, these bacteria
include members of the Rickettsia, Rickettsia-like, and Wolbachia genera [51,91]. Their
presence/absence impacts their overall morphology, feeding habits, and retention of other
microbes [51,91,92]. This is most clearly observed among tick-borne organisms like Coxiella-
like genera that are essential for the survival and reproduction of A. americanum [93–95].
Similarly, Rickettsia-like spp. are necessary for folic acid biosynthesis within I. scapularis
and I. pacificus, and the Wolbachia spp. for reproduction [93–95].

In early studies, researchers found that the tick microbiome was subject to change
based on its feeding status and environmental stressors. With the advent of next-generation
sequencing (NGS), the small nuances behind such changes and the impact of a given
host on the microbial consortium became clearer. In these studies, I. scapularis was found
to host a wide range of bacterial species within their microbiomes [51,90]. This complex
bacterial microbiome was noted to be quite variable in terms of both breadth and diversity
based on the life stage [91,96,97]. Additionally, it was noted to change based upon feeding
patterns and sex [98,99]. In previous studies of I. scapularis adults, both male and female ticks
were noted to have the Rickettsia and Rickettssia-like spp. as predominant members of their
microbiome [91,96,99]. Other tick species, including D. variabilis and A. americanum, were not
found to be able to sustain such a wide net of bacterial organisms [100–102]. Interestingly,
while the breadth of the microbiome was different, a similar decrease in diversity occurred
among all tick species as they progressed throughout their lifecycles [102–105].

Recently, the I. pacificus microbiome has also been a subject of research. Like, I.
scapularis, it has a diverse microbiome [83,102]. However, it has yet to be determined
what role its microbiome members play in the etiology of human infections. Previous
efforts in characterizing the I. pacificus microbiome have identified common commensal
bacteria including Spiroplasma ixodetis as well as various Rickettsia spp., Rickettsia-like spp.,
Ehrlichia-like, and Anaplasma-like spp. [106]. Additionally, the major human pathogen as
Borreliella burgdorferi and Borrelia miyamotoi have also been found at reduced levels within
this tick population [106].

While research on tick microbiomes has improved our understanding of the various
TBD pathogens, there are several limitations in most studies. The first is that standard
short-read sequencing in NGS systems lack the resolution necessary to identify the bacteria
at the species-level. Next is the dearth of applying these technologies to elucidate the
full nature of the microbial consortia within ticks. Finally, these platforms do not target
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microorganisms such as fungi, nematodes, and apicomplexan parasites. Thus, much
remains to be elucidated regarding to the various tick microbiomes.

3. Borreliosis, the Most Common Type of Tick-Borne Disease

The emergence of chronic cutaneous, neurologic, arthritic, and cardiac maladies have
been documented worldwide for hundreds of years [31,107–112]. In the US, these outbreaks
have occurred in waves for centuries. Some of the earliest mentions were documented
in Long Island during the early 1600s [113]. These cases were called ‘Montauk’s knees’,
‘Southhampton knee’, or water on the knee due to the arthritic-like symptoms [114]. In
the latter half of the twentieth century, another wave occurred at Lyme, Connecticut in the
beginning of the 1970s. In this small community, several children presented with numerous
non-specific and arthritic-like symptoms. These ailments were later formally recognized
as Lyme borreliosis and is commonly referred to as Lyme disease [107–112]. Over the
years, Lb has continually increased in prevalence within the US and Canada and is now the
most common tick-borne disease, accounting for ~500,000 new cases each year in the US
alone—due in large part to climate change, deforestation, habitat loss, and loss of predators
of the primary mammalian species upon which the ticks feed [115].

In the years that followed the discovery of Lb, its etiological agent, Borreliella burgdorferi,
and other Borreliella spirochetes were found to be pathogenic to humans [38,116–120]. Some
of these spirochetes do not, however, have the same vectors or pathogenesis. In this
instance, other Borreliaceae members can cause Relapsing fever (Rf) and may be transmitted
through a tick or louse vector. While these distinctions were made primarily on pathology
and geo-locale of origin, later comparative genomic research suggested splitting the genus
into two distinct disease-causing genera [121]. The Lb causing spirochetes were then given
the new designation of Borreliella, while all other Borreliaceae spirochetes which cause Rf
retained its original name of Borrelia.

Lb is a multi-systemic infectious disease with a wide and seemingly unconnected
variety of conditions (e.g., polyarthralgias; neurological diseases, including polydysthe-
sias/parathesias, cardiomyopathy, multiple sclerosis, other demylenating diseases, and
ataxia; and psychiatric conditions, such as pediatric bipolar disorder and PANS and PAN-
DAS) [122–130]. The sole pathognomonic presentation of Lb is erythema migrans, com-
monly known as the bulls-eye rash. Unfortunately, this presentation may not occur or is
not visible to all individuals, occurring in approximately 50% of Lb cases [131–134]. Lb is
divided into distinct stages: localized and disseminated. The disease presentations vary
wildly among individuals, as well as by the species of Borreliella. This is illustrated most
clearly with common Borreliella spirochetes, B. burgdorferi, B.azfelii, and B. garinii, each of
which is endemic to the US or Europe. B. burgdorferi, the most common cause of Lb in
the US, is primarily associated with arthritis, while B. afzelii is associated with cutaneous
infections and B. garinii with neurological disease in Europe [133].

Due to the spectrum of non-specific symptoms for Lb, diagnoses are often difficult.
Currently, clinicians rely on imprecise serological diagnostics and proof of tick-bite before
accepting a Lb differential. While the above approaches may be useful in some instances,
these current diagnostics have severe limitations, including a highly unreliable negative
predictive value. To understand why these diagnostics may fail, it is critical to understand
the basic biology of these spirochetes.

Previously, researchers have noted that Borreliellal spirochetes share many features
ranging from their obligate parasitic nature within a large network of reservoir hosts, rather
organisms that sustain spirochetes and facilitate their reproduction, to dynamic morphol-
ogy that facilitates their near-constant host invasion [38,135]. Their unique morphology
is thought to be created by 11 anti-parallel inter-membrane flagella and a chitobiose pep-
tidoglycan [136,137]. Interestingly, this morphology has been documented to change in
response to varying external stimuli [138–142]. It is, however, unclear what the mechanisms
underlying the Borreliaceae morphological shifts are.
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In addition to altering their morphology as a stress response, Borreliaceace spirochetes
can manipulate their host’s immune and inflammatory response to their advantage. This
is most clearly seen within I. scapularis ticks where Borreliella spp. reside within the tick
midgut. These spirochetes are bound to the tick receptor for OspA (TROSPA) until the
initiation of a blood meal [143]. Through feeding, the Borreliella dissociate from TROSPA,
then switch their outer membrane surface protein (Osp) composition. The act of feeding
induces tick salivary proteins to cover presenting Borreliella OspA and translocate to
the tick salivary gland before peritrophic membrane formation [144,145]. Once in the
salivary gland, the spirochete can then be transmitted into the new host dermis. During
transmission, the Borreliella OspA in the outer membrane decreases and OspC rises [144].
For humans, Borreliella/Borrelia can be transmitted at varying rates depending on the tick
species, tick feeding status, microbial strain, and microbial load, e.g., an I. scapularis tick
can transmit B. burgdorferi within 24–48 h of initiating blood feeding [146–148].

Once Borrelieceae spirochetes have successfully entered the human body, they can persist
within the dermis before disseminating. There are two proposed dissemination methods for
Borreliella spirochetes: the hematogenous and non-hematogenous routes including the lym-
phatics or tissue [149]. In both dissemination routes, the spirochetes mitigate the host immune
response to prevent recognition by the innate immune system and ultimately delay and distort
the development of a T-cell-dependent B-cell response [49,150–153]. In addition, Borreliaceae
spirochetes, can also evade the host immune system through various other means [154].
Both Borrelieceae can utilize the antigenic variation system, vls, present within the genome
to evade the complement cascade. Additionally, Borreliella can achieve complement evasion
by binding to Factor H, a negative regulator of host complement, to outer membrane
proteins CspA, CspZ, and OspE [155–157]. Borreliella can also inhibit the classical com-
plement pathway by binding C1r to outer membrane protein BBK32 [158,159]. Through
antigenic switching of Borreliella outer membrane proteins, including hypervariable OspC
and BBA70, the overall outer membrane composition and pathogenesis of the spirochete
can be altered in situ [160,161]. Through these virulence mechanisms, it is believed that
if Borrelieceae spirochetes are not successfully cleared by the immune system, they may
colonize host tissues to form a persistent infection.

While Lyme borreliosis has become highly prevalent, the impact of elapsing fever (Rf)
still remains a significant health concern. The RF-causing Borrelia genus can be transmitted
either by ticks or lice around the world [154,162–164]. Within the United States, this
infectious disease has remained endemic solely within western mountainous regions [164].
Regardless of geo-locale of origin, all variants of Rf have the same symptomology. The
illness does have nonspecific symptoms like fatigue, headache, nausea, and muscle/joint
aches [165,166]. Important diagnostically, however, is that uniquely induces periodic fever
spikes associated with Borrelial septicemias. The fever dissipates during periods of time
when there are decreased levels of Borrelia present within the blood but return on a cyclical
basis over the course of weeks. Due to the elevated numbers of Borrelia within the blood,
Rf is commonly diagnosed through microscopic examination of blood smears (Figure 3).
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4. Borreliaceae Diagnostics

In the US, the cost of preventing and treating Lb has been estimated to range from
$712 million to $1.3 billion per year, but this is likely a gross underestimate as many Lb
patients go undiagnosed for years while seeking care for their ‘nonspecific’ symptoms [167].
Often, patients may pay out of pocket for additional diagnostic tests and treatments. In
contrast, acute diagnostics for other common bacteria such as Streptococcus, Treponema
pallidum, and Staphylococcus infections are accurate and lead to effective treatment before
the bacteria can progress to later stages of infection [168–172]. Meanwhile, the economic
impact of Lb infections continues to rise in large part due to an inadequate diagnosis. Thus,
it is critical to develop and implement better diagnostics, prognostics, and therapeutics for
borrelioses [7,173].

Many factors contribute to acute Lb diagnoses being missed. For example, persons
with darker skin pigmentation will often not display a visible EM rash, others lack access
to medical care or only have non-specific symptoms of acute Lb, while still others have a
non-traditional EM rash that is not recognized during the acute phase of Lb [132,174,175].
If a patient suspected of acute Lb presents to healthcare providers, clinicians will assess
risk factors for contracting Lyme borreliosis, including symptom presentation timing,
geographic location, recent travel history, pet ownership, and history of other TBDs or
rashes [176]. Laboratory-based tests are then utilized by clinicians to confirm a suspected
acute case of Lyme borreliosis. Currently, there are several indirect and direct approaches to
assist in diagnosing an individual with Lb. The Center for Disease Control and Prevention
(CDC) recommends a two-tiered serological (ELISA and Western blot) system to confirm
a suspected Lyme borreliosis case [177]. The two-tiered approach relies on a patient’s
adaptive immune response towards transiently expressed surface proteins of Borreliella.
Producing an IgG antibody response with strong avidity towards specific antigen targets
takes between 2–3 weeks following infection [177]. Furthermore, most Lb western blots
utilize B. burgdorferi sensu stricto strain B31 (Bb B31) as the source of the proteins utilized
in their assay [178]. The B31 subtype was isolated over 30 years ago and the Bb B31
antigens do not represent other Borreliella antigens produced from other closely related Lb
causing spirochetes [7,179]. Thus, patients who seroconvert during acute Lb infection could
produce antibodies targeting antigens that are not included on the standard western blot.
In addition, these serology-based diagnostic approaches cannot serve as prognostics to
track treatment outcomes. This forces physicians to primarily rely on a patient’s symptoms
to guide clinical outcomes or antibiotic treatment efficacy studies [180].

Serologic Lb diagnostics are further complicated by variation in the human adaptive
immune response. If patients are diagnosed with Lb based on an EM rash and antibiotic
treatment is promptly initiated, they might not seroconvert [181,182]. This fact further
complicates the surveillance and confirmation of Lb. The lack of seroconversion could be
due to Bb’s profound immunomodulatory and immunosuppressive effects which depend
on the combination of host and pathogen genetics [152,183]. Accurate diagnosis of Lb is
further complicated when a patient is co-infected with other Borreliellal spp. or additional
tick-borne disease pathogens that are also commonly transferred from the tick’s mid-
gut [7,184–188]. Taken together, the average sensitivity of the Lb two-tiered test for the
acute Lb is less than 50% [178]. This poor sensitivity produces high rates of false-negatives
and delays treatment which contributes to the development of chronic/late-stage Lb.
During late-stage Lb, such as Lyme carditis or Lyme arthritis, a two-tiered test can confirm
the diagnosis of the patient with high sensitivity. Unfortunately, patients in the later stages
of Lb face permanent tissue damage and require longer antibiotic treatments [189,190].

Newer serologically-based diagnostics present recombinantly expressed surface pro-
teins from multiple pathogens and strains of Borreliella [185,191]. These approaches increase
the chance of detecting antibodies produced towards B. burgdorferi strains other than B31
or identifying co-infections. These methods, however, still have their limitations, as Bb is
immunosuppressive and, depending on the infecting strain and host genetics, a significant
percentage of infected persons will fail to appropriately produce antibodies.
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Clinicians seeking diagnosis for suspected Lb patients may venture beyond CDC
guidelines. Traditional pathologic assays such as dark-field microscopy and primary
culture from blood or skin biopsies have poor sensitivity and are not employed as a
reliable diagnostic for Lb, however they have a very high positive predictive value [192].
Attempting to culture or detect Borreliella spirochetes from human tissue biopsies using
PCR methods (standard or quantitative) is invasive and insensitive [7,193–197]. These
direct methods are limited by the low spirochete load in tissues and the bloodstream, unlike
many other human bacterial pathologies [7,185,186,198–200]. Thus, patients and clinicians
require alternative methods of acute Lb diagnosis.

In contrast to the limitations of above-mentioned PCR-based methods for detecting
Borreliella DNA within humans, Next-Generation Sequencing (NGS) approaches can be
highly specific. As Borreliella spirochetes are rarely present in the blood after initial disease
onset, the challenge for NGS is to obtain enough of a sample to confidently detect genes
associated with acute Lb bacteria [8,201]. Previously, many Borreliella NGS approaches
targeted highly conserved genes throughout the genera such as the ribosomal 16S in ticks
or human samples [202]. However, this approach was limited to identifying Lb within ticks
rather than humans due to low titers of Borreliella in the bloodstream.

In a new NGS approach, the limitations of the sample sources may be circumvented
by using patient urine [203]. While most NGS-based assays are limited by the low counts
of Borreliella genomic material present in human samples such as blood, this approach aims
to ensure a higher Borreliella DNA yield with claims that Lb bacteria infect the kidneys.
While accuracy was stated to be ‘superior’ to the standard two-tiered testing approach, the
sensitivity of the test has yet to be reported in the literature. This is slightly different than
previous diagnostic iterations which used the same biosample but targeted solely OspA, a
protein which would not be expressed in high quantities on the outersurface of Borreliaceae
within a mammalian host [204].

Other efforts have been made to increase the sensitivity of Lb bloodborne detection.
Traditional PCR-based diagnostics for Lyme borreliosis have been improved by isothermal
amplification of DNA, followed by PCR amplification of Borreliellal DNA, which is then
detected by electrospray ionization mass spectrometry (PCR/ESI-MSI). In PCR/ESI-MSI, it
was possible to detect the presence of B. burgdorferi in 13 of 21 blood samples from patients
with an acute Lb cases confirmed with positive serology and a history of at least one EM
rash [8,200]. The assay required 1.25 mL of EDTA-treated whole blood and could detect 0.6
or greater copies of Borreliella genomes in whole blood.

In a follow-up study, the PCR/ESI-MSI method attempted to survey the presence of
B. burgdorferi sensu stricto within four patients during their antibiotic treatment for Lyme
borreliosis [205]. In this study, the investigators increased the blood volume from 1.25 mL
to 20 mL, with the aim of increasing the diagnostic sensitivity. B. burgdorferi genes were
detected in 2 of the 4 patients acutely infected with the aforementioned spirochete. In
addition, they did not determine if the increased blood volume increased sensitivity. The
genomic amplification approach relied on detecting and targeting conserved genes present
within the Borreliella genome such as rpoC, FlaB, and OspC [206]. While such targets can
indicate the presence of this spirochetal genus and may provide species-level resolution,
there are some complications [205]. One such complication is that use of consistently
expressed proteins like OspC may be insufficient due to the protein’s high diversity.

Another NGS diagnostic approach utilizes unbiased metagenomic cell-free DNA
sequencing of human plasma. This cell-free DNA (cfDNA) approach was used to detect B.
burgdorferi DNA from 64% (18 of 28) human plasma samples during acute Lb [207]. The
cfDNA sequencing method’s sensitivity was further improved by combining the results of
the modified two-tiered serology testing to identify 86% of acute Lyme borreliosis cases.
Additionally, a recent NGS detection study identified core genes within the Borreliella
pangenome to increase the sensitivity of DNA-based Borreliaceae diagnostics [208]. Taken
together, genomic Borreliella detection methods have significantly improved over the last
decade. However, more work is required to deliver a robust and sensitive diagnosis for
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patients and clinicians. One possibility is to use innate immune proteins that recognize
specific PAMPs, such as Apolipoprotein H linked to paramagnetic beads, to ‘sweep’ a much
larger volume of blood [209–213].

Next-generation sequencing has been used to detect host responses to acute Lb rather
than attempting to directly detect the Borreliellal genome. Sequencing human T-cell recep-
tors (TCRs) is a novel approach to Lyme disease diagnostics and began clinical trials in
2021 [214]. T-cells respond to Lb infection earlier than B-cells can produce antibodies, and
thus the expansion of Borreliellal-specific T-cell receptor sequences in a patient’s circulating
lymphocytes has the potential to confirm acute cases of Lyme disease earlier than tradi-
tional serologic methods [151]. This TCR immuno-sequencing assay differentiated acute
Lb patients from healthy controls with a sensitivity of 54%, while the standard two-tiered
serological testing approach had a sensitivity of only 30%. Clearly, human T-cell responses
significantly vary between patients and this approach will not detect all acute Lyme disease
cases. However, TCR immuno-sequencing assay’s increased sensitivity is a move in the
right direction and has the potential to be combined with other diagnostic approaches to
further increase sensitivity.

In addition to genomic detection, researchers have explored xenodiagnosis,
metabolomics, and biomarker profiling [215–217]. Xenodiagnostics use an uninfected,
natural vector for the isolation of the targeted pathogen from the infected host [218].
In the case of Borreliellal spirochetes, ticks facilitate the reacquisition of Borreliella from
a variety of hosts during a 24-h feeding cycle [219,220]. This feature was noted in the
past with Lyme-infected monkeys and mice but, was not substantiated in humans until
2014 [221–223]. Over the last 8 years, a clinical trial of tick-based recapture of Borreliellal
pathogens from infected human hosts has been underway [218]. No results from this study
have been released at this time. This approach could be further bolstered by applying NGS
to characterize the pathogens recaptured after the tick feeds on the patient suspected of
contracting Lyme borreliosis to increase diagnostic sensitivity. It is important to note, that
while it could prove useful, much more work would be necessary to make it feasible as a
diagnostic.

Metabolomic analyses of Lyme borreliosis patients has also made great strides in recent
years. These studies have identified altered abundances of circulating metabolites produced
by host tissues during Lyme borreliosis. A recent assay was able to discriminate between
acute Lyme borreliosis and uninfected controls using their metabolic profiles [224,225].
Diagnostics relying on specific metabolic profiles are limited by the time and cost associated
to prepare samples for analysis but offer yet another promising avenue for future Lyme
borreliosis diagnostics.

Proteomic studies of serum collected from humans afflicted with Lb by Zhou et al. iden-
tified host acute phase protein abundance alterations during acute Lyme borreliosis [217].
The abundance of proteins—APOA4, C9, CRP, CST6, PGLYRP2, and S100A9—were val-
idated using a second sample set of acute Lyme borreliosis samples and discriminated
between healthy controls and acute Lb patients with a 78% sensitivity. Developing a multi-
plexed ELISA to identify acute-phase proteins associated with Lyme borreliosis could yield
a high-throughput diagnostic, yet the issue of cross-reactivity with other infection markers
must first be addressed. “Mimic diseases” such as rheumatoid arthritis or fibromyalgia
often have similar acute phase protein alterations. Thus, the Lb proteomic study should
be validated for Lb-specificity by testing against a panel of sera from patients with other
mimic diseases [224].

Lastly, a glycoproteomic approach using MALDI-FT-ICR mass spectroscopy has been
demonstrated to detect changes in the IgG N-glycan profile during acute Lyme disease with
a sensitivity of 75% and specificity of 100%. Moreover, this assay can differentiate between
acute Lb cases and patients who have received successful doxycycline treatment [226].

In summary, Borreliella diagnostics are improving, but have a long way to go as each
has strengths, as well as limitations [178]. In this era of increasing TBDs, the best path
forward may be to combine multiple diagnostics to complement the strengths of each



Genes 2022, 13, 1604 13 of 25

method to construct a testing protocol that is highly sensitive and specific. In doing so,
better measures can be taken to initiate early treatments and prevent chronic disease
progression.

5. The Borreliella and Borrelia Genomes

This near-constant cycle of host transmission, acquisition, and host immune evasion
suggests that all Borreliaceae spirochetes would contain a large, complex pan-genome.
This hypothesis was challenged when the first B. burgdorferi sensu stricto genome was
sequenced in the late 1990s [227]. It showed that B. burgdorferi held a small singular linear
chromosome and several linear and circular episomes and prophages. These findings
were echoed in later sequencing projects in other Borreliella spp. Additionally, early B.
burgdorferi genomic studies, revealed many housekeeping genes were contained on the
chromosome, progressing from the center [227,228]. Within them were genes for ribosomal
machinery, 32 transfer (t)RNAs, and tandem repeats. Surprisingly, genes necessary for de
novo biosynthesis of carbohydrates, amino acids, nucleosides, and lipids were not among
them. Borreliella also lacked genes for iron-requiring proteins. In their place were genes
for several kinds of scavenger proteins or proteins that relied on manganese, magnesium,
or zinc for cofactors [229–235]. This absence of genes for key enzymes was not unique
among obligate pathogens. In later years, these stark absences were mirrored within the
chromosomes of many Lb spirochetes, to the point where each species varied by less than
8% in terms of gene content [66,117,119,236–240].

While similar studies for Rf spirochetes have been conducted, less is known about
their genome and gene content. The first Borrelia genome was sequenced in 2008 by Lescot
et al. [241]. Since then, researchers have found that Borrelia spirochetes, like Borreliella
spp., have a singular linear chromosome and many plasmids [209,242–244]. The Borrelia
chromosome is also similar in its GC skew and contains many housekeeping genes [241,245].
It does vary in that it has fewer copies for the 5S and 23S rRNA genes in comparison to
Borreliella chromosomes [241]. Additionally, the Borrelia chromosome still retains many
of the genes critical for purine salvaging and glycerol biosynthesis which is suspected of
facilitating survival and rapid growth [244]. Others have found a high degree of synteny
within the chromosome amongst Borrelia species with less than 2% difference, or the absence
of one gene [244]. Currently, a quarter of the chromosomal genes remain uncharacterized.

As mentioned, both the Borreliella and Borrelia spirochetes have a large plasmid reper-
toire. Borreliella spp. more so than Borrelia spp. The gene content within the Borreliellal
plasmids is sparse. The few identifiable genes contained within are unique to an individ-
ual species that could assist in host adaptation [246]. The distribution of these virulence
genes can be on either the small linear or circular replicons. To date, the Borrelial linear
plasmids (lp) have been suggested to contain fewer functional genes and are laced with
pseudogenes [247–249]. In contrast, the circular plasmids hold more coding genes [250]. It
is possible that the lp-associated pseudogene set serves as part of an evolutionary mecha-
nism to provide for the rapid emergence of new functional genes through recombinational
processes, or that they play roles in gene regulation [250,251]. This can be seen in different
studies such as those conducted by Dulebohn et al. [252]. In one instance the Borreliella
lp28-3 investigated, and it was found that several genes, though considered as non-essential
to Borreliella survival or as pseudogenes, facilitated spirochete survival throughout the
infectious cycle [252].

Previous Borreliella genomic studies have found plasmids to contain a significant
fraction of the genes necessary for spirochetal adaptation, survival, or pathogenesis. Most
of these plasmids are under the stringent control and are present as single copies within
the genome—making the Borreliellal genome, in this sense, more similar to multi-replicon
genomes of eukaryotes. The classification of these episomal elements has been fraught
with multiple difficulties as the genes are largely unannotated and can only be identified
via paralogous family (Pfam) groups, leading to classifications based on size in kilobases
and topology. Current plasmid naming conventions do not have any relation to actual
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biological functions. Within the Borreliella genome, three plasmids are thought to be the
most relevant physiologically: linear plasmid 54, linear plasmid 17, and circular plasmid
(cp) 26.

Lp54 is uniform in gene density and without repeat elements. The genes present
on this plasmid create surface localized lipoproteins that interact directly with host im-
munomodulators necessary for tick transmission and mammalian infection. The smaller
episome, lp17, differs from lp54 by containing genes for homologous proteins with un-
known functions and an end with high homology to other linear Borrleiella replicons. Lp17
also varies greatly among different Borreliaceae species, amounting to 16 variants identified
to date [247]. Lastly, cp26 is highly syntenic and contains genes that encode key metabolic
and nutrient import proteins. Interestingly, cp26 also contains the OspC genes critical for
mammalian infection and the resolvase T enzyme which has been documented as necessary
for genome replication [253,254]. As stated, most of the Lb plasmids are present as single
copies except for cp32 [249]. This replicon is highly syntenic among various species and
strains and carries numerous osp genes necessary for survival in murine, and tick hosts.
Genes needed for successful host adaptation and immune evasion are also found in the
lp28 replicon including the has the VLS antigenic variation system [247,255].

Borrelia spirochetes contain fewer, but slightly larger, plasmids. Within these replicons
are genes for metabolism, replicon maintenance, and pathogenesis [244]. Borrelia, similar
to their Lyme borreliosis cousins, have both linear and circular episomes. The naming of
Rf episomes also follows similar conventions. RF linear plasmids are divided into two
categories based on size. The first group of linear plasmids is composed of replicons that are
approximately 200 Kb in size. The second group is much smaller, averaging at 30 Kb, much
like those seen in Lb spirochetes. These smaller plasmids encode genes utilized for antigenic
variation which provide RF spirochetes the capacity to switch between antigenic variants,
quickly lending to immune evasion, and explaining the ‘relapsing fever’ phenotype [244].
It is important to note that there is one known RF cp that is syntenic with Lb cp32 [256].
The contents of the replicons are also primarily for the generation of surface proteins.

6. Pangenomic Applications

Considering the genomic differences among the Borrelieace spirochetes and their
pathogenic heterogeneity, there are understandably profound therapeutic differences. As
the incidence and prevalence of borrelioses rise, it is imperative to develop new approaches
to diagnostics. Recently, a new field called pangenomics has provided researchers with
a large toolset of comparative genomic technologies to characterize compositional, func-
tional, and structural differences among large numbers of genomes at any taxonomic
level. This has been exemplified by recent pangenomic analyses of the pathogenic bac-
terial species Clostridioides difficile, Escherichia coli, Haemophilus influenzae, and Moraxella
catarrhalis [257–267]. These studies have helped identify new targets for the development
of vaccines, diagnostics, and therapeutics [257–261]. Genus-level pangenomes have also
been described [257,261,268–272].

In the case of Borreliella/Borrelia, discerning key features of the genome has been
difficult due to biological features and technical limitations. Borrelia’s complex genome
includes repetitive sequences, covalently-bound hairpin ends (akin to telomeres), and a
multitude of linear and circular plasmids. These challenges were difficult to overcome until
the advent of next-generation sequencing. Recently, various Illumina platforms have been
used due to their technological improvements, allowing for the sequencing of Borrelia’s
many plasmids. Unfortunately, while this is a step forward in Borreliellal/Borrelial genomics,
such platforms are still ill-suited for properly capturing the large stretches of repetitive
sequences in some of these episomes [273]. Thus, establishing near-complete genomes was
exceedingly challenging without the use of additional platforms.

This drove Borrelial geneticists to search for ways to capture the entire genome in all of
its complexity. The arrival of the latest models of Pacific Bioscience’s long-read sequencing
platforms that utilize the high-fidelity circular consensus sequencing protocols has allowed
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researchers to attain much longer and more accurate sequence reads. This method has
been applied to both Lb and Rf spirochetes [66,242]. There were concerns, however, about
capturing smaller episomes within the spirochete’s genome using this technology.

Concurrently with the growth of Borreliellal/Borrelial genomics, a tentative preliminary
pangenome, rather defined as the complete collection of all genes available within a species
(or higher taxonomic unit), from existing sequenced and annotated Borrelia genomes was
created. This research focused on B. burgforferi sensu stricto and the B. burgdorferi sensu lato
complexes [208,274]. In this first pangenome study, several Lb spirochetes were chosen
based on their host of origin, geo-locale origin, vector, and if they had been isolated from
symptomatic individuals. These 22 Borreliella genomes were then used to construct genome-
wide, single-nucleotide-polymorphism phylogenies [274]. The researchers checked the
pangenome size for B. burgdorferi alone and at the genus-species level for the entire Borreliella
burgdorferi sensu lato complex. It was suggested that B. burgdorferi by itself had a ‘closed’
pangenome. This finding suggests that there were a limited number of novel additions of
new genes added to the genome for each B. burgdorferi genome used in the analysis. Further
expansion of the pangenome project to encompass other Borreliella members revealed a
different pangenome composition. It was shown that as a genus, Borreliella had an open
pangenome that would continue to expand with each new genome addition. While this
study advanced the field of Borreliellal comparative genomics and pangenomics, there
were limitations brought primarily from the technical capabilities of sequencing platforms,
which were prevalent at the time of research.

Subsequent studies on the B. burgdorferi pangenome were smaller in scale. One study
centered on the design and application of a potential xenodiagnostic through the use of
the pangenome by targeting a fragment of the B. burgdorferi 16S rRNA gene [208]. This
was then applied with limited success on I. ricinius ticks [208]. This could stem from the
limited sequences of the Borreliella 16S gene. Additionally, this gene has been documented
to exist as a single copy within the Borreliellal genome, which is commensurate with its
slow growth and long doubling times.

In the age of long read, next-generation sequencing, it is possible to overcome many
of the afore-mentioned limitations. With the recent expansion of PacBio sequencing plat-
forms, a B. burgdorferi, Borreliella burgdorferi sensu lato complex being constructed as well as
establishing the first pangenome for the Borreliaceae family. Thus, novel biomarkers can
be identified as diagnostic targets at the species and genus levels. It is anticipated that
this new and expanded pangenome for the Borreliaceae family will yield more accurate
diagnostics, new antibiotic targets specific to Borreliella, and improve outcomes for patients
diagnosed with Borreliella-based infections.
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