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This study explores a spatially distributed harvesting model that signifies the outcome of 
the competition of two species in a heterogeneous environment. The model is controlled by 
reaction-diffusion equations with resource-based diffusion strategies. Two different situations are 
maintained by the harvesting effects: when the harvesting rates are independent in space and do 
not exceed the intrinsic growth rate; and when they are proportional to the time-independent 
intrinsic growth rate. In particular, the competition between both species differs only by their 
corresponding migration strategy and harvesting intensity. We have computed the main results for 
the global existence of solutions that represent either coexistence or competitive exclusion of two 
competing species depending on the harvesting levels and different imposed diffusion strategies. 
We also established some estimates on harvesting efforts for which coexistence is apparent. Also, 
some numerical results are exhibited in one and two spatial dimensions, which shed some light 
on the ecological implementation of the model.

1. Introduction

In population ecology, the most crucial point in species management with optimal resource distribution is the effects of harvesting, 
which is the common cause of species extinction. In the pursuit of sustainable resource management, it is crucial to prevent population 
extinction resulting from harvesting activities, a topic explored by Ainseba et al. in their study [1]. In an environmental approach, one 
of the most significant concerns in population dynamics is the effect of harvesting. Harvesting indicates reducing the population size 
due to hunting, fishing, or capturing, which shrinks the population density. The study of harvesting for one population was limited in 
[2–4], and in some situations, these are unable to explain the actual situation better. By taking into account resource-based diffusion 
for single species populations with the Gilpin-Ayala growth model and harvesting are explored by Zahan et al. in [5]. In this study, 
they identified conditions on the harvesting rate both for trivial and non-trivial equilibrium states and came to the conclusion that 
for small values of the Gilpin-Ayala parameter when enhanced effects of diffusion disallow the existence of non-trivial states even 
in some circumstances where the intrinsic growth rate exceeds harvesting at some locations in space where a logistic model permits 
a non-zero equilibrium density. However, X. Q. He and W. M. Ni in [6,7] used the classical Lotka-Volterra competition system to 
demonstrate how dispersal and spatial variations affect competition outcomes. In the first part of their study, they assumed the total 
resources were fixed. Their research revealed that a heterogeneous distribution of resources tends to be more efficacious compared 
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to a homogeneous distribution, particularly in scenarios involving diffusion. They further expanded their investigation to encompass 
cases where both species exhibit heterogeneous carrying capacities, while the overall resource availability remains constant. In the 
second part of their study, they investigated a wider range of situations involving different strengths and distributions of resources 
and varying abilities of competition [8]. In this third part of their paper series, the researchers explore the combined impact of 
diffusion and spatial concentration on the overall dynamics of the classical Lotka-Volterra competition-diffusion system.

Additionally, the main objective of studying harvesting effects is to identify and establish the maximum sustainable policy that 
can be implemented in the long run while keeping the population size under control. Even more interesting situations arise when har-

vesting is applied to two or more interacting population dynamics [9–14] that represent either coexistence or competitive exclusion 
by others. In contrast, when both populations are over-exploited, it leads to overall extinction.

However, when both species compete for similar resources, and one or both species are harvested, it is essential to know what 
conditions or measurements on harvesting levels are required for surviving populations in competition. Harvesting efforts and dif-

fusion strategies play an important role in sustaining the population in competition. Every interacting species follows an individual 
dispersal strategy that provides an evolutionary advantage or difficulty at a prescribed harvesting level. This can be obtained by 
exploring stability properties and harvesting levels on model solutions that give us estimates to promote coexistence or competitive 
exclusion of interacting species. However, while using the random diffusion technique, species attempt to relocate to the region with 
fewer resources available. In natural settings, that is not plausible. We have considered a resource-based diffusion method for both 
competing species to get around this problem. According to this diffusion strategy developed by E. Braverman and M. Kamrujjaman 
in 2016 [15,16], the organism’s diffusive transport is considered proportional to the gradient of population density per unit of re-

sources. In certain scenarios, notable disparities in resource distribution exist, rendering the standard diffusion model less accurate. 
In classical diffusion, organisms typically migrate from areas abundant in resources to those with limited resources. However, in 
random diffusion, the migration transport is proportional to the gradient of population density, resulting in migration patterns that 
are symmetric about the peak. This is not realistic when compared to field observations. Additionally, resources are often limited and 
environmental conditions are not always optimal. Factors such as food and water supply, climate change, space, mates, and habitat 
can limit population growth and make it resistant to environmental conditions. Along the lines of the above-mentioned observation, 
we have included an alternative type of diffusion strategy known as the resource-based diffusion strategy, where the diffusive trans-

port of population is considered proportional to the gradient of population density per unit resource instead of just the population 
density. This means all organisms will diffuse according to the availability of maximum abundance, which is more realistic in nature. 
That is, we have tried to capture the reality that is observed in nature.

In the present study, we consider the model of a competitive system of coupled species that is isolated and spatially distributed in 
a heterogeneous environment. However, the species are being harvested with numerous harvesting exertions with similar resource-

based diffusion strategies while competing for similar primary resources. It is also considered that both species’ diffusion strategies 
are stipulated towards two positive distribution functions with different proportions of carrying capacities. Both are contemplating 
the same logistic type of growth function. Under these assumptions, the corresponding competition model with no-flux boundary 
conditions and non-trivial favorable initial conditions is defined.⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝑢

𝜕𝑡
= 𝑑1Δ

(
𝑢(𝑡,𝑥)
𝑀(𝑥)

)
+ 𝑟(𝑥)𝑢(𝑡, 𝑥)

(
1 − 𝑢(𝑡,𝑥)+𝑣(𝑡,𝑥)

𝐾𝑢(𝑥)

)
−𝐻1(𝑥)𝑢(𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈Ω,

𝜕𝑣

𝜕𝑡
= 𝑑2Δ

(
𝑣(𝑡,𝑥)
𝑁(𝑥)

)
+ 𝑟(𝑥)𝑣(𝑡, 𝑥)

(
1 − 𝑣(𝑡,𝑥)+𝑢(𝑡,𝑥)

𝐾𝑣(𝑥)

)
−𝐻2(𝑥)𝑣(𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈Ω,

n ⋅∇
(
𝑢(𝑡,𝑥)
𝑀(𝑥)

)
= n ⋅∇

(
𝑣(𝑡,𝑥)
𝑁(𝑥)

)
= 0, 𝑥 ∈ 𝜕Ω,

𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑣(0, 𝑥) = 𝑣0(𝑥), 𝑥 ∈Ω.

(1.1)

Here, 𝑢(𝑡, 𝑥) and 𝑣(𝑡, 𝑥) denote the population densities and 𝐻1 > 0, 𝐻2 > 0 correspond to the harvesting effects for the first and 
second species, respectively. 𝐾𝑢, 𝐾𝑣 are the species carrying capacity, and 𝑟(𝑥) is the intrinsic growth rate of competing species, 
respectively. Suppose that, 𝐾𝑢(𝑥) > 0, 𝐾𝑣(𝑥) > 0, 𝑟(𝑥) > 0 and resource functions 𝑀(𝑥), 𝑁(𝑥) are in the class of 𝐶1+𝛼(Ω), where 
Ω is an open non-empty isolated bounded domain in ℝ𝑛 with 𝜕Ω ∈ 𝐶2+𝛼 , where 0 < 𝛼 < 1 for any 𝑥 ∈ Ω, which means that 
𝑟(𝑥), 𝐾𝑢(𝑥), 𝐾𝑣(𝑥), 𝑀(𝑥) and 𝑁(𝑥) are all positive in an open non-empty sub-domain of Ω. Here 𝑑1 > 0, 𝑑2 > 0 are the subsequent 
migration rate that depicts the species dispersal rates, and n is the outward normal to the boundary. The set 𝑝1 × 𝑝1 relates to the 
range of the solutions to (1.1), which are determined by the subsequent upper and lower solutions technique, where 𝑝1 × 𝑝2 is a 
bounded subset of ℝ2. The following notations 𝔸 = (0, ∞) ×Ω, 𝔸= [0, ∞) ×Ω, 𝜕𝔸 = (0, ∞) × 𝜕Ω are also convenient to introduce.

When it comes to distributing resources, it is expected that the percentage of population growth that is harvested will be directly 
proportional to the existing population and the intrinsic growth rate, which is distributed spatially and does not depend on time. 
This means that in areas with more resources, more effort can be put into harvesting, and there will be a greater expectation of a 
successful harvest.

In multi-species situations, the study of one harvested species [2,3,10,17] usually does not sufficiently define the population 
dynamics in some situations, as it ignores competition, mutualism, or predation of interacting species. However, for exploited pop-

ulations, harvesting is a common reason for extinction. Further intriguing scenarios emerge when considering the application of 
harvesting to single or multiple interconnected populations. While two competing populations may coexist in the absence of harvest-

ing, the introduction of harvesting measures can lead to the extinction of the harvested population. Also, if two competing species 
reveal similar resources and both are harvested, it is necessary to determine the relationship between the harvesting rates that pre-
2

serve coexistence. For harvested populations, different diffusion strategies, model specifications, and harvesting rates may ultimately 
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lead to species either competitive exclusion when one species survives in the competition or coexistence if both populations are 
over-exploited, then extinction of the species is possible. Different harvesting policies can be introduced for exploited species, for 
example, constant, proportional level, and threshold harvesting. In a study conducted in [4] by Korobenko et al., the spatial and 
temporal effects of a group of general growth functions with carrying capacity-driven diffusion strategy for single-species popula-

tions were analyzed. The research focused on the stability properties for the existence and extinction of species. Additionally, they 
established the existence of optimal harvesting efforts in the case of space-dependent carrying capacity.

In some species competition models, a general predator can serve as a source of harvesting to control invasion species manage-

ment, as demonstrated by Madec et al. [18]. If the competition is varied by diffusion strategies or applied harvesting levels depending 
on intrinsic growth rate or not, then the extinction of one species by another is favored. In this situation, an estimate of harvesting 
levels that can lead the harvested species to survive in the competition is evaluated. Explicitly, by the interplay of steady-state pop-

ulation dispersion, diffusion strategy, intrinsic growth rate, and environmental carrying capacity, we will estimate some bounds on 
harvesting levels that are appropriate to get the required results. Examining solutions’ stability properties will evaluate these bounds 
for the competition outcome. Also, we will study the models for ideal free pairs [15,19,20], which is the more interesting case for 
species coexistence.

In the present study, the major findings are as follows:

1. We prove the global existence of a couple of solutions of the model for the initial value problem when all parameters are time-

independent.

2. We consider different diffusion strategies to examine the evolutionary advantage of the competition model and study the global 
existence of model solutions analytically by employing various conditions on diffusion strategy and harvesting efforts.

3. Both species are considered for two types of harvesting strategy. Case I: when harvesting effects are arbitrary and do not exceed 
time-independent intrinsic growth rates in the domain, and Case II: when harvesting efforts are proportional to time-independent 
intrinsic growth rates. We also establish some estimates for which coexistence necessarily happens.

4. Furthermore, we study numerically all the models both for one and two space dimensions, which has interesting ecological 
implications.

The development of the study is arranged as follows: Section 2 represents the persistence of positive and unique solutions for the 
coupled system. Section 3 provides an analytical study of global steady-state for two different conditions on harvesting effects and 
shows the main results of the study. In Section 4, we will compute these outcomes by numerical results for models both in one and 
two space dimensions to show the spatial effects for both cases on harvesting levels. Finally, the concluding words of the study are 
presented in Section 5.

As we know, the main interest of this study is based on the interaction of numerous migration strategies and the effect of intensity 
of harvesting at different levels for two interacting species. All through this segment, we estimate that 𝐾𝑢(𝑥), 𝐾𝑣(𝑥), 𝑀(𝑥), 𝑁(𝑥), 
𝑟(𝑥), 𝐻1 and 𝐻2 are positive in the domain. If we consider 𝑔𝑙(𝑥, 𝑢, 𝑣, 𝐾𝑢, 𝐻1) = 𝑢𝑟𝑔𝑙(𝑥, 𝑢, 𝑣, 𝐾𝑢) − 𝐻1𝑢, and 𝑔𝐿(𝑥, 𝑣, 𝑢, 𝐾𝑣, 𝐻2) =
𝑣𝑟𝑔𝐿(𝑥, 𝑣, 𝑢, 𝐾𝑣) −𝐻2𝑣, where, 𝑔𝑙(𝑥, 𝑢, 𝑣, 𝐾𝑢) =

(
1 − 𝑢+𝑣

𝐾𝑢

)
and 𝑔𝐿(𝑥, 𝑣, 𝑢, 𝐾𝑣) =

(
1 − 𝑣+𝑢

𝐾𝑣

)
, then the following assumption holds:

(l1) (𝑔𝑙, 𝑔𝐿) is quasi-monotone non-increasing in 𝑝1 × 𝑝2 as well as uniformly Hölder continuous on (Ω ×ℝ ×ℝ).
(l2) 𝑔𝑙(𝑥, 𝑢, 𝑣, 𝐾𝑢, 𝐻1) is monotonically non-increasing in ℝ+ while 𝑟 > 𝐻1 and 𝑔𝑙(𝑥, 𝑢, 𝑣, 𝐾𝑢) is strictly monotonically decreasing 

in 𝑢 and increasing in 𝐾𝑢 as well as 𝑔𝐿(𝑥, 𝑢, 𝑣, 𝐾𝑣, 𝐻2) is non-increasing in ℝ+ when 𝑟 > 𝐻2, and 𝑔𝐿(𝑥, 𝑢, 𝑣, 𝐾𝑣) is strictly 
monotonically decreasing in 𝑣 and increasing in 𝐾𝑣.

For further analysis, it being also convenient to substitute 𝑤 = 𝑢(𝑡,𝑥)
𝑀(𝑥) and 𝑧 = 𝑣(𝑡,𝑥)

𝑁(𝑥) , respectively then system (1.1) becomes reduced 
to

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝑤

𝜕𝑡
=
(

𝑑1
𝑀(𝑥)

)
Δ𝑤(𝑡, 𝑥) + 𝑟(𝑥)𝑤

(
1 − 𝑀

𝐾𝑢
𝑤− 𝑁

𝐾𝑢
𝑧

)
−𝐻1𝑤, 𝑡 > 0, 𝑥 ∈Ω,

𝜕𝑧

𝜕𝑡
=
(

𝑑2
𝑁(𝑥)

)
Δ𝑧(𝑡, 𝑥) + 𝑟(𝑥)𝑧

(
1 − 𝑀

𝐾𝑣
𝑤− 𝑁

𝐾𝑣
𝑧

)
−𝐻2𝑧, 𝑡 > 0, 𝑥 ∈Ω,

n ⋅∇𝑤 = n ⋅∇𝑧 = 0, 𝑥 ∈ 𝜕Ω,
𝑤(0, 𝑥) =𝑤0(𝑥), 𝑧(0, 𝑥) = 𝑧0(𝑥), 𝑥 ∈Ω.

(1.2)

Where, 𝑔∗
𝑙
(𝑥, 𝑤, 𝑧, 𝐾𝑢, 𝐻1) =

(
1 − 𝑀

𝐾𝑢
𝑤− 𝑁

𝐾𝑢
𝑧−𝐻1

)
and 𝑔∗

𝐿
(𝑥, 𝑧, 𝑤, 𝐾𝑣, 𝐻2) =

(
1 − 𝑀

𝐾𝑣
𝑤− 𝑁

𝐾𝑣
𝑧−𝐻2

)
. Then it reduces to a system 

of regular diffusion with positive smooth space-dependent coefficients 𝑑1
𝑀(𝑥) and 𝑑2

𝑁(𝑥) . Now, we will analyze the existence, uniqueness 
and positivity of the system (1.1). To do this, at first, we will revolve our observation to the model that reports the act of a system 
3

for mono and a couple of species.
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2. Existence, uniqueness and positivity of solution

Consider the following resource-based diffusion model with a homogeneous Neumann boundary and positive initial conditions as⎧⎪⎨⎪⎩
𝜕𝑢

𝜕𝑡
= 𝑑1Δ

(
𝑢(𝑡,𝑥)
𝑀(𝑥)

)
+ 𝑟(𝑥)𝑢

(
1 − 𝑢

𝐾𝑢

)
−𝐻1(𝑥)𝑢, (𝑡, 𝑥) ∈𝔸,

n ⋅∇
(
𝑢(𝑡,𝑥)
𝑀(𝑥)

)
= 0, 𝑥 ∈ 𝜕Ω, 𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑥 ∈Ω.

(2.1)

We will now establish the existence and uniqueness results for the equation (2.1).

Theorem 1. Let the non-negative and non-trivial initial function 𝑢0(𝑥) ∈ 𝐶(Ω) and 𝑢0(𝑥) > 0 in some open non-empty bounded sub-domain 
Ω𝑙 ⊂Ω. Then for any 𝑡 > 0, there exists a unique solution 𝑢(𝑡, 𝑥) of the problem (2.1) and it is positive.

Proof. For simplicity we considered, 𝑤 = 𝑢(𝑡,𝑥)
𝑀(𝑥) . The function 𝑀 is positive and bounded above for 𝑥 ∈Ω. So, 𝑤(𝑡, 𝑥) is well defined, 

which leads to model (2.1) in the following form

𝜕𝑤

𝜕𝑡
−
(
𝑑1
𝑀

)
Δ𝑤 = 𝑟𝑤(𝑡, 𝑥)

(
1 − 𝑀𝑤

𝐾𝑢

)
−𝐻1𝑤, (𝑡, 𝑥) ∈𝔸, n ⋅∇𝑤 = 0, 𝑥 ∈ 𝜕Ω,

𝑤(0, 𝑥) =𝑤0(𝑥), 𝑥 ∈Ω.
(2.2)

Let us define the following function in some Ω,

𝐺 = sup
𝑥∈Ω

(
𝑀(𝑥)
𝐾𝑢(𝑥)

)
. (2.3)

Where for some specific functions in the domain, either 𝐾𝑢(𝑥) is proportional to 𝑀(𝑥) or they are non-proportional. Then the 
system (2.2) becomes

𝜕𝑤

𝜕𝑡
−
(
𝑑1
𝑀

)
Δ𝑤 = 𝑟𝑤(𝑡, 𝑥) (1 −𝐺𝑤) −𝐻1𝑤, (𝑡, 𝑥) ∈𝔸, n ⋅∇𝑤 = 0, 𝑥 ∈ 𝜕Ω,

𝑤(0, 𝑥) =𝑤0(𝑥), 𝑥 ∈Ω.
(2.4)

We will now apply the upper and lower solutions technique to model (2.4) to determine the existence and positiveness of the 
solution. It is apparent to investigate that 𝑤 ≡ 0 is a lower solution of the equation (2.4). Therefore, according to (see [21], Lemma 
2.3.2) only an order pair of upper and lower solutions are needed to form for (2.4). Now, to construct the upper solution, let’s 
consider a constant 𝑃 ∗ so that

𝑃 ∗ ≥ max
𝑥∈Ω∞

(
𝑢0(𝑥)
𝑀(𝑥)

)
≥max

𝑥∈Ω

(
𝑢0(𝑥)
𝑀(𝑥)

)
and 𝑟(𝑥)(1 −𝐺𝑃 ∗) < 0 which can found for 𝑢 >𝐾𝑢. Since 𝑢0(𝑥) is bounded in 𝔸 and 𝐾𝑢 is bounded from below, then max

𝑥∈Ω

(
𝑢0
𝑀

)
<∞. 

Also, to construct the upper solution suppose 𝜇 ≥ sup
𝑥∈Ω

||𝐻1(𝑥)||, and let 𝑤 = 𝑃 ∗𝑒𝜇𝑡. Then

𝜕𝑤

𝜕𝑡
−

𝑑1
𝑀

Δ𝑤 = 𝜇𝑤

𝑤
(
𝑟−𝐺𝑤−𝐻1

) ≤ 𝜇𝑤

and

∇ ⋅𝑤 = 0, 𝑤 ≥𝑤(0, 𝑥).

Then consequently, 𝑤 is an upper solution of (2.4) (see [21], Definition 2.3.1). Similarly, the right-hand side function

𝑓𝑅(𝑡, 𝑥,𝑤,𝐾𝑢,𝑀) = 𝑟𝑤

(
1 − 𝑀

𝐾𝑢

𝑤

)
−𝐻1𝑤

is continuous and differentiable with respect to 𝑤 and we define the maximal derivative of 𝑓𝑅 in 𝑤 for each 𝑡 and 𝑥.

𝑓𝑅∗(𝑡, 𝑥) = sup{−𝑓𝑤, 𝑤 ≤ 𝑤 ≤𝑤}, 𝑓 ∗
𝑅
(𝑡, 𝑥) = sup{𝑓𝑤, 𝑤 ≤ 𝑤 ≤𝑤}.

Then the Lipschitz condition (see [21], equation 2.3.3) holds and by Lemma 2.3.2 (see [21]) there prevails a unique solution of the 
model (2.4) satisfying 𝑤 ∈ ⟨𝑤, 𝑤⟩. On taking the inverse substitution, 𝑢(𝑡, 𝑥) =𝑀𝑤, where 0 ≤ 𝑢 ≤𝑀𝑤. We get a unique solution of 
(2.4).
4

To show the positivity of 𝑢 we substitute
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𝑆(𝑡, 𝑥) ∶=𝑤𝑒𝛽𝑡 = 𝑢

𝑀
𝑒𝛽𝑡.

Where, 𝛽 ∶=𝑤 sup
𝑥∈Ω

|||𝑟(𝑥)𝐺|||+ sup
𝑥∈Ω

|||𝐻1
|||, 𝑥 ∈Ω, and sup

𝑥∈Ω
𝑟 >𝐻1. So we have

𝜕𝑆

𝜕𝑡
−

𝑑1
𝑀

Δ𝑆 =
[
𝑟𝑤

(
1 − 𝑀

𝐾𝑢

𝑤

)
−𝐸1𝑤+ 𝛽𝑤

]
𝑒𝛽𝑡 =

[
𝑟 (1 −𝐺𝑤) −𝐻1 + 𝛽

]
𝑆 ≥ 0, (𝑡, 𝑥) ∈𝔸,

n ⋅∇𝑆 = 0, (𝑡, 𝑥) ∈ 𝜕𝔸, 𝑆(0, 𝑥) =𝑤(0, 𝑥) ≥ 0, 𝑥 ∈Ω.

As if (𝑡0, 𝑥0) ∈ 𝔸 then 𝑤 ≥𝑤 ≡ 0, so 𝑆 is non-negative. Hence by Maximum principal 𝑆 > 0 in Ω𝑙 and 𝑆 ∈ 𝐶(𝔸). Therefore, we 
can conclude that the solution 𝑤(𝑡, 𝑥) of the model (2.1) is unique and positive which immediately follows the fact 𝑢(𝑡, 𝑥) is the 
solution of model (2.1) and it is unique and positive. □

Similarly, we can construct the existence and uniqueness result for Species II:⎧⎪⎨⎪⎩
𝜕𝑣

𝜕𝑡
= 𝑑2Δ

(
𝑣(𝑡,𝑥)
𝑁(𝑥)

)
+ 𝑟(𝑥)𝑣

(
1 − 𝑣

𝐾𝑣

)
−𝐻2(𝑥)𝑣, (𝑡, 𝑥) ∈𝔸,

n ⋅∇
(
𝑣(𝑡,𝑥)
𝑁(𝑥)

)
= 0, 𝑥 ∈ 𝜕Ω, 𝑣(0, 𝑥) = 𝑣0(𝑥), 𝑥 ∈Ω.

The following stated Theorem represents the existence and uniqueness of model (1.1) for the coupled system.

Theorem 2. Let 𝑢0(𝑥) and 𝑣0(𝑥) be non-negative on Ω. Then for 𝑢0(𝑥), 𝑣0(𝑥) ∈ 𝐶(Ω), (𝑢, 𝑣) is the unique solution of problem (1.1). 
Furthermore, if (𝑢(0, 𝑥), 𝑣(0, 𝑥)) is non-trivial and non-negative, then for any 𝑡 > 0 both 𝑢(𝑡, 𝑥) > 0 and 𝑣(𝑡, 𝑥) > 0.

Proof. To prove this we enacted ([21], Theorem 8.7.2) to the problem (1.2) which is obtained after substituting 𝑤 = 𝑢(𝑡,𝑥)
𝑀(𝑥) , and 

𝑧 = 𝑣(𝑡,𝑥)
𝑁(𝑥) , respectively.

Next, we choose two constants 𝜌𝑤 and 𝜌𝑧 such that

𝜌𝑤 ≥ sup
(𝑡,𝑥)∈𝔸1

𝑢0(𝑡, 𝑥)
𝑀(𝑥)

, and 𝜌𝑧 ≥ sup
𝑥∈Ω

𝑣0(𝑥)
𝑁(𝑥)

so that 𝑔∗
𝑙
(𝑡, 𝑥, 𝜌𝑤, 0, 𝐾𝑢, 𝐻1) < 0 and 𝑔∗

𝐿
(𝑡, 𝑥, 0, 𝜌𝑧, 𝐾𝑣, 𝐻2) < 0, as 𝑔𝑙(𝑥, 𝑀𝑤, 𝑁𝑧, 𝐾𝑢) and 𝑔𝐿(𝑥, 𝑁𝑧, 𝑀𝑤, 𝐾𝑣) are monotonically non-

increasing in ℝ+. Since, 𝑢(0, 𝑥) and 𝑣(0, 𝑥) are bounded in Ω and 𝐾𝑢, 𝐾𝑣 are bounded from below, so we have sup
𝑥∈Ω

𝑢(0,𝑥)
𝑀(𝑥) <∞, and 

sup
𝑥∈Ω

𝑣(0,𝑥)
𝑁(𝑥) <∞.

It is simple to inspect that conditions (see [21], Theorem 8.7.2, equation 8.7.4) are assured for 𝜌𝑤 and 𝜌𝑧 specified above and(
𝑢0(𝑥)
𝑀(𝑥)

,
𝑣0(𝑥)
𝑁(𝑥)

)
∈ S𝜌 ∶= {(𝑤,𝑧) ∈ 𝐶

(
[0,∞) ×Ω

)
∶ (0,0) ≤ (𝑤,𝑧) ≤ (𝜌𝑤, 𝜌𝑧)}.

The functions, 𝑔𝑙(𝑥, 𝑤, 𝑧, 𝐾𝑢, 𝐻1) =𝑤𝑟(𝑥)𝑔𝑙(𝑥, 𝑤𝑀, 𝑧𝑁, 𝐾𝑢) −𝐻1𝑤, and 𝑔𝐿(𝑥, 𝑧, 𝑤, 𝐾𝑣, 𝐻2) = 𝑧𝑟(𝑥)𝑔𝐿(𝑥, 𝑧𝑁, 𝑤𝑀, 𝐾𝑣) −𝐻2𝑧 are in 
𝐶1 and hence Lipschitz continuous in S𝜌. Since, the function 𝑔𝑙(⋅, 𝑧) is non-increasing in 𝑧 ∈ ⟨0, 𝜌𝑧⟩ and the function 𝑔𝐿(𝑤, ⋅) is 
non-increasing in 𝑤 ∈ ⟨0, 𝜌𝑤⟩, therefore the vector function (𝑔𝑙, 𝑔𝐿) is quasi-monotone non-increasing in S𝜌.

Accordingly, from (see [21], Theorem 8.7.2) all the conditions are satisfied, so the unique solution (𝑤, 𝑧) of (1.2) exists, and it is 
positive. Apparently, the unique positive solution of (1.1) is (𝑢, 𝑣) = (𝑀𝑤, 𝑁𝑧). □

3. Steady states and global analysis

In this section of our study, we will examine two cases. Firstly, we will investigate the situation when both harvesting coefficients 
𝐻1(𝑥) and 𝐻2(𝑥) are spatially dependent, arbitrary, and not proportional to the time-independent 𝑟(𝑥). We aim to investigate the 
global stability of equilibrium solutions under various conditions, including different diffusion strategies, carrying capacities, and 
the effects of harvesting. Secondly, we will analyze the global existence of steady-state when both harvesting coefficients 𝐻1(𝑥) and 
𝐻2(𝑥) are proportional to the time-independent intrinsic growth rates, and we will consider different scenarios.

According to various studies [21–24], model (1.1) represents a sample of a monotone dynamical system. This states that, if the 
trivial equilibrium is unstable and repelling, and neither of the semi-trivial equilibria is stable, then there will be a globally stable 
coexistence equilibrium. However, the trivial equilibrium, coexistence equilibrium, and one of the associated semi-trivial equilibria 
will not be able to sustain stability, the remaining semi-trivial solution will be globally asymptotically stable.

Lemma 1. For some 𝐻1 < sup 𝑟(𝑥) and 𝐻2 < sup 𝑟(𝑥), the zero equilibrium (0, 0) of the model (1.1) is unstable and repelling.1
5

1 Remark: If 𝐻1 > sup 𝑟(𝑥) and 𝐻2 > sup 𝑟(𝑥) in some 𝑥 ∈Ω𝑠 ⊂Ω, the (0, 0) equilibrium is an attractor.
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The similar proof is available in [25,26] for 𝐻1 =𝐻2 ≡ 0, so we have omitted it here.

Lemma 2. [27] If (0, 0) of (1.1) is repeller, then one of the following three circumstances is held from a predetermined list:

(a) a stable positive coexistence of (1.1) will exist, which yields both (𝑢∗, 0) and (0, 𝑣∗) are linearly unstable,

(b) (𝑢, 𝑣) → (𝑢∗, 0), i.e. all positive solution converges to (𝑢∗, 0) as 𝑡 →∞,

(c) (𝑢, 𝑣) → (0, 𝑣∗), i.e. all positive solution converges to (0, 𝑣∗) as 𝑡 →∞.

3.1. Case I: harvesting maps and growth rate are arbitrary

Consider the following equations with homogeneous Neumann boundary conditions

⎧⎪⎪⎨⎪⎪⎩

𝜕𝑢

𝜕𝑡
= 𝑑1Δ

(
𝑢(𝑡,𝑥)
𝑀(𝑥)

)
+ 𝑟(𝑥)𝑢

(
1 − 𝑢+𝑣

𝐾𝑢(𝑥)

)
−𝐻1(𝑥)𝑢, 𝑡 > 0, 𝑥 ∈Ω,

𝜕𝑣

𝜕𝑡
= 𝑑2Δ

(
𝑣(𝑡,𝑥)
𝑁(𝑥)

)
+ 𝑟(𝑥)𝑣

(
1 − 𝑣+𝑢

𝐾𝑣(𝑥)

)
−𝐻2(𝑥)𝑣, 𝑡 > 0, 𝑥 ∈Ω,

n ⋅∇
(

𝑢

𝑀

)
= n ⋅∇

(
𝑣

𝑁

)
= 0, 𝑥 ∈ 𝜕Ω, 𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑣(0, 𝑥) = 𝑣0(𝑥), 𝑥 ∈Ω.

(3.1)

Now, we will study the global existence of model (3.1) under the different conditions on resource functions and harvesting coeffi-

cients. Let 𝑢∗(𝑥) and 𝑣∗(𝑥) be the stationary solutions of the first and second species corresponding to (3.1) when only one species 
survives so that the semi-trivial equilibrium (𝑢∗, 0) and (0, 𝑣∗) satisfies

𝑑1Δ
(
𝑢∗(𝑥)
𝑀(𝑥)

)
+ 𝑟

(
1 − 𝑢∗(𝑥)

𝐾𝑢(𝑥)

)
𝑢∗ −𝐻1(𝑥)𝑢∗ = 0, 𝑥 ∈Ω, n ⋅∇

(
𝑢∗

𝑀

)
= 0, 𝑥 ∈ 𝜕Ω.

𝑑2Δ
(
𝑣∗(𝑥)
𝑁(𝑥)

)
+ 𝑟

(
1 − 𝑣∗(𝑥)

𝐾𝑣(𝑥)

)
𝑣∗ −𝐻2(𝑥)𝑣∗ = 0, 𝑥 ∈Ω, n ⋅∇

(
𝑣∗

𝑁

)
= 0, 𝑥 ∈ 𝜕Ω.

The following Lemma 3 and Lemma 4 presented below represent the existence and extinction conditions for a positive equilibrium 
state when the carrying capacities and resource functions are spatially distributed.

Lemma 3. [4,28] Let 𝑓 (𝑡, 𝑥, 𝑢, 𝐾𝑢) = 𝑟𝑢(1 − 𝑢

𝐾𝑢
) satisfy the properties (l1)-(l2) and sup

𝑥∈Ω
[𝑟(𝑥) −𝐻1(𝑥)] > 0 for all 𝑥 ∈ Ω, then for any 

𝑢0(𝑥) > 0 and 𝑢0 ≢ 0 all the solutions of the system (2.1) converge to a unique positive steady state 𝑢∗(𝑥) as 𝑡 →∞.

Lemma 4. [4,28] Let 𝑓 (𝑡, 𝑥, 𝑢, 𝐾𝑢) = 𝑟𝑢(1 − 𝑢

𝐾𝑢
) satisfy the properties (l1)-(l2) and sup

𝑥∈Ω
[𝑟(𝑥) −𝐻1(𝑥)] < 0 for all 𝑥 ∈ Ω, then for any 

𝑢0(𝑥) > 0 and 𝑢0 ≢ 0 all the solutions of the system (2.1) converge to 0 as 𝑡 →∞.

Lemma 5. Let 𝑀
𝐾𝑢

≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝑁

𝐾𝑣
≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 where 𝐾𝑢, 𝐾𝑣, 𝑀 and 𝑁 are non-constant and 𝐾𝑢 ≡𝐾𝑣 ≡𝐾 with 𝑑1 ≡ 𝑑2 ≡ 𝑑. Then 

for some 𝐻1, 𝐻2 ∈ Ω𝑠 ⊂Ω if sup
𝑥∈Ω

[𝑟(𝑥) −𝐻1(𝑥)] > 0 and sup
𝑥∈Ω

[𝑟(𝑥) −𝐻2(𝑥)] > 0 as well as 𝐻1(𝑥) <𝐻2(𝑥) in open, bounded and non-empty 

domain 𝑥 ∈Ω𝑠 ⊂Ω, the quasi-trivial equilibrium (0, 𝑣∗) of system (3.1) is unstable.

Proof. For any 𝑥 ∈Ω, we have 𝐻1(𝑥) <𝐻2(𝑥) and so

𝑟(𝑥) −𝐻1(𝑥) > 𝑟(𝑥) −𝐻2(𝑥).

For which,

sup
𝑥∈Ω

(
𝑟(𝑥) −𝐻1(𝑥)

)
> sup

𝑥∈Ω

(
𝑟(𝑥) −𝐻2(𝑥)

)
.

Now at low densities, since sup
𝑥∈Ω

(𝑟(𝑥) −𝐻2(𝑥)) > 0 by the property (l2) and Lemma 3 we get,

sup
𝑥∈Ω

[
𝑟(𝑥)(1 − 𝑣∗

𝐾
) −𝐻1(𝑥)

]
> sup

𝑥∈Ω

[
𝑟(𝑥)(1 − 𝑣∗

𝐾
) −𝐻2(𝑥)

]
.

Which implies, sup
𝑥∈Ω

[𝑟(𝑥)(1 − 𝑣∗

𝐾
) −𝐻2(𝑥)] > 0 so that sup

𝑥∈Ω
[𝑟(𝑥)(1 − 𝑣∗

𝐾
) −𝐻1(𝑥)] > 0.

Furthermore, suppose for any 𝑥 ∈Ω and 𝑡 > 0[
𝑟(𝑥)

(
1 − 𝑣∗

𝐾

)
−𝐻1(𝑥)

]
=𝐺ℎ(𝑥).
6

Consider the linearization of (3.1) over (0, 𝑣∗) for the case 𝐻1 <𝐻2, we find
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𝜕𝑢

𝜕𝑡
= 𝑑Δ

(
𝑢

𝑀

)
+𝐺ℎ(𝑥)𝑢, 𝑡 > 0, 𝑥 ∈Ω,

𝜕𝑣

𝜕𝑡
= 𝑑Δ

(
𝑣

𝑁

)
+ 𝑣𝑔𝐿(𝑥, 𝑣∗,0,𝐾)𝑟+ 𝑣∗𝑔𝐿𝑢(𝑥, 𝑣

∗,0,𝐾)𝑟𝑢+ 𝑣∗𝑔𝐿𝑣(𝑥, 𝑣
∗,0,𝐾)𝑟𝑣−𝐻2𝑣, 𝑡 > 0, 𝑥 ∈Ω,

n ⋅∇
(

𝑢

𝑀

)
= n ⋅∇

(
𝑣

𝑁

)
= 0, 𝑥 ∈ 𝜕Ω.

Now to establish the unstability of (0, 𝑣∗), it is enough to show that the principal eigenvalue of (3.1) is positive. Consider the 
linearized eigenvalue problem for the equation 𝑢 we have,

𝑑Δ
(

𝜙

𝑀

)
+𝐺ℎ(𝑥)𝜙 = 𝜎𝜙, 𝑥 ∈Ω, n ⋅∇

(
𝜙

𝑀

)
= 0, 𝑥 ∈ 𝜕Ω. (3.2)

By variational characterization of the eigenvalues ([22], Theorem 2.12) the principal eigenvalue of (3.2) is defined by

𝜎1 = sup
𝜙≠0, 𝜙∈𝑊 1,2

∫
Ω
−𝑑|||∇(

𝜙

𝑀

) |||2𝑑𝑥+ ∫
Ω

(
𝜙2

𝑀

)
𝐺ℎ(𝑥)𝑑𝑥

∫
Ω

(
𝜙2

𝑀

)
𝑑𝑥

.

Substituting 𝜙 =𝑀 , and for 𝐻1 <𝐻2 and sup
𝑥∈Ω

[
𝑟

(
1 − 𝑣∗

𝐾

)
−𝐻1

]
> 0 we have

𝜎1 ≥
∫
Ω
𝑀𝐺ℎ(𝑥)𝑑𝑥

∫
Ω
𝑀𝑑𝑥

> 0.

Thus 𝜎1 > 0, which concludes the proof. □

Lemma 6. Let 𝑀
𝐾𝑢

≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝑁

𝐾𝑣
≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 where 𝐾𝑢, 𝐾𝑣, 𝑀 and 𝑁 are non-constant and 𝐾𝑢 ≡ 𝐾𝑣 ≡ 𝐾 with 𝑑1 ≡ 𝑑2 ≡ 𝑑. For 

some 𝐻1, 𝐻2 ∈ Ω𝑠 ⊂ Ω if sup
𝑥∈Ω

[𝑟(𝑥) −𝐻1(𝑥)] > 0 and sup
𝑥∈Ω

[𝑟(𝑥) −𝐻2(𝑥)] > 0 as well as 𝐻1(𝑥) <𝐻2(𝑥) in open, bounded and non-empty 

domain 𝑥 ∈Ω𝑠 ⊂Ω, then system (3.1) has no stable coexistence state (𝑢𝑐 , 𝑣𝑐 ).

Proof. Let us first suppose there exists coexistence state (𝑢𝑐 , 𝑣𝑐 ) of (3.1) then

⎧⎪⎨⎪⎩
𝑑Δ

(
𝑢𝑐 (𝑥)
𝑀(𝑥)

)
+
(
𝑟(𝑥)

(
1 − 𝑢𝑐+𝑣𝑐

𝐾

)
−𝐻1(𝑥)

)
𝑢𝑐 = 0, 𝑥 ∈Ω, n ⋅∇

(
𝑢𝑐

𝑀

)
= 0, 𝑥 ∈ 𝜕Ω,

𝑑Δ
(
𝑣𝑐 (𝑥)
𝑁(𝑥)

)
+
(
𝑟(𝑥)

(
1 − 𝑢𝑐+𝑣𝑐

𝐾

)
−𝐻2(𝑥)

)
𝑣𝑐 = 0, 𝑥 ∈Ω, n ⋅∇

(
𝑣𝑐

𝑁

)
= 0, 𝑥 ∈ 𝜕Ω.

(3.3)

Adding both equations in (3.3), integrating over Ω, and applying the Neumann boundary conditions we get,

∫
Ω

(
𝑟(𝑥)

(
1 −

𝑢𝑐 + 𝑣𝑐

𝐾

)
−𝐻1(𝑥)

)
𝑢𝑐𝑑𝑥+ ∫

Ω

(
𝑟(𝑥)

(
1 −

𝑢𝑐 + 𝑣𝑐

𝐾

)
−𝐻2(𝑥)

)
𝑣𝑐𝑑𝑥 = 0.

Since, 𝐻1(𝑥) <𝐻2(𝑥) and by our assumption sup
𝑥∈Ω

[𝑟(𝑥) −𝐻1(𝑥)] > sup
𝑥∈Ω

[𝑟(𝑥) −𝐻2(𝑥)] > 0.

It follows, sup
𝑥∈Ω

[
𝑟(𝑥)

(
1 − 𝑢𝑐+𝑣𝑐

𝐾

)
−𝐻1(𝑥)

]
> sup

𝑥∈Ω

[
𝑟(𝑥)

(
1 − 𝑢𝑐+𝑣𝑐

𝐾

)
−𝐻2(𝑥)

]
.

So,

sup
𝑥∈Ω

[
𝑟(𝑥)

(
1 −

𝑢𝑐 + 𝑣𝑐

𝐾

)
−𝐻1(𝑥)

]
> 0. (3.4)

Moreover, let[
𝑟(𝑥)

(
1 −

𝑢𝑐 + 𝑣𝑐

𝐾

)
−𝐻1(𝑥)

]
=𝐺𝑐(𝑥).

This is possible only when 𝑢𝑐 + 𝑣𝑐 ≢ 𝐾 . Now we will impose only the case when 𝑢𝑐 + 𝑣𝑐 ≢ 𝐾 in some non-empty open domain Ω. 
Now consider the eigenvalue problem corresponding to positive eigenfunction 𝜙 we get,

𝑑Δ
(

𝜙

𝑀

)
+𝐺𝑐(𝑥)𝜙 = 𝜎𝜙, 𝑥 ∈Ω, n ⋅∇

(
𝜙

𝑀

)
= 0, 𝑥 ∈ 𝜕Ω.

2 Remark: In this theorem, for investigating principal eigenvalue for the instability of equilibrium states the authors have considered the inf of 𝜎1 for which if the 
7

eigenvalue is negative then it would be unstable. But in our study, we have considered sup of 𝜎1 , and it will be unstable if the principal eigenvalue is positive.
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Then its principal eigenvalues according to ([22], Theorem 2.1) is

𝜎1 = sup
𝜙≠0, 𝜙∈𝑊 1,2

∫
Ω
−𝑑|||∇(

𝜙

𝑀

) |||2𝑑𝑥+ ∫
Ω

(
𝜙2

𝑀

)
𝐺𝑐(𝑥)𝑑𝑥

∫
Ω

(
𝜙2

𝑀

)
𝑑𝑥

.

Letting 𝜙 =𝑀 and for any 𝐻1 <𝐻2 and by equation (3.4) at low population densities,

sup
𝑥∈Ω

[
𝑟(𝑥)

(
1 −

𝑢𝑐 + 𝑣𝑐

𝐾

)
−𝐻1(𝑥)

]
> 0.

Therefore we get,

𝜎1 ≥
∫
Ω
𝑀𝐺𝑐(𝑥)𝑑𝑥

∫
Ω
𝑀𝑑𝑥

> 0.

However, (𝑤𝑐, 𝑧𝑐) is a steady state solution of (3.1), 𝑤𝑐 satisfies,

𝑑Δ𝑤𝑐 + 𝑔
∗
𝑙
(𝑥,𝑤, 𝑧,𝐾,𝐻1)𝑤𝑐𝑀(𝑥) = 0, 𝑥 ∈Ω, n ⋅∇𝑤𝑐 = 0, 𝑥 ∈ 𝜕Ω,

and therefore, we get a positive principal eigenfunction of (3.1) along with principal eigenvalue 0. This contradicts 𝜎1 > 0, which 
concludes the proof. □

According to strong monotone dynamical system [21–24,27] and by Lemma 2 for 𝐻1 <𝐻2, the following outcome is sketched 
by Lemma 1, Lemma 5 and Lemma 6.

Theorem 3. Let 𝑀
𝐾𝑢

≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝑁

𝐾𝑣
≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 where 𝐾𝑢, 𝐾𝑣, 𝑀 and 𝑁 are non-constant and 𝐾𝑢 ≡𝐾𝑣 ≡𝐾 with 𝑑1 ≡ 𝑑2 ≡ 𝑑. For 

some 𝐻1, 𝐻2 ∈ Ω𝑠 ⊂ Ω if sup
𝑥∈Ω

[𝑟(𝑥) −𝐻1(𝑥)] > 0 and sup
𝑥∈Ω

[𝑟(𝑥) −𝐻2(𝑥)] > 0 as well as 𝐻1(𝑥) <𝐻2(𝑥) in open, bounded and non-empty 

domain 𝑥 ∈Ω𝑠 ⊂Ω, then (𝑢∗, 0) of system (3.1) is globally asymptotically stable.

The following remark is followed by Theorem 3.

Remark 1. Let 𝑀
𝐾𝑢

≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝑁

𝐾𝑣
≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 where 𝐾𝑢, 𝐾𝑣, 𝑀 and 𝑁 are non-constant and 𝐾𝑢 ≡ 𝐾𝑣 ≡ 𝐾 with 𝑑1 ≡ 𝑑2 ≡ 𝑑. 

For some 𝐻1, 𝐻2 ∈ Ω𝑠 ⊂ Ω if sup
𝑥∈Ω

[𝑟(𝑥) −𝐻1(𝑥)] > 0 and sup
𝑥∈Ω

[𝑟(𝑥) −𝐻2(𝑥)] > 0, then for any 𝐻1(𝑥) > 𝐻2(𝑥) in open, bounded and 

non-empty domain 𝑥 ∈Ω𝑠 ⊂Ω, (0, 𝑣∗) of system (3.1) is globally asymptotically stable.

Lemma 7. Let 𝑀
𝐾𝑢

≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝑁

𝐾𝑣
≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 where 𝐾𝑢, 𝐾𝑣, 𝑀 and 𝑁 are non-constant and 𝐾𝑢 ≡𝐾𝑣 ≡𝐾 with 𝑑1 ≡ 𝑑2 ≡ 𝑑. If for 

some 𝐻1, 𝐻2 ∈ Ω𝑠 ⊂ Ω if sup
𝑥∈Ω

[𝑟(𝑥) −𝐻1(𝑥)] > 0 and sup
𝑥∈Ω

[𝑟(𝑥) −𝐻2(𝑥)] > 0, then for any 𝐻1(𝑥) ≡𝐻2(𝑥) ≡𝐻(𝑥) and 𝐾 = 𝛼𝑀 + 𝛽𝑁 , 

where 𝛼 > 0, 𝛽 > 0 in open, bounded and non-empty domain 𝑥 ∈Ω𝑠 ⊂Ω, (𝑢∗, 0) of (3.1) is not stable.

Proof. Examine the linearized eigenvalue problem corresponding to the second equation in (3.1) over (𝑢∗, 0) with Neumann bound-

ary conditions we get

𝑑Δ
(

𝜙

𝑁

)
+
(
𝑟(𝑥)

(
1 − 𝑢∗

𝐾

)
−𝐻(𝑥)

)
𝜙 = 𝜎𝜙, 𝑥 ∈Ω, n ⋅∇

(
𝜙

𝑁

)
= 0, 𝑥 ∈ 𝜕Ω. (3.5)

The principal eigenvalue of (3.5) is defined as according to ([22], Theorem 2.1) we obtain

𝜎1 = sup
𝜙≠0, 𝜙∈𝑊 1,2

∫
Ω
−𝑑|||∇(

𝜙

𝑁

)|||2𝑑𝑥+ ∫
Ω

(
𝜙2

𝑁

)(
𝑟(𝑥)

(
1 − 𝑢∗

𝐾

)
−𝐻(𝑥)

)
𝑑𝑥

∫
Ω

(
𝜙2

𝑁

)
𝑑𝑥

.

Choosing 𝜙 =
√
𝛽𝑁(𝑥) we find

𝜎1 ≥
∫
Ω
𝛽𝑁

(
𝑟

(
1 − 𝑢∗

𝐾

)
−𝐻

)
𝑑𝑥

𝛽 ∫
Ω
𝑁𝑑𝑥

.

8

Since 𝑢∗ is a steady state solution of (3.1) and 𝐻1(𝑥) ≡𝐻2(𝑥) ≡𝐻(𝑥), so we get
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𝑑Δ
(
𝑢∗(𝑥)
𝑀(𝑥)

)
+ 𝑟(𝑥)𝑢∗

(
1 − 𝑢∗

𝐾

)
−𝐻(𝑥)𝑢∗ = 0, 𝑥 ∈Ω, n ⋅∇

(
𝑢∗

𝑀(𝑥)

)
= 0, 𝑥 ∈ 𝜕Ω. (3.6)

As 𝑢∗ and 𝑀(𝑥) both are non-negative, dividing the equation (3.6) by 𝑢∗

𝑀(𝑥) , integrating over Ω and using the corresponding Neumann 
boundary conditions we have,

∫
Ω

𝑀(𝑥)
(
𝑟(𝑥)

(
𝑢∗

𝐾
− 1

)
+𝐻(𝑥)

)
𝑑𝑥 = ∫

Ω

𝑑

|||∇(
𝑢∗

𝑀(𝑥)

)|||2(
𝑢∗

𝑀(𝑥)

)2 𝑑𝑥 > 0, unless
𝑀(𝑥)
𝐾

≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

Hence,

∫
Ω

𝑀(𝑥)
(
𝑟(𝑥)

(
𝑢∗

𝐾
− 1

)
+𝐻(𝑥)

)
𝑑𝑥 > 0. (3.7)

Now, for 𝐾(𝑥) = 𝛼𝑀(𝑥) + 𝛽𝑁(𝑥) and using (3.7) for 𝐻1 ≡𝐻2 ≡𝐻(𝑥) we get

𝜎1 ≥
∫
Ω
𝛽𝑁(𝑥)

(
𝑟(𝑥)

(
1 − 𝑢∗

𝐾

)
−𝐻(𝑥)

)
𝑑𝑥

𝛽 ∫
Ω
𝑁(𝑥)𝑑𝑥

= 1
𝑃1 ∫

Ω

𝛽𝑁(𝑥)
(
𝑟(𝑥)

(
1 − 𝑢∗

𝐾

)
−𝐻(𝑥)

)
𝑑𝑥, where we define 𝑃1 = 𝛽 ∫

Ω

𝑁(𝑥)𝑑𝑥

= 1
𝑃1 ∫

Ω

𝐾

(
𝑟(𝑥)

(
1 − 𝑢∗

𝐾

)
−𝐻(𝑥)

)
𝑑𝑥+ 𝛼

𝑃1 ∫
Ω

(
𝑟(𝑥)

(
𝑢∗

𝐾
− 1

)
+𝐻(𝑥)

)
𝑀(𝑥)𝑑𝑥 > 0, unless

𝑀(𝑥)
𝐾

≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

As in the right-hand side expression, the second term is positive according to (3.7) while the foremost term is positive by our 
assumption and following the similar process as in Lemma 5, thus 𝜎1 > 0, which implies that (𝑢∗, 0) is not stable. □

Lemma 8. Let 𝑀
𝐾𝑢

≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝑁

𝐾𝑣
≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 where 𝐾𝑢, 𝐾𝑣, 𝑀 and 𝑁 are non-constant and 𝐾𝑢 ≡𝐾𝑣 ≡𝐾 with 𝑑1 ≡ 𝑑2 ≡ 𝑑. If for 

some 𝐻1, 𝐻2 ∈ Ω𝑠 ⊂ Ω if sup
𝑥∈Ω

[𝑟(𝑥) −𝐻1(𝑥)] > 0 and sup
𝑥∈Ω

[𝑟(𝑥) −𝐻2(𝑥)] > 0, then for any 𝐻1(𝑥) ≡𝐻2(𝑥) ≡𝐻(𝑥) and 𝐾 = 𝛼𝑀 + 𝛽𝑁 , 

where 𝛼 > 0, 𝛽 > 0 in open, bounded and non-empty domain 𝑥 ∈Ω𝑠 ⊂Ω, (0, 𝑣∗) of (3.1) is not stable.

Proof. Taking the linearized eigenvalue problem associated with the leading equation in (3.1) around (0, 𝑣∗) with Neumann bound-

ary conditions yields

𝑑Δ
(

𝜙

𝑀(𝑥)

)
+
(
𝑟(𝑥)

(
1 − 𝑣∗

𝐾

)
−𝐻(𝑥)

)
𝜙 = 𝜎𝜙, 𝑥 ∈Ω, n ⋅∇

(
𝜙

𝑀(𝑥)

)
= 0, 𝑥 ∈ 𝜕Ω. (3.8)

The principal eigenvalue of (3.8) is defined as according to ([22], Theorem 2.1) we obtain

𝜎1 = sup
𝜙≠0, 𝜙∈𝑊 1,2

∫
Ω
−𝑑|||∇(

𝜙

𝑀(𝑥)

) |||2𝑑𝑥+ ∫
Ω

(
𝜙2

𝑀(𝑥)

)(
𝑟(𝑥)

(
1 − 𝑣∗

𝐾

)
−𝐻(𝑥)

)
𝑑𝑥

∫
Ω

(
𝜙2

𝑀(𝑥)

)
𝑑𝑥

.

Choosing 𝜙 =
√
𝛼𝑀(𝑥) we find,

𝜎1 ≥
∫
Ω
𝛼𝑀(𝑥)

(
𝑟(𝑥)

(
1 − 𝑣∗

𝐾

)
−𝐻(𝑥)

)
𝑑𝑥

𝛼 ∫
Ω
𝑀(𝑥)𝑑𝑥

.

Since 𝑣∗ is a stationary solution of (3.1) and both 𝑣∗, 𝑁(𝑥) are non-negative, then for 𝐻1(𝑥) ≡𝐻2(𝑥) ≡𝐻(𝑥) we get similarly as 
Lemma 7 is

∫
Ω

𝑁(𝑥)
(
𝑟(𝑥)

(
𝑣∗

𝐾
− 1

)
+𝐻(𝑥)

)
𝑑𝑥 > 0. (3.9)

Now, for 𝐾(𝑥) = 𝛼𝑀(𝑥) + 𝛽𝑁(𝑥) and using (3.9) for 𝐻1(𝑥) ≡𝐻2(𝑥) ≡𝐻(𝑥) we get

𝜎1 ≥
∫
Ω
𝛼𝑀

(
𝑟

(
1 − 𝑣∗

𝐾

)
−𝐻(𝑥)

)
𝑑𝑥
9

𝛼 ∫
Ω
𝑁(𝑥)𝑑𝑥
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= 1
𝑄1 ∫

Ω

𝛼𝑀(𝑥)
(
𝑟(𝑥)

(
1 − 𝑢∗

𝐾

)
−𝐻(𝑥)

)
𝑑𝑥, where we define 𝑄1 = 𝛽 ∫

Ω

𝑀(𝑥)𝑑𝑥

= 1
𝑄1 ∫

Ω

𝐾

(
𝑟(𝑥)(

(
1 − 𝑣∗

𝐾

)
−𝐻(𝑥)

)
𝑑𝑥+ 𝛼

𝑄1 ∫
Ω

𝑁(𝑥)
(
𝑟(𝑥)

(
𝑣∗

𝐾
− 1

)
+𝐻(𝑥)

)
𝑑𝑥 > 0, unless

𝑁(𝑥)
𝐾(𝑥)

≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

According to (3.9), the second term in the expression is positive, while the first term is non-negative based on our assumption. By 
following the same process as in Lemma 5, we can conclude that 𝜎1 is positive. This implies that (0, 𝑣∗) is not stable. □

By Lemma 7 and Lemma 8 both (𝑢∗, 0) and (0, 𝑣∗) are not stable, and the Lemma 1 is still valid. So, according to strong monotone 
dynamical system [21–24,27] and by Lemma 2 for 𝐾(𝑥) = 𝛼𝑀(𝑥) + 𝛽𝑁(𝑥), where 𝛼 > 0, 𝛽 > 0 in some non-empty open domain, 
(𝑢∗, 𝑣∗) is the only coexistence equilibrium of (3.1) which concludes the following Theorem 4, where both 𝑀, 𝑁 are linearly inde-

pendent.

Theorem 4. Let 𝑀
𝐾𝑢

≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝑁
𝐾𝑣

≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 where 𝐾𝑢, 𝐾𝑣, 𝑀 and 𝑁 are non-constant and 𝐾𝑢 ≡𝐾𝑣 ≡𝐾 with 𝑑1 ≡ 𝑑2 ≡ 𝑑. If for 
some 𝐻1, 𝐻2 ∈ Ω𝑠 ⊂ Ω if sup

𝑥∈Ω
[𝑟(𝑥) −𝐻1(𝑥)] > 0 and sup

𝑥∈Ω
[𝑟(𝑥) −𝐻2(𝑥)] > 0, then for any 𝐻1(𝑥) ≡𝐻2(𝑥) ≡𝐻(𝑥) and 𝐾 = 𝛼𝑀 + 𝛽𝑁 , 

where 𝛼 > 0, 𝛽 > 0 in open, bounded and non-empty domain 𝑥 ∈Ω𝑠 ⊂Ω, the coexistence state (𝑢𝑐 , 𝑣𝑐 ) is globally stable for the system (3.1).

3.2. Case II: 𝐻1(𝑥) and 𝐻2(𝑥) are proportional to space dependent 𝑟(𝑥)

Now consider the competition model with homogeneous Neumann boundary conditions as

⎧⎪⎪⎨⎪⎪⎩

𝜕𝑢

𝜕𝑡
= 𝑑1Δ

(
𝑢(𝑡,𝑥)
𝑀(𝑥)

)
+ 𝑟(𝑥)𝑢

(
1 − 𝑢(𝑡,𝑥)+𝑣(𝑡,𝑥)

𝐾𝑢(𝑥)

)
− 𝛾1𝑟(𝑥)𝑢(𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈Ω,

𝜕𝑣

𝜕𝑡
= 𝑑2Δ

(
𝑣(𝑡,𝑥)
𝑁(𝑥)

)
+ 𝑟(𝑥)𝑣

(
1 − 𝑣(𝑡,𝑥)+𝑢(𝑡,𝑥)

𝐾𝑣(𝑥)

)
− 𝛾2𝑟(𝑥)𝑣(𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈Ω,

n ⋅∇
(

𝑢

𝑀

)
= n ⋅∇

(
𝑣

𝑁

)
= 0, 𝑥 ∈ 𝜕Ω, 𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑣(0, 𝑥) = 𝑣0(𝑥), 𝑥 ∈Ω.

(3.10)

So that 𝐻1(𝑥) = 𝛾1𝑟(𝑥) and 𝐻2(𝑥) = 𝛾2𝑟(𝑥), where 𝛾1 and 𝛾2 is defined as harvesting rates corresponding to the first and second 
species in (3.10), respectively.

Now considering a system with different proportions of carrying capacity and without the effect of harvesting (𝛾1 = 𝛾2 = 0), then 
the modification of (3.10) is⎧⎪⎪⎨⎪⎪⎩

𝜕𝑢

𝜕𝑡
= 𝑑1Δ

(
𝑢(𝑡,𝑥)
𝑀(𝑥)

)
+ 𝑟1𝑟(𝑥)𝑢

(
1 − 𝑢(𝑡,𝑥)+𝑣(𝑡,𝑥)

𝐾1(𝑥)

)
, 𝑡 > 0, 𝑥 ∈Ω,

𝜕𝑣

𝜕𝑡
= 𝑑2Δ

(
𝑣(𝑡,𝑥)
𝑁(𝑥)

)
+ 𝑟2𝑟(𝑥)𝑣

(
1 − 𝑣(𝑡,𝑥)+𝑢(𝑡,𝑥)

𝐾2(𝑥)

)
, 𝑡 > 0, 𝑥 ∈Ω,

n ⋅∇
(

𝑢

𝑀

)
= n ⋅∇

(
𝑣

𝑁

)
= 0, 𝑥 ∈ 𝜕Ω, 𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑣(0, 𝑥) = 𝑣0(𝑥), 𝑥 ∈Ω.

(3.11)

Suppose 𝑢∗ and 𝑣∗ be the stationary solutions of the first and second species corresponding to (3.11), so that (𝑢∗, 0) and (0, 𝑣∗) satisfy

𝑑1Δ
(
𝑢∗(𝑥)
𝑀(𝑥)

)
+ 𝑟1𝑟(𝑥)𝑢∗

(
1 − 𝑢∗(𝑥)

𝐾1(𝑥)

)
= 0, 𝑥 ∈Ω, n ⋅∇

(
𝑢∗

𝑀

)
= 0, 𝑥 ∈ 𝜕Ω, (3.12)

𝑑2Δ
(
𝑣∗(𝑥)
𝑁(𝑥)

)
+ 𝑟2𝑟(𝑥)𝑣∗

(
1 − 𝑣∗(𝑥)

𝐾2(𝑥)

)
= 0, 𝑥 ∈Ω, n ⋅∇

(
𝑣∗

𝑁

)
= 0, 𝑥 ∈ 𝜕Ω, (3.13)

respectively. For further analysis of system (3.10), we have extended the following three auxiliary results that will apply to complete 
the following discussion, which are already established in [19,15,25,26] for 𝐾𝑢 =𝐾𝑣 =𝐾 .

Lemma 9. [25,26] If 𝑀(𝑥)
𝐾1(𝑥)

≡ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, then 𝑢∗(𝑥) ≡ 𝐾1(𝑥) is the only solution of (3.12) and if 𝑁(𝑥)
𝐾2(𝑥)

≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 then (3.13) has only 

solution 𝑣∗(𝑥), which is unique and positive in Ω.

Lemma 10. [15,25,26] Suppose 𝑀(𝑥) ≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝐾1(𝑥) ≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 while both are linearly independent in Ω. If 𝑢∗(𝑥) is a solution 
of (3.12) and it is positive then

∫
Ω

𝑟(𝑥)𝑀(𝑥)
(

𝑢∗

𝐾1
− 1

)
𝑑𝑥 > 0, for any 𝑥 ∈Ω.

Then similar result valid for 𝑣∗(𝑥) in (3.13) i.e.,

𝑟(𝑥)𝑁(𝑥)
(

𝑣∗ − 1
)
𝑑𝑥 > 0, for any 𝑥 ∈Ω, unless 𝑣∗(𝑥) ≡𝐾2(𝑥).
10

∫
Ω

𝐾2
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Lemma 11. [15,25] If 𝑢∗(𝑥) is a positive solution of (3.12) while 𝑀(𝑥) ≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝑀(𝑥)
𝐾1(𝑥)

≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 on Ω then,

∫
Ω

𝑟(𝑥)𝐾1(𝑥)𝑑𝑥 > ∫
Ω

𝑟(𝑥)𝑢∗𝑑𝑥.

As a special case of (3.11) consider the competitive model as⎧⎪⎪⎨⎪⎪⎩

𝜕𝑢

𝜕𝑡
= 𝑑1Δ

(
𝑢(𝑡,𝑥)
𝑀(𝑥)

)
+ 𝑟1𝑟(𝑥)𝑢(𝑡, 𝑥)

(
1 − 𝑢(𝑡,𝑥)+𝑣(𝑡,𝑥)

𝑎𝐾(𝑥)

)
, 𝑡 > 0, 𝑥 ∈Ω,

𝜕𝑣

𝜕𝑡
= 𝑑2Δ

(
𝑢(𝑡,𝑥)
𝑁(𝑥)

)
+ 𝑟2𝑟(𝑥)𝑣(𝑡, 𝑥)

(
1 − 𝑣(𝑡,𝑥)+𝑢(𝑡,𝑥)

𝐾(𝑥)

)
, 𝑡 > 0, 𝑥 ∈Ω,

n ⋅∇
(

𝑢

𝑀

)
= n ⋅∇

(
𝑣

𝑁

)
= 0, 𝑥 ∈ 𝜕Ω, 𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑣(0, 𝑥) = 𝑣0(𝑥), 𝑥 ∈Ω.

(3.14)

The equation (3.14) belongs to the monotone dynamical system [19,22,24,27]. For equation (3.10), if one of the species becomes 
extinct, then either one semi-trivial solution becomes the equilibrium or both species coexist. If both species are harvested, they may 
become extinct when the harvesting effort exceeds the growth rate.

Let, 𝛾1, 𝛾2 ∈ [0, 1) then (3.10) becomes equivalent to (3.14) when 𝐾𝑢(𝑥) ≡𝐾𝑣(𝑥) ≡𝐾(𝑥) with

𝐾 → (1 − 𝛾2)𝐾𝑢, 𝐾 → (1 − 𝛾2)𝐾𝑣, 𝑎 =
1 − 𝛾1
1 − 𝛾2

, 𝑟1 = 1 − 𝛾1, 𝑟2 = 1 − 𝛾2. (3.15)

Theorem 5. Suppose that 𝐾𝑢(𝑥) ≡𝐾𝑣(𝑥) ≡𝐾(𝑥) and 𝑀(𝑥)
𝐾𝑢(𝑥)

≡ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡. If 𝛾1, 𝛾2 ∈ [0, 1) and 𝑁(𝑥)
𝐾𝑣(𝑥)

≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 with 𝑑1 ≡ 𝑑2 ≡ 𝑑 on 𝑥 in 
Ω, then the succeeding three scenarios can hold for (3.10).

(i) For any 𝛾2 ∈ [0, 1), there exists 𝛾 ∈ (𝛾2, 1) so that

𝛾 ≥ 𝛾1
∗ = 1 −

∫
Ω
𝑟𝑣∗

𝛾2
𝑑𝑥

∫
Ω
𝑟𝐾𝑣𝑑𝑥

. (3.16)

Where 𝑣∗
𝛾2

is a solution of (3.13) which satisfies 𝐾2(𝑥) = (1 − 𝛾2)𝐾𝑣 and 𝑟2 =
(
1 − 𝛾2

)
so that for any 𝛾1 ∈ (𝛾2, 𝛾), all solutions of 

(3.10) strongly persist, i.e. there exists a coexistence of (3.10).

(ii) For any 𝛾2 ∈ [0, 1), and 𝛾1 ≤ 𝛾2 all solutions of (3.10) converge to 
(
(1 − 𝛾1)𝐾𝑢,0

)
.

(iii) For any 𝛾2 < 1, there exists 𝛾 ∈ (𝛾2, 1), such that for any 𝛾1 ∈ (𝛾, 1), all solutions of (3.10) converge to (0, 𝑣∗
𝛾2
). Where 𝐾2(𝑥) =

(1 − 𝛾2)𝐾𝑣, 𝑟2 =
(
1 − 𝛾2

)
and (0, 𝑣∗

𝛾2
) satisfies (3.13).

To prove the Theorem 5 at first, we will construct some auxiliary results for the system (3.14) following [29].

Lemma 12. [29] Assume that 𝑀(𝑥), 𝑁(𝑥), 𝐾(𝑥) are non-constant and 𝑀(𝑥)
𝐾(𝑥) ≡ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 where 𝑁(𝑥)

𝐾(𝑥) ≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡. Then for 𝑎 ∈ [1, ∞) the 
semi-trivial equilibrium (𝑎𝐾, 0) of the system (3.14) is globally asymptotically stable on Ω.

Lemma 13. [29] Let 𝑎 ∈ (0, 1), then (𝑎𝐾, 0) of (3.14) is not stable.

Let’s discuss the case where 𝑎 is in the range (0, 1) and determine whether both species can exist or only the second species can 
survive while the first species goes extinct, as described in [29].

Consequently, we will prove the existence of some 𝑎∗, so that it is inevitable to coexist for any 𝑎 ∈ (𝑎∗, 1), where the numerical results 
on [29] in Example. 03, illustrates that for closely enough to one, i.e. for 𝑎 < 1, there exists coexistence whereas for small enough 𝑎∗
provides the solution (0, 𝑣∗) is globally asymptotically stable.

Lemma 14. Suppose that 𝑀(𝑥)
𝐾(𝑥) ≡ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 but 𝑁(𝑥)

𝐾(𝑥) ≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 with 𝑑1 ≡ 𝑑2 ≡ 𝑑 on Ω. Then there exists 𝑎1 ∈ (0, 1) such that (0, 𝑣∗) of 
(3.14) is unstable for 𝑎 ∈ (𝑎1, 1), where 𝑣∗ satisfies (3.12) with 𝐾2(𝑥) =𝐾(𝑥).

Proof. Since 𝑀(𝑥)
𝐾(𝑥) ≡ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, to manifest the instability of (0, 𝑣∗) let us contemplate the linearization of the foremost equation of 

(3.14) around (0, 𝑣∗) we get,

𝜕𝑢

𝜕𝑡
= 𝑑Δ

(
𝑢

𝑀

)
+ 𝑟1𝑟(𝑥)

(
1 − 𝑣∗

𝑎𝐾

)
𝑢, 𝑡 > 0, 𝑥 ∈Ω.

For the linearization equation, the associated eigenvalue problem with standard boundary condition is given by(
𝜙

) (
𝑣∗

) (
𝜙

)

11

𝑑Δ
𝑀

+ 𝑟1𝑟 1 −
𝑎𝐾

𝜙 = 𝜎𝜙, 𝑥 ∈Ω, ∇ ⋅
𝑀

= 0, 𝑥 ∈ 𝜕Ω. (3.17)
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According to ([22], Theorem 2.1) the principal eigenvalue of (3.17) is defined by

𝜎1 ∫
Ω

𝜙2

𝑀
𝑑𝑥 = sup

𝜙≠0,𝜙∈𝑊 1,2

⎡⎢⎢⎣−𝑑 ∫Ω
|||∇( 𝜙𝑀 )|||2𝑑𝑥+ ∫

Ω

𝑟1𝑟
𝜙2

𝑀

(
1 − 𝑣∗

𝑎𝐾

)
𝑑𝑥

⎤⎥⎥⎦ .
Now, consider 𝜓1 be the eigenfunction and since 𝑣∗ does not depend on 𝑎, let 𝑎 = 1. Then the corresponding principal eigenvalues 
𝜎1 is stated as

𝜎1 = sup
𝜓1≠0,𝜓1∈𝑊 1,2

− ∫
Ω
𝑑
|||∇(

𝜓1
𝑀

)|||2𝑑𝑥+ ∫
Ω
𝑟1𝑟

(
𝜓2
1

𝑀

)
𝑑𝑥− ∫

Ω
𝑟1𝑟

(
𝜓2
1

𝑀

)
𝑣∗

𝐾
𝑑𝑥

∫
Ω

𝜓2
1

𝑀
𝑑𝑥

.

The steady-state (0, 𝑣∗) will be unstable when we obtain such 𝜓1 so that the assertion on the right-hand side is positive. Hence

𝑎 > 𝑎1 ∶= ∫
Ω

𝑟1𝑟(𝑥)

(
𝜓2
1

𝑀

)
𝑣∗

𝐾
𝑑𝑥

⎡⎢⎢⎣−∫
Ω

𝑑
|||∇(𝜓1

𝑀

) |||2𝑑𝑥+ ∫
Ω

𝑟1𝑟(𝑥)

(
𝜓2
1

𝑀

)
𝑑𝑥

⎤⎥⎥⎦
−1

.

Hence for 𝑎 > 𝑎1, 𝜎1 > 0. So, the principal eigenvalue is positive.

Now, we will construct an estimate of 𝑎, which guarantees coexistence.

Since 𝑀
𝐾

≡ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, taking 𝜙 =𝐾(𝑥), and letting 𝑀 =𝐾 . Then the principal eigenvalue satisfies

𝜎1 ≥
∫
Ω
𝑟1𝑟(𝑥)𝐾

(
1 − 𝑣∗

𝑎𝐾

)
𝑑𝑥

∫
Ω
𝐾𝑑𝑥

.

Assuming, 𝑄 ∶= ∫
Ω
𝐾𝑑𝑥 and by Lemma 11

𝑎∗ =
∫
Ω
𝑟(𝑥)𝑣∗𝑑𝑥

∫
Ω
𝑟(𝑥)𝐾𝑑𝑥

< 1. (3.18)

Then,

𝜎1 ≥
(
𝑟1
𝑄

)⎛⎜⎜⎝∫Ω 𝑟𝐾𝑑𝑥− 1
𝑎 ∫

Ω

𝑟𝑣∗𝑑𝑥
⎞⎟⎟⎠ .

So for 𝑎 ∈ (𝑎∗, 1) and according to Lemma 11, we can conclude that 𝜎1 is positive. Hence, (0, 𝑣∗) of (3.14) is unstable. □

Since, (0, 0) is unstable, according to Lemma 2 and, above all discussion on semi-trivial equilibrium solutions of (3.14) we can 
construct the following results.

Proposition 1. If 𝑀(𝑥)
𝐾(𝑥) ≡ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝑁(𝑥)

𝐾(𝑥) ≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 with 𝑑1 ≡ 𝑑2 ≡ 𝑑 on Ω. Then for any 𝑎1 ∈ (0, 1) there exists coexistence equilib-

rium of (3.14) if 𝑎 ∈ (𝑎1, 1), where 𝑎1 < 𝑎∗ which defined in (3.18).

Lemma 15. Let for any 𝑀(𝑥)
𝐾(𝑥) ≡ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 while 𝑁(𝑥)

𝐾(𝑥) ≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 with 𝑑1 ≡ 𝑑2 ≡ 𝑑 on Ω. Then for any 𝑎 ∈ (0, 𝑎2) the system (3.14) has no 
coexistence equilibrium whenever 𝑎2 is defined in 𝑎2 ∈ (0, 1).

Proof. To prove Lemma 15, we will apply the method of upper and lower solutions technique and [22] to find the positive upper 
and lower bound.

Let us first assume that (𝑢𝑐 , 𝑣𝑐) is a coexistence solution of (3.14). Then suppose 𝐾(𝑥) is positive in Ω and 𝐾 ∈ 𝐶1+𝛼(Ω).
Let the positive lower and upper bound of 𝐾 is

0 < 𝑒 ∶= inf
𝑥∈Ω

𝐾(𝑥) and 𝐸 ∶= sup
𝑥∈Ω

𝐾(𝑥). (3.19)

According to [4], if 𝑣∗ is the positive stationary solution of (3.13), then there exists similar upper and lower positive bound such that

∗ ∗
12

0 < 𝑙 ∶= inf
𝑥∈Ω

𝑣 (𝑥) and 𝐿 ∶= sup
𝑥∈Ω

𝑣 (𝑥). (3.20)
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So, we have 𝑙 ≤ 𝐸, but we assume 𝑣∗ > 𝐾(𝑥), which is contrary to the assumption. Thus we obtain, 𝑙

2𝐸 ≤ 1 for any 𝑥 in Ω. Now, 
consider �̃� = 𝑙𝐾

2𝐸 > 0 be the upper solution of (3.14) and also recalling 𝑀(𝑥) is constant to 𝐾(𝑥) and assuming �̃�

𝑀
or �̃�

𝐾
is constant, 

𝑟1 > 0, and let 𝑎 ∈ (0, 𝑙

2𝐸 ). Then we obtain from (3.14)

0 = 0 + 𝑟1𝑟�̃�

(
1 −

�̃�+ 𝑣𝑐

𝑎𝐾

)
.

Therefore,

𝑟1𝑟�̃�

(
1 −

�̃�+ 𝑣𝑐

𝑎𝐾

)
≤ 𝑟1𝑟(𝑥)�̃�

(
1 − �̃�

𝑎𝐾

)
= 𝑟1𝑟(𝑥)�̃�

(
1 − 𝑙𝐾

2𝐸𝑎𝐾

)
= 𝑟1𝑟�̃�

(
1 − 𝑙

2𝑎𝐸

)
< 0,

for 𝑎 < 𝑙

2𝐸 in 𝑥 ∈Ω, since we choose 𝑎 ∈ (0, 𝑙

2𝐸 ). So, �̃� = 𝑙𝐾

2𝐸 is an upper solution of (3.14) by [21]. It is obvious to see zero is a lower 
solution of (3.14). From (3.19) and (3.20) we get,

0 ≤ 𝑢𝑐(𝑥) ≤ 𝑙𝐾(𝑥)
2𝐸

≤ 𝑙

2
≤ 𝑣∗(𝑥)

2
≤ 𝑣𝑐(𝑥)

Now for the second equation of (3.14) choosing �̃� = 𝑣∗

2 , which immediately shows that it is a lower solution, as 𝑣∗ is a stable solution 
of (3.13), and 𝑁 and 𝐾 are linearly independent. So,

𝑑

[
Δ
(
�̃�

𝑁

)]
+ 𝑟2𝑟(𝑥)�̃�

(
1 −

𝑢𝑐 + �̃�

𝐾

)
≥ 𝑑

2

[
Δ
(
𝑣∗

𝑁

)]
+ 𝑟2𝑟(𝑥)�̃�

[
1 − 0.5𝑣∗ + 0.5𝑣∗

𝐾

]
= 𝑑

2

[
Δ
(
𝑣∗

𝑁

)]
+ 𝑟2𝑟(𝑥)�̃�

[
1 − 𝑣∗

𝐾

]
= 0

Thus, for 𝑣𝑐 ≥ 𝑣∗

2 and 𝑎 < 𝑙

2𝐸 from the first equation of (3.14) we get

0 = 𝑑

[
Δ
( 𝑢𝑐

𝑀

)]
+ 𝑟1𝑟(𝑥)𝑢𝑐

(
1 −

𝑢𝑐 + 𝑣𝑐

𝑎𝐾

)
. (3.21)

Then,

𝑑

[
Δ
( 𝑢𝑐

𝑀

)]
+ 𝑟1𝑟(𝑥)𝑢𝑐

(
1 −

𝑢𝑐 + 𝑣𝑐

𝐾

)
≤ 𝑑

(
Δ
( 𝑢𝑐

𝑀

))
+ 𝑟1𝑟(𝑥)𝑢𝑐

(
1 −

𝑣𝑐

𝑎𝐾

)
,

≤ 𝑑

(
Δ
( 𝑢𝑐

𝑀

))
+ 𝑟1𝑟(𝑥)𝑢𝑐

(
1 − 𝑣∗

2𝑎𝐾

)
,

≤ 𝑑

(
Δ
( 𝑢𝑐

𝑀

))
+ 𝑟1𝑟(𝑥)𝑢𝑐

(
1 − 𝑙

2𝑎𝐸

)
,

≤ 𝑑

(
Δ
( 𝑢𝑐

𝑀

))
+ 0, except 𝑢𝑐 ≡𝑀.

Now, integrating the inequality and using the boundary conditions and 𝑢𝑐 ≢ 0, we get,

0 =∫
Ω

𝑑

(
Δ
( 𝑢𝑐

𝑀

))
𝑑𝑥+ ∫

Ω

𝑟1𝑟(𝑥)𝑢𝑐
(
1 −

𝑢𝑐 + 𝑣𝑐

𝑎𝐾

)
𝑑𝑥 < ∫

Ω

𝑑

(
Δ
( 𝑢𝑐

𝑀

))
𝑑𝑥 = 0,

which is a contradiction that concludes that there exists no coexistence of (3.14). □

After analyzing the results and discussion on the instability of the equilibria at (0, 0) and (𝑢𝑐 , 𝑣𝑐), the global stability of (0, 𝑣 ∗) is 
simply proven by Lemma 2, which leads to the following conclusion.

Proposition 2. Assume 𝑀(𝑥)
𝐾(𝑥) ≡ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 while 𝑁(𝑥)

𝐾(𝑥) ≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 with 𝑑1 ≡ 𝑑2 ≡ 𝑑 on Ω. Then for any 𝑎 ∈ (0, 𝑎2), where 𝑎2 ∈ (0, 1) such 
that all solutions of (3.14) converge to (0, 𝑣∗).

The main result of Theorem 5 is now ready to proceed.

Proof. (Proof of Theorem 5)

Since, system (3.10) is become of the form of system (3.14) with (3.15) for 𝛾2 ∈ [0, 1). Then

(i) For fix 𝛾2 ∈ [0, 1), by Proposition 1 there exists 𝑎1 =
1 − 𝛾

1 − 𝛾2
∈ (0, 1) such that for any 𝑎1 ≤ 𝑎∗ there is 𝑎 ∈ (𝑎1, 1), whenever 

𝑎∗ is defined in (3.18), coexistence equilibrium of (3.10) is strongly exist, where 𝐾(𝑥) is defined as 𝐾(𝑥) = (1 − 𝛾2)𝐾𝑣 with ( )

13

𝑟2 = 1 − 𝛾2 . Since, 𝛾 = 1 − 𝑎1(1 − 𝛾2) and 𝑣∗ = 𝑣∗
𝛾2

is also depend on 𝛾2 and the maximum bound 𝛾∗ = 1 − 𝑎∗(1 − 𝛾2) has of 
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the form (3.16). So for any 𝛾1 ∈ (𝛾2, 𝛾) which correlate with 𝑎 ∈ (𝑎1, 1) all solutions of the system (3.10) strongly persist by 
Proposition 1.

(ii) If 𝛾2 ∈ [0, 1) and 𝛾1 ≤ 𝛾2 then straight away we get 𝑎 ≥ 1. Then, (𝑢∗, 0) is stable and converges to 
(
(1 − 𝛾1)𝐾𝑢,0

)
according to 

Lemma 12.

(iii) For any 𝛾2 ∈ [0, 1), i.e. for 𝛾2 < 1, by Proposition 2 there exists 𝑎2 =
1−𝛾
1−𝛾2

∈ (0, 1) such that for any 𝑎 ∈ (0, 𝑎2) all solutions of (3.10)

converge to (0, 𝑣∗) = (0, 𝑣∗
𝛾2
). Where 𝛾 = 1 − 𝑎2(1 − 𝛾2) ∈ (0, 1) whenever 𝛾1 ∈ (𝛾, 1). Here 𝑣∗

𝛾2
satisfies (3.13) so that 𝐾2 = (1 − 𝛾2)𝐾𝑣

with 𝑟2 =
(
1 − 𝛾2

)
.

Which concludes the proof. □

Next, following the situation of ideal free pair, i.e. when 𝑀 and 𝑁 form a linear combination of 𝐾 . Then for

𝑀

𝐾
≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑎𝑛𝑑

𝑁

𝐾
≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (3.22)

neither (𝐾, 0) nor (0, 𝐾) with 𝛾1 = 𝛾2 = 0 is a solution of (3.10). So, for linearly independent 𝑀 and 𝑁 on Ω, and for 𝛼 > 0, 𝛽 > 0, 
there exists

𝐾(𝑥) = 𝛼𝑀(𝑥) + 𝛽𝑁(𝑥), 𝑥 ∈Ω. (3.23)

Where 𝐾 is the convex hull of 𝑀 and 𝑁 and equation (3.23) provides the system (3.10) has unique coexistence equilibrium 
(𝛼𝑀(𝑥), 𝛽𝑁(𝑥)).

Theorem 6. Assume that 𝐾𝑢(𝑥) ≡ 𝐾𝑣(𝑥) ≡ 𝐾(𝑥) and 𝑀 and 𝑁 are not linearly dependent on Ω and 𝑀 , 𝑁 and 𝐾 satisfy (3.22) and 
(3.23) with 𝛼 > 0, 𝛽 > 0. Then for any 𝛾2 ∈ [0, 1) and 𝑑1 ≡ 𝑑2 ≡ 𝑑 in Ω the following three scenarios can hold for (3.10).

(i) For any fix 𝛾2 ∈ [0, 1), all solutions of (3.10) will strongly persist if 𝛾1 ∈ (𝛾, 𝛾), where 𝛾 ∈ [0, 𝛾2) and 𝛾 ∈ (𝛾2, 1).
(ii) For any fix 𝛾2 ∈ [0, 1), there exists �̃� ∈ (𝛾2, 1) such that while 𝛾1 ∈ (�̃� , 1), then (0, 𝑣∗) of (3.10) converges to (0, 𝑣∗

𝛾2
), whenever 𝑣∗

𝛾2
satisfies (3.13) with 𝐾2 = (1 − 𝛾2)𝐾𝑣(𝑥), 𝑟2 = (1 − 𝛾2).

(iii) For any fix 𝛾2 ∈ (𝛾∗2 , 1), where 𝛾∗2 ∈ (0, 1) there exists 𝛾0(𝛾2) ∈ [0, 𝛾2) so that for any 𝛾1 ∈ [0, 𝛾0), (𝑢∗, 0) of (3.10) converges to (𝑢∗
𝛾1
, 0)

where 𝑢𝛾∗1 satisfies (3.12) with 𝐾1(𝑥) = (1 − 𝛾1)𝐾𝑢(𝑥) and 𝑟1 = (1 − 𝛾1).

In a similar way, to prove the main result of Theorem (6), at first, we will produce some auxiliary results followed by [29]. As in 
Theorem (5), for 𝛾2 ∈ [0, 1) we can present an estimate such that

𝛾 ≥ 𝛾1
∗ = 1 −

∫
Ω
𝑀𝑟𝑣∗

𝛾2
∕𝐾𝑣𝑑𝑥

∫
Ω
𝑟𝑀𝑑𝑥

, (3.24)

all solutions of (3.10) strongly persist.

Lemma 16. Let for any 𝛼, 𝛽 > 0, 𝐾(𝑥) = 𝛼𝑀 + 𝛽𝑁 while 𝑀
𝐾

≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝑁
𝐾

≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 with 𝑑1 ≡ 𝑑2 ≡ 𝑑. Then for any 𝑎 ∈ (0, 1], 
(𝑢∗, 0) of (3.14) is not stable.

Proof. Assume the linearized eigenvalue problem associated with the second equation of (3.14) throughout (𝑢∗, 0) we get,

𝑑Δ
(

𝜙

𝑁(𝑥)

)
+ 𝑟2𝑟(𝑥)

(
1 − 𝑢∗

𝐾

)
𝜙 = 𝜎𝜙, 𝑥 ∈Ω, ∇ ⋅

(
𝜙

𝑁

)
= 0, 𝑥 ∈ 𝜕Ω. (3.25)

The principal eigenvalue of (3.25) according to ([22], Theorem 2.1) is defined as

𝜎1 = sup
𝜙≠0,𝜙∈𝑊 1,2

−𝑑 ∫
Ω

|||∇( 𝜙𝑁 )|||2 + ∫
Ω
𝑟2𝑟

𝜙2

𝑁

(
1 − 𝑢∗

𝐾

)
𝑑𝑥

∫
Ω

𝜙2

𝑁
𝑑𝑥

.

Using the boundary condition and choosing 𝜙 =𝑁 , we observe that the principal eigenvalue is not less than 𝜎1, i.e.

𝜎1 ≥
𝑟2 ∫

Ω
𝑟𝑁(1 − 𝑢∗

𝐾
)𝑑𝑥

∫
Ω
𝑁𝑑𝑥

. (3.26)
14

Now integrating (3.12) with 𝐾1 = 𝑎𝐾 and using the boundary condition for 𝑢∗, we get
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0 = ∫
Ω

𝑟1𝑟𝑢
∗
(
1 − 𝑢∗

𝑎𝐾

)
𝑑𝑥,

= 𝑟1 ∫
Ω

𝑟
(
𝑢∗ − 𝑎𝐾 + 𝑎𝐾

)(
1 − 𝑢∗

𝑎𝐾

)
𝑑𝑥,

= −𝑟1 ∫
Ω

𝑟

𝑎𝐾

(
𝑢∗ − 𝑎𝐾

)2
𝑑𝑥+ 𝑎𝑟1 ∫

Ω

𝑟 (𝛼𝑀 + 𝛽𝑁)
(
𝑢∗ − 𝑎𝐾

)2
𝑑𝑥, where 𝐾 = 𝛼𝑀 + 𝛽𝑁

= −𝑟1 ∫
Ω

𝑟

𝑎𝐾

(
𝑢∗ − 𝑎𝐾

)2
𝑑𝑥− 𝑎𝛼𝑟1 ∫

Ω

𝑟𝑀

(
𝑢∗

𝑎𝐾
− 1

)
𝑑𝑥+ 𝑎𝛽𝑟1 ∫

Ω

𝑟𝑁

(
1 − 𝑢∗

𝑎𝐾

)
𝑑𝑥.

Thus,

−𝑟1 ∫
Ω

𝑟

𝑎𝐾

(
𝑢∗ − 𝑎𝐾

)2
𝑑𝑥− 𝑎𝛼𝑟1 ∫

Ω

𝑟𝑀( 𝑢
∗

𝑎𝐾
− 1)𝑑𝑥+ 𝑎𝛽𝑟1 ∫

Ω

𝑟𝑁(1 − 𝑢∗

𝑎𝐾
)𝑑𝑥 = 0. (3.27)

If 𝑀(𝑥)
𝐾(𝑥) ≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝑁(𝑥)

𝐾(𝑥) ≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, then the substitution of 𝑢∗ in (3.12) with 𝐾1 = 𝑎𝐾 leads to conclusion that 𝑢∗ − 𝑎𝐾 ≢ 0. 
Since from (3.27) we see that the first term in the expression is negative and according to Lemma 10 the next term in (3.27) is also 
negative, as the total sum is equal to zero, that immediately confirm that, ∫

Ω
𝑟𝑁(1 − 𝑢∗

𝑎𝐾
)𝑑𝑥 > 0.

Since, 𝑎 ∈ (0, 1] then

∫
Ω

𝑟𝑁

(
1 − 𝑢∗

𝑎𝐾

)
𝑑𝑥 = ∫

Ω

𝑟𝑁

(
1 − 𝑢∗

𝐾
− 𝑢∗

𝑎𝐾
+ 𝑢∗

𝐾

)
𝑑𝑥 = ∫

Ω

𝑟𝑁

(
1 − 𝑢∗

𝐾

)
𝑑𝑥+ 𝑎− 1

𝑎 ∫
Ω

𝑟𝑁
𝑢∗

𝐾
𝑑𝑥 > 0.

While 𝑎−1
𝑎

≤ 0, then the foremost term in the right side expression is positive, that is

∫
Ω

𝑟𝑁

(
1 − 𝑢∗

𝐾

)
𝑑𝑥 > 0. (3.28)

Hence from (3.26) according to ([22], Theorem 2.1) the principal eigenvalues are given by using (3.28),

𝜎1 ≥
𝑟2 ∫

Ω
𝑟𝑁(1 − 𝑢∗

𝐾
)𝑑𝑥

∫
Ω
𝑁𝑑𝑥

> 0.

Since 𝜎1 > 0, so the equilibrium (𝑢∗, 0) is unstable. □

Lemma 17. Assume 𝑀 and 𝑁 are linearly independent and for some 𝛼 > 0, 𝛽 > 0 equations (3.22) and (3.23) holds with 𝑑1 ≡ 𝑑2 ≡ 𝑑. 
Then for any 𝑎 ∈ (𝑎1, 1], where 𝑎1 ∈ (0, 1), (0, 𝑣∗) of (3.14) is unstable.

The proof is similar to Lemma 16 and is omitted.

Lemma 18. Let 𝑀(𝑥) and 𝑁(𝑥) be non-constant and for some 𝛼 > 0, 𝛽 > 0, equations (3.22) and (3.23) holds with 𝑑1 ≡ 𝑑2 ≡ 𝑑. Then for 
𝑎 ∈ (𝑎1, ∞), there exists 𝑎1 ∈ (0, 1) such that (0, 𝑣∗) of (3.14) is unstable.

Proof. Following the statement of Lemma 17, we can establish the stability for 𝑎 ∈ [1, ∞). So from Lemma 16, for particular 𝑎, 
(𝑢∗, 0) is not stable, while for certain set of 𝑎 by Lemma 16, (0, 𝑣∗) is unstable. Hence, according to monotone dynamical system 
[19,22,24,27] when 𝑎 satisfies both conditions, i.e. when both semi-trivial equilibria are not stable then by Lemma 2 coexistence 
solution will strongly persist. □

Proposition 3. Let 𝑀
𝐾

≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝑁
𝐾

≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝑀, 𝑁, 𝐾 are non-constant and for some 𝛼, 𝛽 > 0, 𝐾 = 𝛼𝑀 + 𝛽𝑁 . Then for 
any 𝑎1 ∈ (0, 1) and 𝑎2 ∈ (1, ∞) there exists 𝑎 ∈ (𝑎1, 𝑎2) such that all solutions of (3.14) is strongly persist.

Lemma 19. Let for any 𝛼 > 0, 𝛽 > 0 the equations (3.22) and (3.23) holds with 𝑑1 ≡ 𝑑2 ≡ 𝑑. Then for 𝑎 ∈ (0, 𝑎2), where 𝑎2 ∈ (0, 1) there 
exists no coexistence equilibrium of the system (3.14).

Proof. Analogous to the proof of Lemma 15, we assume that there retains a coexistence solution (𝑢𝑐, 𝑣𝑐 ) of (3.14). Then 𝐾 and 𝑀
15

are positive in 𝑥 ∈Ω and 𝐾, 𝑀 ∈ 𝐶1+𝛼(Ω).
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Let the positive lower and upper bound of 𝐾 and 𝑀 exist and also for 𝐾
𝑀

we define,

0 < 𝑒𝐾 ∶= inf
𝑥∈Ω

𝐾(𝑥)
𝑀(𝑥)

and 𝐸𝐾 ∶= sup
𝑥∈Ω

𝐾(𝑥)
𝑀(𝑥)

. (3.29)

Also, 𝑃 ∶= max
𝑥∈Ω

𝐾(𝑥). Then, according to Lemma 15, if 𝑣∗ is the positive stationary solution of (3.13), then its upper and lower 

bounds are

0 < 𝑙𝐾 ∶= inf
𝑥∈Ω

𝑣∗(𝑥) and 𝐿𝐾 ∶= sup
𝑥∈Ω

𝑣∗(𝑥) with 𝐾2 =𝐾. (3.30)

Hence, 𝑙𝐾 ≤ 𝑃 . Thus we have 𝑙𝐾2𝑃 < 1, and 𝑒𝐾 ≤ 𝐾(𝑥)
𝑀(𝑥) ≤𝐸𝐾 .

Now considering �̃� = 𝑙𝐾 𝑒𝐾𝑀

2𝑃 be the upper solution of (3.14) and assuming 𝑣𝑐 ≥ 0 and since 𝑢

𝑀
is constant and 𝑟1 > 0, so we get from 

the first equation of model (3.14)

0 = 0 + 𝑟1𝑟𝑢

(
1 −

�̃�+ 𝑣𝑐

𝑎𝐾

)
𝑟1𝑟(𝑥)�̃�

(
1 −

�̃�+ 𝑣𝑐

𝑎𝐾

)
≤ 𝑟1𝑟�̃�

(
1 − �̃�

𝑎𝐾

)
= 𝑟1𝑟�̃�

(
1 −

𝑙𝐾𝑒𝐾𝑀

2𝑃𝑎𝐾

)
= 𝑟1𝑟�̃�

(
1 −

𝑙𝐾𝑒𝐾

2𝑃𝐸𝐾𝑎

)
< 0

for 𝑎 ∈ (0, 𝑎∗∗) in Ω, where 𝑎∗∗ = 𝑙𝐿𝑒𝐾

2𝐸𝐾𝑃
<

1
2

.

Thus, �̃� =
𝑙𝐾𝑒𝐾𝑀

2𝑃
is an upper solution of (3.14) by [21], and it is easy to check that zero is a lower solution of (3.14). So, from 

(3.29) and (3.30) we get

0 ≤ 𝑢𝑐(𝑥) ≤ 𝑙𝐾𝑒𝐾𝑀

2𝑃
≤ 𝑙𝐾

2
≤ 𝑣∗(𝑥)

2
≤ 𝑣𝑐(𝑥)

Similar to Lemma 15, we can choose �̃� = 𝑣∗

2
is the lower solution [21] for the second equation of (3.14) with 𝐾2 = 𝐾 as 𝑣∗ is a 

stationary solution of (3.13). So,

𝑑

(
Δ
(
�̃�

𝑁

))
+ 𝑟2𝑟(𝑥)�̃�

(
1 −

𝑢𝑐 + 𝑣

𝐾

)
≥ 𝑑

2

(
Δ
(
𝑣∗

𝑁

))
+ 𝑟2𝑟(𝑥)�̃�

(
1 − 0.5𝑣∗ + 0.5𝑣∗

𝐾

)
,

= 𝑑

2

(
Δ
(
𝑣∗

𝑁

))
+ 𝑟2𝑟(𝑥)�̃�

(
1 − 𝑣∗

𝐾

)
= 0.

Thus, 𝑣𝑐 ≥ 𝑣∗

2 and 𝑎 ∈ (0, 𝑙𝐾 𝑒𝐾

2𝐸𝐾𝑃
), then from the first equation of (3.14) we get

0 = 𝑑

(
Δ
( 𝑢𝑐

𝑀

))
+ 𝑟1𝑟(𝑥)𝑢𝑐

(
1 −

𝑢𝑐 + 𝑣𝑐

𝑎𝐾

)
.

So,

𝑑

(
Δ
( 𝑢𝑐

𝑀

))
+ 𝑟1𝑟(𝑥)𝑢𝑐

(
1 −

𝑢𝑐 + 𝑣𝑐

𝑎𝐾

)
≤ 𝑑

(
Δ
( 𝑢𝑐

𝑀

))
+ 𝑟1𝑟(𝑥)𝑢𝑐

(
1 −

𝑣𝑐

𝑎𝐾

)
,

≤ 𝑑

(
Δ
( 𝑢𝑐

𝑀

))
+ 0, except 𝑢𝑐 ≡𝑀.

Now, integrating the inequality and applying the boundary conditions and 𝑢𝑐 ≢ 0, we get,

0 =∫
Ω

𝑑

(
Δ
( 𝑢𝑐

𝑀

))
𝑑𝑥+ ∫

Ω

𝑟1𝑟𝑢𝑐

(
1 −

𝑢𝑐 + 𝑣𝑐

𝑎𝐾

)
𝑑𝑥 < ∫

Ω

𝑑

(
Δ
( 𝑢𝑐

𝑀

))
𝑑𝑥 = 0.

That is a contradiction, which concludes that there exists no coexistence of (3.14). □

Lemma 20. Let 𝑀 and 𝑁 be linearly independent and for any 𝛼, 𝛽 > 0, 𝐾 = 𝛼𝑀 + 𝛽𝑁 , where 𝑀
𝐾

≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝑁
𝐾

≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡. Then 
16

for 𝑎 ∈ (𝑎3, ∞) whenever 𝑎 ∈ (1, ∞) there exists no coexistence equilibrium for system (3.14).
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Proposition 4. Let 𝑀
𝐾

≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝑁
𝐾

≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝑀 , 𝑁 , 𝐾 are non-constant and for some 𝛼 > 0, 𝛽 > 0, 𝐾 = 𝛼𝑀 + 𝛽𝑁 . Then 
for 𝑎1 ∈ (0, 1) there exists 𝑎 ∈ (0, 𝑎1) such that all solutions of (3.14) converges to (0, 𝑣∗), while for 𝑎2 ∈ (1, ∞), there exists 𝑎 ∈ (𝑎2, ∞) such 
that (𝑢∗, 0) is globally stable.

We are now prepared to carry on the main result of Theorem 6.

Proof. (Proof of Theorem 6) Since system (3.10) is become of the form of system (3.14) with (3.15) for 𝛾2 ∈ [0, 1). Then

(i) For fix 𝛾2 ∈ [0, 1), by Proposition 3, there exists 𝑎1 =
1−𝛾
1−𝛾2

∈ (1, ∞) and 𝑎2 =
1−𝛾
1−𝛾2

∈ (0, 1) such that for 𝑎 ∈ (𝑎1, 𝑎2), all solutions 
of (3.10) will strongly persist. That is for 𝛾 = 1 −max{1 − (1 − 𝛾2)𝑎2, 0} and 𝛾 = 1 − (1 − 𝛾2)𝑎1, then 0 ≤ 𝛾 ≤ 𝛾2 < 𝛾 < 1. And by 
Proposition 3 for 𝛾 ∈ (𝛾, 𝛾) there exists coexistence equilibrium.

(ii) For any 𝛾2 ∈ [0, 1), by Proposition 4, there exists 𝑎1 ∈ (0, 1) such that for 𝑎 ∈ (0, 𝑎1) all solutions of (3.10) converge to (0, 𝑣∗
𝛾2
). 

Now, letting 𝑎1 =
1−�̃�
1−𝛾2

, so that �̃� = 1 − 𝑎1(1 − 𝛾2) ∈ (𝛾2, 1)). Then for 𝛾 ∈ (�̃� , 1), we get 𝑎 ∈ (0, 𝑎1) and hence all solutions of 
(3.10) converge to (0, 𝑣∗

𝛾2
) with 𝐾2 = (1 − 𝛾2)𝐾𝑣, 𝑟2 = (1 − 𝛾2).

(iii) For any fix 𝛾2 ∈ [0, 1), by Proposition 4, there exists 𝑎1 ∈ [1, ∞) such that for any 𝑎 ∈ (𝑎1, ∞) all solutions of (3.10) converge to
(𝑢∗

𝛾1
, 0). Thus for fix 𝛾2 ∈ (𝛾∗2 , 1) let, 𝑎2 =

1−𝛾0
1−𝛾2

so that 𝛾0 = 1 − 𝑎2(1 − 𝛾2). Then 𝑎2 > 1 and 𝑎 ∈ (𝑎2, ∞) related to 0 < 𝛾0 < 𝛾2 < 1
and 𝛾1 ∈ [0, 𝛾2). Thus for 𝛾1 ∈ [0, 𝛾0) all solutions of system (3.10) converge to (𝑢∗

𝛾1
, 0), where 𝐾1 = (1 − 𝛾1)𝐾𝑢, and 𝑟1 = (1 − 𝛾1)

so that 𝑢∗
𝛾1

satisfies (3.12).

Which concludes the proof. □

Theorem 7. Suppose that 𝐾𝑢(𝑥) ≡ 𝐾𝑣(𝑥) ≡ 𝐾(𝑥), and 𝑀(𝑥)
𝐾𝑢(𝑥)

≡ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝑁(𝑥)
𝐾𝑢(𝑥)

≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡. If 𝛾1 ∈ [0, 1) and 𝛾2 ≥ 1 then for any 
𝑢0(𝑥) ≢ 0 and 𝑢0(𝑥) > 0, all solutions of (3.10) converge to ((1 − 𝛾1)𝐾𝑢, 0), and similarly for any 𝑣0(𝑥) ≢ 0 and 𝑣0(𝑥) > 0 if 𝛾2 ∈ [0, 1) and 
𝛾1 ≥ 1 then all solutions of (3.10)converges to (0, 𝑣∗

𝛾2
). If 𝛾1 ≥ 1 and 𝛾2 ≥ 1, then the zero solution is global attractive.

Proof. For any 𝛾1 ∈ [0, 1) and if we assume 𝛾2 ≥ 1, then from the second equation of (3.10) we will get lim
𝑡→∞

𝑣(𝑡, 𝑥) = 0, when 𝑢(𝑡, 𝑥) ≥
0. So according to [4] by applying different inequalities the first equation of (3.10) immediately provide, lim

𝑡→∞
𝑢(𝑡, 𝑥) = (1 − 𝛾1)𝐾𝑢 with 

𝑟1 = (1 − 𝛾1) for 𝛾1 ∈ (0, 1). Hence we can conclude that (𝑢∗
𝛾1
, 0) =

(
(1 − 𝛾1)𝐾𝑢,0

)
is globally asymptotically stable.

Similarly, for 𝛾1 ≥ 1 and 𝛾2 ∈ [0, 1), the first equation of (3.10) immediately shows, lim
𝑡→+∞

𝑢(𝑡, 𝑥) = 0, with independent of 𝑣(𝑡, 𝑥) ≥ 0, 
and all solutions of (3.10) converge to (0, 𝑣∗

𝛾2
) for 𝛾2 ∈ [0, 1). Thus the semi-trivial equilibrium (0, 𝑣∗

𝛾2
) will globally asymptotically 

stable.

In a similar manner, it is obvious that for 𝛾1 ≥ 1, and 𝛾2 ≥ 1 the zero solution is globally attractive. □

3.3. Maximum sustainable yield (MSY)

Theorem 8. If the first species of system (3.10) is harvested and the other species is subject to culling, then for 𝑀
𝐾

≡ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and for any 
𝑁(𝑥) the maximum sustainable yield for system (3.10) is attained at 𝛾1 = 0.5, 𝛾2 = 0.5 or 𝛾2 ≥ 0.5 when 𝑁

𝐾
≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡. If both species are 

harvested then for 𝐾 =𝑀 +𝑁 , i.e. when 𝐾 is the convex hull of 𝑀 and 𝑁 then for 𝛾1 = 0.5, 𝛾2 = 0.5 leading to optimal sustainable yield 
for system (3.10), which is for both cases

𝑀𝑆𝑌 ∶= 1
4 ∫

Ω

𝑟𝐾𝑑𝑥. (3.31)

Proof. Let the maximum of the function, 𝑔(𝑡, 𝑥, 𝑢, 𝑣) = 𝑟𝑢 
(
1 − 𝑢+𝑣

𝐾

)
be attained at 𝑢max and 𝑣max where the function 𝑔 satisfies 

𝜕(𝑢max∕𝑀)
𝜕𝑛

= 0, for (𝑡, 𝑥) ∈ 𝜕Ω. We recall that [4] for a particular 𝐾 the maximum of the function 𝑔(𝑦) =
(
1 − 𝑦

𝐾

)
is attained at 

𝑦max =𝐾∕2. Then for 𝐾𝑢 ≡𝐾𝑣 ≡𝐾 , 𝑑1 ≡ 𝑑2 ≡ 𝑑, 𝐻1 = 𝛾1𝑟(𝑥) and 𝐻2 = 𝛾2𝑟(𝑥) from the first equation of (3.10) we get,

𝑑Δ
(𝑢max

𝑀

)
+ 𝑟𝑢max

(
1 −

𝑢max + 𝑣𝑚𝑎𝑥

𝐾

)
=𝐻1(𝑥)𝑢max(𝑥), 𝑡 > 0, 𝑥 ∈Ω; where 𝐻1(𝑥) = 𝛾1𝑟(𝑥). (3.32)

Integrating (3.32) over Ω and using the Neumann boundary conditions, the maximum sustainable yield is

𝑀𝑌𝑆 ∶ = ∫
Ω

𝛾1𝑟(𝑥)𝑢max(𝑥)𝑑𝑥 = ∫
Ω

𝑑

[
Δ
(𝑢max

𝑀

)]
𝑑𝑥+ ∫

Ω

𝑟(𝑥)𝑢max

(
1 −

𝑢𝑚𝑎𝑥 + 𝑣𝑚𝑎𝑥

𝐾

)
𝑑𝑥

≤ 𝑑

[
Δ
(𝑢max

)]
𝑑𝑥+ 𝑟(𝑥)𝑢max

(
1 −

𝑢𝑚𝑎𝑥
)
𝑑𝑥 ≤ 0 + 𝑟(𝑥)𝐾 1

𝑑𝑥 ≤ 1
𝑟𝐾𝑑𝑥.
17

∫
Ω

𝑀 ∫
Ω

𝐾 ∫
Ω

2 2 4 ∫
Ω
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If 𝑢max is proportional to 𝐾(𝑥) that is, for 𝑀(𝑥)
𝐾(𝑥) ≡ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, then the boundary condition is satisfied.

∫
Ω

𝛾1𝑟(𝑥)𝑢max(𝑥)𝑑𝑥 ≤ 1
4 ∫

Ω

𝑟𝐾𝑑𝑥.

So, for either for 𝑀
𝐾

≡ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, and for any 𝑁(𝑥) the MYS is obtained for 𝛾1 = 0.5, 𝛾2 > 0.5 or for any 𝛾2 ≥ 0.5 and 𝑁
𝐾

≢ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 
That is when the first species of system (3.10) is harvested, and other species are considered subject to culling then, the equilibrium 
solution (0.5𝐾, 0) leads to (3.31). Similarly, for the case of ideal free pair, so that if 𝐾 =𝑀 +𝑁 , then MYS is,

𝑀𝑌𝑆 ∶ = ∫
Ω

𝛾1𝑟(𝑥)𝑢max(𝑥)𝑑𝑥+ ∫
Ω

𝛾2𝑟(𝑥)𝑣max(𝑥)𝑑𝑥

= 0 + ∫
Ω

𝑟(𝑥)𝑢max

(
1 −

𝑢𝑚𝑎𝑥 + 𝑣𝑚𝑎𝑥

𝐾

)
𝑑𝑥+ ∫

Ω

𝑟(𝑥)𝑣max

(
1 −

𝑢𝑚𝑎𝑥 + 𝑣𝑚𝑎𝑥

𝐾

)
𝑑𝑥

= ∫
Ω

𝑟(𝑥)
(
𝑢max + 𝑣max

)(
1 −

𝑢𝑚𝑎𝑥 + 𝑣max
𝐾

)
𝑑𝑥 ≤ 1

4 ∫
Ω

𝑟𝐾𝑑𝑥

So, when considering the ideal free pair MSY is achieved for a suitable choice of 𝑀 and 𝑁 so that 𝐾 =𝑀(𝑥) +𝑁(𝑥) and 𝛾1 = 𝛾2 = 0.5. 
That is when both species are harvesting. Which concludes the proof. □

4. Numerical methods and applications

4.1. Numerical methods

We used an implicit-explicit finite difference method, which resulted in a set of algebraic equations. The space and time were 
divided into a uniform grid size to discretize them. To solve the algebraic equations at every time step, we used the Crank-Nicolson 
method for 1-D in space and the Alternating-direction implicit (ADI) method for 2-D in space. We consider a uniform grid of equal 
spacing ∇𝑥 ≡ ∇𝑦 ≡ ℎ𝑥 ≡ ℎ𝑦 on Ω = {(𝑥, 𝑦)|𝑥0 ≤ 𝑥 ≤ 𝑥𝑛, 𝑦0 ≤ 𝑦 ≤ 𝑦𝑛} with ℎ𝑥 ≡ 𝑥𝑛−𝑥0

𝑁𝑥−1
, and ℎ𝑦 ≡ 𝑦𝑛−𝑦0

𝑁𝑦−1
where 𝑁𝑥 and 𝑁𝑦 are the 

number of grid points along 𝑥 and 𝑦 direction, respectively. Also, divide the time 𝑇 into a line by a distance ∇𝑡 = ℎ𝑡 =
𝑇

𝑁𝑡
parallel 

to the 𝑥 and 𝑦 axis. The explanation procedure is sustained until the steady-state solution is reached. The convergence criterion for 
the solution procedure is defined as |||𝑢𝑛+1 − 𝑢𝑛

||| ≤ 10−7, where 𝑛 is the number of iterations. We considered the spatial domain to be 
[0, 1] in one space dimension and [0, 1] × [0, 1] in two space dimensions. In one-dimensional space, we can choose any length for a 
domain in the 𝑥-direction. However, we can consider a more general domain in two-dimensional space, but for simplicity’s sake, we 
often restrict it to a square shape.

4.2. Applications for spatially distributed parametric values

In this segment, we will illustrate population density profiles for different values of model parameters in one and two space 
dimensions. We will also discuss their ecological implications. We have considered two cases for harvesting effects. For Case I, as 
per Theorem 3 and Theorem 4, any positive initial condition must result in 𝑧(𝑡, 𝑥) → 𝑧(𝑥) or 𝑤(𝑡, 𝑥) → 𝑤(𝑥) when 𝐻1 and 𝐻2 are 
unequal. For Case II, we have completed the theoretical analysis by numerically computing the existence of species when both 𝐻1
and 𝐻2 are proportional to space-dependent 𝑟. When capacity and resource functions are time-independent in two space dimensions, 
we will display the steady-state 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) through contour plots, which approach in the limit 𝑡 →∞. We have used a range 
of different parametric values to assess the model’s effectiveness through numerical computation.

4.3. Case of 1-space dimension

In this part of the section, we will analyze the numerical simulations for one dimension in space for both Case I and Case II.

Example 1. Consider the case of (3.1) for 𝐾(𝑥) = cos(𝜋𝑥) + 2.5 on Ω = (0, 1) ⊂ ℝ where both species follows the resource based 
diffusion strategy with 𝑀(𝑥) = sin(𝜋𝑥) + 2.1, 𝑁(𝑥) = sin(𝜋𝑥) + 1.7. Additionally let, 𝑟 = 1.0, 𝑢0 = 𝑣0 = 1.6, 𝑑1 = 𝑑2 = 1.0 at 𝑡 = 𝑇 =
1000. Here Fig. 1 (a,b,c) presents the population density profiles of 𝑢 and 𝑣 over domain 𝑥 for different space-dependent harvesting 
coefficients. In Fig. 1 (a), when 𝐻1 < 𝐻2, species 𝑣 becomes extinct as predicted by Theorem 3 and Remark 1. Additionally, a 
non-trivial solution is found for species 𝑢. Conversely, in Fig. 1 (c), when 𝐻1 >𝐻2, the opposite is observed. It is noted from Fig. 1

(b) that coexistence equilibrium is also possible when considering equal harvesting for both species. It is noteworthy that density 
profiles consistently align with their respective resource functions across all scenarios, regardless of initial values being non-negative 
and non-trivial. Implementing restrictions on the amount of species harvested from specific populations proves to be an effective 
strategy for preserving population stability during hunting endeavors. Our research shows that hunting can have localized impacts 
18

on populations, particularly on those that are resident and territorial. This study is a critical first step in comprehending the potential 
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Fig. 1. Solution of (3.1) at 𝑡 = 𝑇 = 1000 where 𝐾(𝑥) = cos(𝜋𝑥) + 2.5, 𝑀(𝑥) = sin(𝜋𝑥) + 2.1, 𝑁(𝑥) = sin(𝜋𝑥) + 1.7, 𝑟 = 1.0, 𝑢0 = 𝑣0 = 1.6, 𝑑1 = 𝑑2 = 1.0, 𝐻2 =
0.5 + 0.2 cos(𝜋𝑥) for (a) 𝐻1 = 0.1 + 0.3 cos(𝜋𝑥), (b) 𝐻1 = 0.5 + 0.2 cos(𝜋𝑥), and (c) 𝐻1 = 0.9 + 0.1 cos(𝜋𝑥) on Ω = (0, 1).

Fig. 2. Solution trajectories of space average density of 𝑢 Vs 𝑣 for different initial values (𝑢0, 𝑣0) with 𝐾(𝑥) = cos(𝜋𝑥) +2.5, 𝑀(𝑥) = sin(𝜋𝑥) +2.1, 𝑁(𝑥) = sin(𝜋𝑥) +1.7, 
𝑟 = 1.0, 𝑑1 = 𝑑2 = 1.0, 𝐻2 = 0.5 + 0.2 cos(𝜋𝑥) for (a) 𝐻1 = 0.1 + 0.3 cos(𝜋𝑥), (b) 𝐻1 = 0.5 + 0.2 cos(𝜋𝑥), and (c) 𝐻1 = 0.9 + 0.1 cos(𝜋𝑥) on Ω = (0, 1).

Fig. 3. Space average density of (a) 𝑢, and (b) 𝑣 for (3.1) for different values of harvesting coefficients on Ω = (0, 1) with 𝐾(𝑥) = cos(𝜋𝑥) + 2.5, 𝑀(𝑥) = sin(𝜋𝑥) + 2.1, 
𝑁(𝑥) = sin(𝜋𝑥) + 1.7, 𝑟 = 1.0, 𝑢0 = 𝑣0 = 1.6, 𝑑1 = 𝑑2 = 1.0.

regional impacts of hunting on various species management, where harvesting depends on the spatial location. However, Fig. 2

illustrates the solution trajectories for space average density of 𝑢 Vs 𝑣 for different initial values (𝑢0, 𝑣0). We found that for unequal 
values of harvesting coefficient, there is a competitive exclusion for both species as in Fig. 2 (a) and Fig. 2 (c). Also, the coexistence 
solution is obvious for considering 𝐻1 =𝐻2 in Fig. 2 (b).

Example 2. Assume the functions, 𝐾(𝑥) = cos(𝜋𝑥) + 2.5, 𝑀(𝑥) = sin(𝜋𝑥) + 2.1, and 𝑁(𝑥) = sin(𝜋𝑥) + 1.7 at 𝑡 = 𝑇 = 1000 for (3.1)

where 𝑟 = 1.0, 𝑢0 = 𝑣0 = 1.6, 𝑑1 = 𝑑2 = 1.0. We note that when the resource functions 𝑀 and 𝑁 are not proportional to 𝐾 , a similar 
result as in Example 1 is found for considering different constant harvesting coefficients (equal/unequal) in Fig. 3 (a-b).

Example 3. Consider (3.1), concretely for 𝑀(𝑥) = 0.6 cos(𝜋𝑥) + 1.3, 𝑁(𝑥) = 0.4 cos(𝜋𝑥) + 1.2, and 𝐾(𝑥) =𝑀(𝑥) +𝑁(𝑥) = cos(𝜋𝑥) +
2.5, where M and N produce an ideal free pair on Ω ∈ (0, 1). Also set, 𝑟 = 1.0, 𝑢0 = 𝑣0 = 1.6, 𝑑1 = 𝑑2 = 1.0 in Fig. 4 (a) 𝐻1 =𝐻2 = 0.0, 
and in Fig. 4 (b) 𝐻1 =𝐻2 = 0.6. We see that without harvesting effects, the coexistence solution will be obvious as (𝑀, 𝑁) according 
19

to [15]. According to Theorem 4, even if we assume 𝐻1 =𝐻2 = 0.6, a coexistence solution can still be achieved. It is important to 
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Fig. 4. Solution of (3.1) at 𝑡 = 𝑇 = 1000 where 𝑀(𝑥) = 0.6 cos(𝜋𝑥) + 1.3, 𝑁(𝑥) = 0.4 cos(𝜋𝑥) + 1.2, 𝐾(𝑥) =𝑀(𝑥) +𝑁(𝑥), 𝑟 = 1.0, 𝑢0 = 𝑣0 = 1.6, 𝑑1 = 𝑑2 = 1.0 for (a) 
𝐻1 =𝐻2 = 0.0, and (b) 𝐻1 =𝐻2 = 0.6 on Ω = (0, 1).

Fig. 5. Solution of (3.10) at 𝑡 = 𝑇 = 2000 where 𝐾(𝑥) =𝑀(𝑥) = cos(𝜋𝑥) + 2.5, 𝑁(𝑥) = sin(𝜋𝑥) + 1.7, 𝑟 = 1.0, 𝑢0 = 𝑣0 = 1.6, 𝑑1 = 𝑑2 = 1.0, 𝛾2 = 0.0 for (a) 𝛾1 = 0.0, (b) 
𝛾1 = 0.02, and (c) 𝛾1 = 0.2 on Ω = (0, 1).

note that the resource functions 𝑀 and 𝑁 are not linearly dependent, and the non-trivial steady state is more correlated with 𝐾 , 
which forms an ideal free pair.

Example 4. Consider the model given in equation (3.10). The functions 𝐾(𝑥) = 𝑀(𝑥) = cos(𝜋𝑥) + 2.5 and 𝑁(𝑥) = sin(𝜋𝑥) + 1.7
represent the carrying capacity and resource distribution of two species, respectively. The species 𝑢 follows the carrying capacity-

driven diffusion strategy, while 𝑣 diffuses according to their resource distribution. The values of 𝑟 = 1.0, 𝑢0 = 𝑣0 = 1.6, respectively. 
Also, 𝑑1 = 𝑑2 = 1.0, and 𝑥 ∈ Ω ∈ (0, 1) for 𝑡 > 0. We consider 𝑡 = 𝑇 = 2000, at which the solution is close to a steady state. Fig. 5

shows the spatial distribution of the solution for different values of 𝛾1 ∈ [0, 1), assuming that 𝛾2 is fixed. We found that in the absence 
of harvesting efforts, a non-trivial solution exists for 𝑢. This shows that the species that disperse according to 𝐾 -driven diffusion will 
survive in the competition, as shown in Fig. 5(a). However, when a small level of harvesting effort is incorporated on 𝑢, coexistence 
exists, as in Fig. 5 (b). Moreover, for 𝛾1 = 0.2, the trivial solution appears for 𝑢, as shown in Fig. 5 (c). This corresponds to the second 
and third parts of Theorem 5. To computer Fig. 6 numerically, we have used the functions 𝐾𝑣(𝑥) = 𝐾(𝑥), 𝑟(𝑥) and 𝑣𝛾2 (𝑥) in (3.16)

where 𝑣𝛾2 (𝑥) is the steady state solution of (3.13) that represents the values of 𝛾∗1 for fixed values of 𝛾2. We represent the average 
scaled solutions of 𝑢 and 𝑣 as a function of harvesting rates 𝛾1 ∈ [0, 1), where 𝛾2 ∈ [0, 1) is considered fixed. Here, 𝛾∗1 is assumed 
to be the lower bound for 𝛾1 for which coexistence is appeared and 𝛾∗∗1 reveals the upper bound of 𝛾 for which coexistence is still 
occurs are presented in Fig. 6 (a-e) at 𝑡 = 𝑇 = 2000 that illustrate the first part of Theorem 5. Biologically, from this figure, we 
can estimate the sustainable level of harvesting that allows for coexistence in the environment. However, any excessive amount of 
harvested population can cause extinction, as demonstrated by this numerical explanation.

Example 5. Assume (3.10) at 𝑡 = 𝑇 = 2000 where 𝑀 and 𝑁 form an ideal free pair with 𝑀(𝑥) = 0.6 cos(𝜋𝑥) + 1.3, 𝑁(𝑥) =
0.4 cos(𝜋𝑥) + 1.2, 𝐾(𝑥) =𝑀(𝑥) +𝑁(𝑥). Also let, the initial values as 𝑢0 = 𝑣0 = 1.6 where 𝑟 = 1.0 and 𝑑1 = 𝑑2 = 1.0.

Fig. 7 (a-e) displays the scaled average solutions of 𝑢 and 𝑣 as a function of 𝛾1 when considering 𝛾2 ∈ [0, 1) is fixed and to compute 
the values of 𝛾∗1 we have used equation (3.24) that provide the lower bound of 𝛾 for each fixed 𝛾2 that shows coexistence of species. 
Where to get 𝛾∗1 in equation (3.24) we have used the functions 𝐾𝑣(𝑥) =𝐾(𝑥), 𝑀(𝑥), 𝑟(𝑥) and steady state solution 𝑣𝛾2 corresponding 
to the second equation of (3.11), that correlate with Theorem 6, where 𝑀 and 𝑁 are linearly independent. Also, Fig. 8 (a-b) signifies 
20

the habit of scaled average population density of both species on harvesting rates 𝛾1 ∈ [0, 1) and 𝛾2 ∈ [0, 1).
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Fig. 6. Average scaled solutions of (3.10) at 𝑡 = 𝑇 = 2000 on Ω = (0, 1) where 𝐾(𝑥) =𝑀(𝑥) = cos(𝜋𝑥) + 2.5, 𝑁(𝑥) = sin(𝜋𝑥) + 1.7, 𝑟 = 1.0, 𝑢0 = 𝑣0 = 1.6, 𝑑1 = 𝑑2 = 1.0
for (a) 𝛾2 = 0.0, (b) 𝛾2 = 0.1, (c) 𝛾2 = 0.3, (d) 𝛾2 = 0.6, and (e) 𝛾2 = 0.9 with corresponding 𝛾∗1 = 0.063696, 0.1589, 0.34842, 0.63016, 0.90825, respectively.

Fig. 7. Average scaled solutions of (3.10) at 𝑡 = 𝑇 = 2000 on Ω = (0, 1) where 𝑀(𝑥) = 0.6 cos(𝜋𝑥) + 1.3, 𝑁(𝑥) = 0.4 cos(𝜋𝑥) + 1.2, 𝐾(𝑥) =𝑀(𝑥) +𝑁(𝑥), 𝑟 = 1.0, 𝑢0 =
𝑣0 = 1.6, 𝑑1 = 𝑑2 = 1.0 for (a) 𝛾2 = 0.0, (b) 𝛾2 = 0.1, (c) 𝛾2 = 0.3, (d) 𝛾2 = 0.6, and (e) 𝛾2 = 0.9 with corresponding 𝛾∗1 = 0.0041294, 0.10377, 0.30303, 0.60182, 0.90048, 
21

respectively.
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Fig. 8. Average scaled density of (a) 𝑢, and (b) 𝑣 for (3.10) as a function of harvesting coefficients 𝛾1 ∈ [0, 1] and 𝛾2 ∈ [0, 1] on Ω ∈ (0, 1) where 𝑀(𝑥) = 0.6 cos(𝜋𝑥) +1.3, 
𝑁(𝑥) = 0.4 cos(𝜋𝑥) + 1.2, 𝐾(𝑥) =𝑀(𝑥) +𝑁(𝑥), 𝑟 = 1.0, 𝑢0 = 𝑣0 = 1.6, 𝑑1 = 𝑑2 = 1.0 at 𝑡 = 𝑇 = 2000.

4.4. Case of 2-space dimensions

In this part of the section, we will analyze the numerical simulations for two dimensions in space for both Case I and Case II.

Example 6. Consider the spatial functions, 𝐾(𝑥, 𝑦) = 2.5 + cos(𝜋𝑥) cos(𝜋𝑦), 𝑀(𝑥, 𝑦) = 2.1 + sin(𝜋𝑥) sin(𝜋𝑦), 𝑁(𝑥, 𝑦) = 1.7 +
sin(𝜋𝑥) sin(𝜋𝑦) for model (3.1) with 𝑟 = 1.0, 𝑢0 = 𝑣0 = 1.6, 𝑑1 = 𝑑2 = 1.0 on Ω = (0, 1) × (0, 1) for different space dependent har-

vesting coefficient 𝐻1, while 𝐻2 = 0.5 + 0.2 cos(𝜋𝑥) cos(𝜋𝑦) is taken as fixed. Fig. 9 represents the contour profiles of 𝑢 and 𝑣 while 
their diffusive movement is directed towards positive resource functions 𝑀 and 𝑁 , respectively. We have computed the solution 
at 𝑡 = 𝑇 = 400, which is sufficient to get a steady state for this case. We see that the contour pattern followed shows a correlation 
with 𝑀 and 𝑁 rather than 𝐾 , and the maximum population densities are located at the center of the domain. Due to the effects of 
harvesting at different levels in space, the dependence on population density is stronger for large diffusion. Indeed, the equilibrium 
profile is primarily influenced by the diffusion term, leading to a correlation with resource functions for both species. As we know, 
for two interacting species, the outcome is either a competitive exclusion or the coexistence of two species. Here we observed that 
for unequal values of harvesting coefficients, competitive exclusion is obvious (see, Fig. 9 (a,d) and Fig. 9 (c,f)), which justified the 
Theorem 3 and Remark 1 while coexistence is possible when considering the equal level of harvesting effects (see Fig. 9 (b,e)).

Example 7. Assuming (3.1), with 𝐾(𝑥, 𝑦) = 2.5 + cos(𝜋𝑥) cos(𝜋𝑦), 𝑀(𝑥, 𝑦) = 2.1 + sin(𝜋𝑥) sin(𝜋𝑦), 𝑁(𝑥, 𝑦) = 1.7 + sin(𝜋𝑥) sin(𝜋𝑦), 
𝑟 = 1.0, 𝑢0 = 𝑣0 = 1.6, and 𝑑1 = 𝑑2 = 1.0, we vary the constant value of the harvesting coefficient 𝐻1 while keeping 𝐻2 = 0.6 fixed 
on Ω ∈ (0, 1) × (0, 1). The contours in Fig. 10 follow analogous patterns to the previous Example 6 by considering constant levels of 
harvesting.

Example 8. We consider the scenario of (3.10) with 𝐾(𝑥, 𝑦) = 𝑀(𝑥, 𝑦) = 2.5 + cos(𝜋𝑥) cos(𝜋𝑦), 𝑁(𝑥, 𝑦) = 1.7 + sin(𝜋𝑥) sin(𝜋𝑦) at 
𝑡 = 𝑇 = 400. Here, the diffusive migration of 𝑢 follows the carrying capacity 𝐾 , and the movement of other species is directed 
towards their resource distribution 𝑁 . In Fig. 11, we have contour plots of 𝑢 and 𝑣 for different harvesting efforts 𝛾1 ∈ [0, 1) of 
𝑢, while 𝛾2 = 0 remains fixed. We observe that without the harvesting effects, coexistence arises (see Fig. 11 (a,d)). Additionally, 
introducing a small quantity of harvesting effect (𝛾1 = 0.04, see Fig. 11 (b,e)) on 𝑢 leads to both species surviving, which demonstrates 
the evolutionary benefit of consuming these types of diffusion approaches, for which both species should exist in the competition.

On the other hand, in Fig. 11 (c,f)), we discover the existence of a semi-trivial equilibrium for 𝑣 when the level of harvesting is 
considered at 𝛾1 = 0.2, even though others are not supposed to be harvested. We also notice that the contour plots of 𝑢 correlate with 
𝐾 where the patterns of 𝑣 correlate with 𝑁 .

However, Fig. 12 (a-e) reveals the diagram of scaled average stationary solutions as a function of harvesting efforts 𝛾1 ∈ [0, 1) for 
numerous fixed levels of 𝛾2 on Ω ∈ (0, 1) × (0, 1). Likewise, here we have estimated a lower level of harvesting 𝛾∗1 of 𝛾 by equation 
(3.16) for two-dimensional cases in 𝑥 and 𝑦 for which coexistence of both species necessarily should exist. We have also computed 
numerically the upper bound 𝛾∗∗1 in this case which is the upper estimate of 𝛾1 for which coexistence is yet possible.

Also, in Fig. 13 (a-b), we can see the average scaled population density of 𝑢 and 𝑣 for different levels of harvesting effects 
𝛾1 ∈ [0, 1) and 𝛾2 ∈ [0, 1) at time 𝑡 = 𝑇 = 1000. The bisection area shows the coexistence of both 𝑢 and 𝑣 species, and the darker 
portion of this area represents a higher density of these species.

Example 9. Let 𝑀(𝑥, 𝑦) = 2.5𝜋2𝑒−(𝑥−0.5)
2−(𝑦−0.5)2 + 1.2, 𝑁(𝑥, 𝑦) = 1.5𝜋2𝑒−(𝑥−1)

2−(𝑦−1)2 + 1.0, 𝐾(𝑥, 𝑦) = 𝑀(𝑥, 𝑦) + 𝑁(𝑥, 𝑦), 𝑟 = 1.0, 
𝑢0 = 𝑣0 = 1.6, 𝑑1 = 𝑑2 = 1.0 on Ω = (0, 1) × (0, 1) for the case of (3.10). As in a previous example, we found similar observations while 
considering resource functions and carrying capacity as a combination of two Gaussian functions and a positive constant for the case 
of an ideal free pair. Additionally, Fig. 14 (a-f) shows that the contour patterns for 𝑢 follow 𝑀 , which is maximum at the center, 
and the contour patterns of 𝑣 follow 𝑁 , which provides the highest population density at the top right corner for several values of 
22

𝛾1 when 𝛾2 = 0.
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Fig. 9. Contour plots of 𝑢 and 𝑣 of (3.1) at 𝑡 = 𝑇 = 400 where 𝐾(𝑥, 𝑦) = 2.5 + cos(𝜋𝑥) cos(𝜋𝑦), 𝑀(𝑥, 𝑦) = 2.1 + sin(𝜋𝑥) sin(𝜋𝑦), 𝑁(𝑥, 𝑦) = 1.7 + sin(𝜋𝑥) sin(𝜋𝑦), 
𝑟 = 1.0, 𝑢0 = 𝑣0 = 1.6, 𝑑1 = 𝑑2 = 1.0, 𝐻2 = 0.5 + 0.2 cos(𝜋𝑥) cos(𝜋𝑦) for (a,d) 𝐻1 = 0.1 + 0.3 cos(𝜋𝑥) cos(𝜋𝑦), (b,e) 𝐻1 = 0.5 + 0.2 cos(𝜋𝑥) cos(𝜋𝑦), and (c,f) 𝐻1 =
0.9 + 0.1 cos(𝜋𝑥) cos(𝜋𝑦) on Ω = (0, 1) × (0, 1).

Fig. 10. Contour plots of 𝑢 and 𝑣 of (3.1) at 𝑡 = 𝑇 = 400 where 𝐾(𝑥, 𝑦) = 2.5 + cos(𝜋𝑥) cos(𝜋𝑦), 𝑀(𝑥, 𝑦) = 2.1 + sin(𝜋𝑥) sin(𝜋𝑦), 𝑁(𝑥, 𝑦) = 1.7 + sin(𝜋𝑥) sin(𝜋𝑦), 𝑟 = 1.0, 
23

𝑢0 = 𝑣0 = 1.6, 𝑑1 = 𝑑2 = 1.0, 𝐻2 = 0.6 for (a,d) 𝐻1 = 0.4, (b,e) 𝐻1 = 0.6, and (c,f) 𝐻1 = 0.8 on Ω = (0, 1) × (0, 1).
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Fig. 11. Contour plots of 𝑢 and 𝑣 of (3.10) at 𝑡 = 𝑇 = 400 where 𝐾(𝑥, 𝑦) =𝑀(𝑥, 𝑦) = 2.5 + cos(𝜋𝑥) cos(𝜋𝑦), 𝑁(𝑥, 𝑦) = 1.7 + sin(𝜋𝑥) sin(𝜋𝑦), 𝑟 = 1.0, 𝑢0 = 𝑣0 = 1.6, 
𝑑1 = 𝑑2 = 1.0, 𝛾2 = 0 for (a,d) 𝛾1 = 0, (b,e) 𝛾1 = 0.04, and (c,f) 𝛾1 = 0.2 on Ω = (0, 1) × (0, 1).

Fig. 12. Average scaled solutions of (3.10) at 𝑡 = 𝑇 = 2000 on Ω = (0, 1) × (0, 1) where 𝐾(𝑥, 𝑦) = 𝑀(𝑥, 𝑦) = 2.5 + cos(𝜋𝑥) cos(𝜋𝑦), 𝑁(𝑥, 𝑦) = 1.7 +
sin(𝜋𝑥) sin(𝜋𝑦), 𝑟 = 1.0, 𝑢0 = 𝑣0 = 1.6, 𝑑1 = 𝑑2 = 1.0 for (a) 𝛾2 = 0.0, (b) 𝛾2 = 0.1, (c) 𝛾2 = 0.3, (d) 𝛾2 = 0.6, and (e) 𝛾2 = 0.9 with corresponding 𝛾∗1 =
24

0.045602, 0.14155, 0.33314, 0.61967, 0.90511, respectively.
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Fig. 13. Average scaled density of (a) 𝑢, and (b) 𝑣 for (3.10) as a function of harvesting coefficients 𝛾1 ∈ [0, 1] and 𝛾2 ∈ [0, 1] on Ω ∈ (0, 1) × (0, 1) where 𝐾(𝑥, 𝑦) =
𝑀(𝑥, 𝑦) = 2.5 + cos(𝜋𝑥) cos(𝜋𝑦), 𝑁(𝑥, 𝑦) = 1.7 + sin(𝜋𝑥) sin(𝜋𝑦), 𝑟 = 1.0, 𝑢0 = 𝑣0 = 1.6, 𝑑1 = 𝑑2 = 1.0 at 𝑡 = 𝑇 = 1000.

Fig. 14. Contour plots of 𝑢, and 𝑣 of (3.10) at 𝑡 = 𝑇 = 400 where 𝑀(𝑥, 𝑦) = 2.5𝜋2𝑒−(𝑥−0.5)
2−(𝑦−0.5)2 + 1.2, 𝑁(𝑥, 𝑦) = 1.5𝜋2𝑒−(𝑥−1)

2−(𝑦−1)2 + 1.0, 𝐾(𝑥, 𝑦) =𝑀(𝑥, 𝑦) +𝑁(𝑥, 𝑦), 
𝑟 = 1.0, 𝑢0 = 𝑣0 = 1.6, 𝑑1 = 𝑑2 = 1.0, 𝛾2 = 0.0 for (a,d) 𝛾1 = 0.0, (b,e) 𝛾1 = 0.015, and (c,f) 𝛾1 = 0.2 on Ω = (0, 1) × (0, 1).

Fig. 15 (a,b) illustrates how the average density of 𝑢 and 𝑣 depends on 𝛾1 and 𝛾2, where the darker part in the first quadrant of 
bisection region supports coexistence for 𝛾2 = 0.

5. Conclusion

Our research aimed to explore different harvesting strategies to gain insights into the management of species growth. We studied 
various diffusive strategies using reaction-diffusion equations for two competing species. We considered two cases for harvesting 
strategy: one where the harvesting coefficients are arbitrary, independent in space, and do not exceed the species’ intrinsic growth 
rate, and another where the harvesting coefficients are proportional to the time-independent intrinsic growth rate.

We found that only one semi-trivial solution will be sustained for unequal harvesting levels that may be constant or space-

dependent. However, for equal harvesting, coexistence is guaranteed in Case I. Furthermore, harvesting the invasive species could 
potentially safeguard the survival of the native population. Moreover, we conducted estimations on species extinction and provided 
25

certain bounds where coexistence is apparent.
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Fig. 15. Average scaled density of (a) 𝑢, and (b) 𝑣 for (3.10) as a function of harvesting coefficients 𝛾1 ∈ [0, 1] and 𝛾2 ∈ [0, 1] on Ω ∈ (0, 1) × (0, 1) where 𝑀(𝑥, 𝑦) =
2.5𝜋2𝑒−(𝑥−0.5)

2−(𝑦−0.5)2 + 1.2, 𝑁(𝑥, 𝑦) = 1.5𝜋2𝑒−(𝑥−1)
2−(𝑦−1)2 + 1.0, 𝐾(𝑥, 𝑦) =𝑀(𝑥, 𝑦) +𝑁(𝑥, 𝑦), 𝑟 = 1.0, 𝑢0 = 𝑣0 = 1.6, 𝑑1 = 𝑑2 = 1.0 at 𝑡 = 𝑇 = 1000.

Our study is focused on the importance of harvesting levels that enable a species to maintain a sustainable population. In 
this context, diffusion strategy is a key factor for the survival of species in competitive environments. We performed numerical 
computations in one and two spatial dimensions, considering space-dependent parametric values. Our numerical analysis shows that 
both populations can coexist with restricted harvesting levels of the species. Additionally, we studied the ideal free pair models in both 
cases. Our theoretical and numerical studies aim to help readers better understand how species interact in complex environments.

In our study, we analyzed the theoretical results based on two harvesting levels for different diffusion strategies. However, we did 
not evaluate time periodic results, and we did not illustrate the situation when harvesting exceeds some local locations but not others 
theoretically. We have tried to demonstrate some of these situations through numerical illustration, which has not been analyzed 
theoretically. It is not feasible to provide a detailed answer to each point based solely on numerical calculations due to the vast 
number of parameters and functions involved. Our main focus is on the impact of different harvesting efforts and the significance of 
diffusion strategies. We strive to establish theoretical explanations to guide numerical analysis whenever possible and vice versa. In 
certain populations that are subject to harvesting, the harvesting process is not uniformly applied to all individuals but is restricted 
to certain individuals. This could have an impact on the birth rate. To minimize this effect of harvesting on the birth rate, sometimes 
the harvesting is biased towards certain species. Models of populations that account for such situations are more realistic than other 
models of populations subject to harvesting.
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