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Background: Diabetic retinopathy (DR) is a major diabetes-related disease linked to
metabolism. However, the cognition of metabolic pathway alterations in DR remains
scarce. We aimed to corroborate alterations of metabolic pathways identified in prior
studies and investigate novel metabolic dysregulations that may lead to new prevention
and treatment strategies for DR.

Methods: In this case-control study, we tested 613 serummetabolites in 69 pairs of type 2
diabetic patients (T2DM) with DR and propensity score-matched T2DM without DR via
ultra-performance liquid chromatography-tandem mass spectrometry system. Metabolic
pathway dysregulation in DR was thoroughly investigated by metabolic pathway analysis,
chemical similarity enrichment analysis (ChemRICH), and integrated pathway analysis. The
associations of ChemRICH-screened key metabolites with DR were further estimated with
restricted cubic spline analyses.

Results: A total of 89 differentially expressed metabolites were identified by paired
univariate analysis and partial least squares discriminant analysis. We corroborated
biosynthesis of unsaturated fatty acids, glycine, serine and threonine metabolism,
glutamate and cysteine-related pathways, and nucleotide-related pathways were
significantly perturbed in DR, which were identified in prior studies. We also found
some novel metabolic alterations associated with DR, including the disturbance of
thiamine metabolism and tryptophan metabolism, decreased trehalose, and increased
choline and indole derivatives in DR.

Conclusions: The results suggest that the metabolism disorder in DR can be better
understood through integrating multiple biological knowledge databases. The progression
of DR is associated with the disturbance of thiamine metabolism and tryptophan
metabolism, decreased trehalose, and increased choline and indole derivatives.
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INTRODUCTION

Despite being possibly preventable and treatable, diabetic
retinopathy (DR) is still the major microvascular complication
of diabetes mellitus (DM) and the chief reason for vision
impairment and blindness around the working-age population
(Williams et al., 2019). World Health Organization (WHO) has
considered DR to be prevented or treated as one of the principal
eye conditions (Elmasry et al., 2019). From 1980 to 2018, the
annual incidence and progression of DR have increased from 2.2
to 3.4%–12.7 and 12.3%, respectively (Sabanayagam et al., 2019).
A recent meta-analysis reveals that DR is the only cause for the
global growth of blindness in age-standardized prevalence
between 1990 and 2020, especially in many parts of Asia and
sub-Saharan Africa (Steinmetz et al., 2021). According to the
Handan Eye Study, about 43.1% of people over 30 years old
suffering fromDM has been diagnosed as DR (Wang et al., 2009).
Meanwhile, current treatment strategies, such as laser
photocoagulation and anti-vascular endothelial growth factor
(VEGF) injections, cannot always effectively control DR
progression (Wang and Lo, 2018). So it is urgent to find new
pathways associated with DR to achieve early prevention and
treatment (Wang and Lo, 2018; Tomita et al., 2021).

Metabolome, which reflects the interplay of genetic and
environmental factors, defines the information closest to the
phenotype of the biological system under study (Chen et al.,
2016; Ji et al., 2017). Since the functions of metabolites are not
determined by epigenetic regulation or posttranslational
modification like genes and proteins (Ji et al., 2017),
metabolomics can uncover disease mechanisms that cannot be
explored by other omics studies.

Previous blood metabolomics studies tried to find pathogenic
pathways associated with DR using metabolic pathway analysis (Li
et al., 2011; Chen et al., 2016; Liew et al., 2017; Rhee et al., 2018; Zhu
et al., 2019; Xuan et al., 2020; Zuo et al., 2021). Based on plasma
metabolomics, Li et al (Li et al., 2011) reported that lower level of
ω-6 polyunsaturated fatty acids (PUFAs) is associated with
proliferative diabetic retinopathy (PDR); Chen et al (Chen et al.,
2016) demonstrated that pentose phosphate pathway is altered in
moderate non-proliferative diabetic retinopathy (NPDR) patients
after matching glycosylated hemoglobin (HbA1c); Rhee et al (Rhee
et al., 2018) demonstrated glutamine and glutamic acid-related
pathways is dysregulated in DR after matching age and sex; Zhu
et al (Zhu et al., 2019) reported alanine, aspartate and glutamate
metabolism, caffeine metabolism, beta-alanine metabolism, purine
metabolism, cysteine and methionine metabolism, sulfur
metabolism, sphingosine metabolism and arginine and proline
metabolism are all enriched in PDR patients. Based on serum
metabolomics, Xuan et al (Xuan et al., 2020) demonstrated that
energy metabolism, amino acid metabolism, and lipid metabolism
are disordered in DR patients after matching age and sex, and
further emphasize the value of serum metabolomics studies for
ascertaining its pathogenesis; Zuo et al (Zuo et al., 2021)
demonstrated that linoleic acid metabolism, alanine, aspartate
and glutamate metabolism and phenylalanine metabolism are
enriched in DR patients after matching age, sex, body mass
index (BMI) and HbA1c.

Though the above-mentioned blood metabolomics studies
have been devoted to finding DR-related pathways, DR-related
metabolomics studies are still in the early stage (Xuan et al., 2020).
Most DR-related metabolic pathways identified in the above
studies are restricted to those related to energy, amino acid,
and lipid metabolism, which is mainly due to the application
of threshold-based pathway analysis as well as the incomplete
existing metabolic pathways map. Over-representation analysis is
the most common applied threshold-based pathway analysis
method in previous DR metabolomics studies, which
overlooks the metabolites that individual effects are weak but
coordinated changes in sets of functionally related metabolites
have significant effects (Khatri et al., 2012). Furthermore, since
there is no complete database of human metabolic pathways
(Barupal et al., 2012), metabolic pathway analysis based on a
single database may be not sufficient to fully understand the DR-
perturbed metabolic pathways.

Herein, we comprehensively investigated DR-related serum
metabolome changes in a propensity score matching (PSM)-
designed case-control study using metabolic profiling data
obtained from the ultra-performance liquid chromatography-
tandem mass spectrometry (UPLC-MS/MS) platform. This
study aimed to systematically evaluate metabolic pathway
dysregulation during the development of DR using metabolic
pathway analysis, chemical similarity enrichment analysis
(ChemRICH), and integrated pathway analysis.

MATERIALS AND METHODS

Study Population
This was a two-center, PSM-based case-control study. The
rationale and study design of the study were reported
previously. Briefly, from August 2017 to June 2018, we
enrolled 950 volunteers, including 112 type 2 diabetic patients
(T2DM) patients without DR and 83 with DR, and 755 health
controls, aged over 35 ears from the endocrinology departments
of affiliated hospitals of two medical universities in Wenzhou and
Anhui provinces, China. All enrolled participants had no
histories of the following diseases such as any other eye
diseases, type 1 diabetes, cardiovascular disease, heart failure,
cancer, infectious disease, or other chronic systemic diseases. The
diagnosis of T2DM was applied strictly according to the standard
criteria recommended by WHO since 1999. The diagnosis of DR
was reported in Supplementary Appendix SA.

To eliminate the impact due to major known confounding bias
caused by the demographic and clinical characteristics of
participants and improve the stability of our findings, a PSM
approach was applied in the design process (Rosenbaum and
Rubin, 1983; Li et al., 2020). We successfully matched 69 pairs of
T2DM patients with DR (case) and without DR (control) for
primary analysis based on the propensity score including age,
gender, BMI, andHbA1c, and the nearest neighbor algorithmwas
used in the matching process at a ratio of 1:1. Health controls
were further matched with T2DM patients as the blank control
based on age, gender, and BMI. Details of the study design
showed in Supplementary Figure S1.
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Demographic and Clinical Data Collection
Standardized structure questionnaires, containing information
on age, gender, height, weight, duration of diabetes, occupation,
life habits as well as histories of hypertension, tobacco and alcohol
consumption, treatment and family, were used to collect all
participants’ demographic characteristics by a face-to-face
interview. BMI was calculated as weight (kg)/(height (m) 2).

Features for clinical manifestation and biochemistry,
including fasting blood glucose (FPG), HbA1c, total
cholesterol (TC), triglyceride (TG), high-density lipoprotein
cholesterol (HDL-C), low-density lipoprotein cholesterol
(LDL-C) as well as systolic blood pressure (SBP) and diastolic
blood pressure (DBP), were determined by two systematically
trained investigators. The associated standardized operation
procedures of this study were strictly followed in the process.

Metabolomics Analysis
The venous blood samples of all participants were gathered after
fasting for more than 8 h. The samples were then prepared in
conical polypropylene centrifuge tubes and centrifuged
(2000 rpm, *4°C, *10 min) for separating the serum. After that,
1.5 ml serum sample was stored using sterile tubes at −86°C deep
low-temperature refrigerator for further metabolomic
assessment. The sample preprocessing and metabolomic
analyses based on UPLC-MS/MS were carefully carried out by
a professional technician in the central laboratory of Metware
Inc., a professional metabolomics institution in China, and details
were provided in Supplementary Appendix SB.

Data Processing
The raw data from UPLC-MS/MS was obtained by Analyst
Software V.1.6.3 and processed in a widely targeted manner
using MultiQuant Software to convert, peak detects, retention
time correct and peak align. Metabolites with a coefficient of
variation (CV) larger than 30% in the quality control (QC)
samples were discarded. The metabolites with a missing ratio
of over 20% in the cases or controls were also removed. Besides,
for those with a missing ratio of less than 20%, they would be
separately imputed by half of the lowest detected peak areas.
Afterward, log transformation and Pareto scaling were
individually utilized to improve the normality of associated
data and make them more comparable.

Sample Size Estimation
The sample size estimation was reported in our previous study
(Zuo et al., 2021). Sample size was calculated by t-tests using
G*Power software version 3.1.9.2 (http://stats.idre.ucla.edu/
other/gpower/). Taking effect size as 0.5, type I error as 0.05,
the allocation ratio of 1, each group 64 patients is needed to
achieve a power of 0.8 (Supplementary Figure S2).

Statistical Analysis
Normally or approximately normally distributed continuous variables
were described as mean ± SD and compared by the paired t-test.
Otherwise, variables with obviously skewed distribution would be
presented as median (1st quartile, 3rd quartile) and compared by
Wilcoxon signed-rank test. Categorical variables were reported as

frequency (percentage) and McNemar-Bowker test or Wilcoxon
signed-rank test would be applied for the comparisons.

Paired t-test with Benjamini-Hochberg false positive rate
(FDR) correction was performed to identify the differentially
expressed metabolites (DEMs) when comparing DR with DM.
Furthermore, to markedly increase the reliability of detected
DEMs, a partial least squares discriminant analysis (PLS-DA)
model with 1000-times permutation test was constructed to
obtain the variable importance for the projection (VIP) of
metabolites. Finally, the criteria of DEMs screening were
determined as FDR-adjusted q-value < 0.05, fold changes
(FC) > 1.2 or FC < 0.8, and VIP >1. Relationships of the top
25 DEMs, which had the lowest q-value, were additionally
visualized via a hierarchical clustering heatmap depending on
the Euclidean distance metric and Ward’s clustering method.

All above-mentioned data management and analysis were
jointly implemented by RStudio version 1.2.5042 (©

2009–2020 RStudio, Inc.) and MetaboAnalyst version 5.0
(Xia et al., 2009).

Metabolic Pathway Analysis
The metabolic pathway analysis (MetPA) algorithms included
hypergeometric test for over-representation analysis and out-
degree centrality for pathway topology analysis (Xia andWishart,
2010). The metabolite background set was defined as the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
(Kanehisa et al., 2021), which was one of the most useful
metabolomics databases worldwide. Metabolic pathways with
hypergeometric test p-value less than 0.05 were considered to
be disturbed and were further interpreted using KEGG Mapper
(https://www.genome.jp/kegg/mapper/). Furthermore, the DR-
altered KEGG global metabolic network, which mapped DEMs
into the ko01100 pathway of KEGG database, was presented using
iPath version 3.0 to further determine whether MetPA was
affected by the background set (Darzi et al., 2018).

Because aboveMetPA would ignore the metabolites with weak
individual effects but strong synergistic variations, we further
applied Chemical Similarity Enrichment Analysis (Barupal and
Fiehn, 2017), a novel pathway mapping method based on
chemical similarity, to compensate for the shortcomings of the
above methods. This method can screen the key metabolites and
takes the PubChem compound database as background set, which
is the largest available compound repository for free (Barupal
et al., 2012). The restricted cubic spline (RCS) regression model
was applied to assess the associations between key metabolites
and DR.

Integrated Pathway Analysis
Since no single biochemical platform could cover whole
metabolites that existed in humans, integrated pathway
analysis need to be implemented for roundly exploration of
DR-disordered metabolism in multiplatform. MetaMapp was
utilized to generate a comprehensively DR-disturbed metabolic
network by integrating biochemical pathway and chemical
relationships from KEGG and PubChem database (Barupal
et al., 2012), and draw by Cytoscape (Saito et al., 2012; Fan
et al., 2020). Cytoscape was broadly utilized in omics network
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visualization. The principles of ChemRICH and MetaMapp were
provided in Supplementary Appendix SC.

RESULTS

Characteristics of the Study Participants
A total of 69 pairs of DM and DR, including 60 NPDR (9 mild, 31
moderate, and 20 severe) and 9 PDR, were included in the current
study. The demographic and clinical variables of participants were
described in Table 1. As compared to DM, DR patients tended to
have a longer duration of T2DM (p = 0.002) and higher SBP (p =
0.003). DR patients were more likely to have vision damage (p =
0.005) than DM patients. There was no statistical difference in
insulin treatment history between two groups (p = 0.093).

Impact of DR on Serum Metabolic Profile
A total of 613 identified metabolites, including 318 in positive ion
modes and 295 in negative ionmodes, were detected via theUPLC-
MS/MS system. After the necessary data preprocessing, 461
metabolites participated in the subsequent analysis. The
principal component analysis demonstrated that QC samples
had good consistency (black nodes), which meant the detection
system was robust (Supplementary Figure S3). Based on FDR-
adjusted q-value < 0.05, and FC > 1.2 or FC < 0.8, 91 metabolites
were differentially presented between the DM and DR patients
(Figure 1A). The PLS-DA model classified DM and DR patients
clearly, which was concluded that DR induced a significant
metabolism disorder (Figure 1B). Furthermore, based on VIP
>1, 89 metabolites were determined as DEMs. Among them, 34
were under-regulated and the other 55 were increased in DR when
comparing with DM (Supplementary Table S1). Based on the top
25 DEMs with the highest statistical difference, the Hierarchical
clustering heatmap also exhibited clearly distinct patterns between
DR and DM, the most of which was lipids (Figure 1C).

Metabolic Pathway Analysis
To better understand the biological meaning of DR-related metabolic
pathways, we performed the metabolic pathway analysis of 89 DEMs
(Figure 2A, Supplementary Table S2). The biosynthesis of
unsaturated fatty acids, thiamine metabolism, and glycine, serine
and threonine metabolism were detected as the significantly enriched
pathways, and the hub metabolite (linoleate) of linoleic acid
metabolism was manifestly decreased which caused out-degree
centrality equals to 0.75 (Figure 2B). The particular biological
annotations of the above four pathways were provided in
Supplementary Figures S4–S7. These interpretations reported
that the biosynthesis of unsaturated fatty acids in DR was
evidently decreased in metabolites of ω-6 and ω-3 PUFAs families;
the elevation of L-cysteine and reduction in thiamine triphosphate
constitutes an overt alteration of thiamine metabolism; the glycine,
serine and threonine metabolism was also remarkably altered by
increased L-cysteine and decreased ß-hydroxypyruvic acid, creatine,
and sarcosine. In addition, the annotations of KEGG global metabolic
network further showed that tryptophan metabolism, fatty acid
biosynthesis, and alpha-linolenic acid metabolism were enriched in
DR patients (Figure 2C, Supplementary Table S3).

Based on the threshold-free chemical similarity metric,
ChemRICH enriched all PubChem-identified metabolites and
DR-altered metabolic clusters were summarized in Figure 3A.
Among all the altered metabolic clusters, 11 clusters were
considered as significantly perturbed, taking FDR-adjusted q
value < 0.01 (Figure 3B). After adjusting for SBP, duration of
diabetes, and insulin treatment history, the RCS model showed that
the key metabolites of the eight metabolic clusters remained
statistically associated with DR, including unsaturated fatty acids

TABLE 1 | Demographics and clinical indicators of participants included in
the study.

Variable DM DR P

Continuous variable
Age, years 53.0(48.0,61.0) 56.0(51.0,65.0) 0.022
BMI, Kg/m2 24.4 ± 3.2 24.6 ± 3.5 0.773
FPG, mmol/L 8.4(6.9,12.0) 8.5(6.3,10.2) 0.225
HbA1c, % 10.1 ± 2.3 9.9 ± 1.9 0.500
LDL, mmol/L 2.7 ± 1.0 2.6 ± 1.1 0.617
HDL, mmol/L 1.0(0.8,1.3) 1.1(0.9,1.3) 0.703
TG, mmol/L 1.6(1.0,2.2) 1.4(1.0,1.9) 0.184
TC, mmol/L 4.7 ± 1.1 4.5 ± 1.4 0.337
SBP, mmHg 124(118,139) 135(122,148) 0.003
DBP, mmHg 79(74,86) 76(70,85) 0.449
Duration of diabetes, years 8.0(4.0,13.0) 12.0(8.0,17.0) 0.002
Category variable, n/N
Gender — — 0.625
Male 38/69 36/69 —

Female 31/69 33/69 —

Occupation — — 0.825
Manual workers 31/65 34/64 —

Mental worker 15/65 11/64 —

Both 19/65 19/64 —

Center — — 0.074
Wenzhou 36/69 48/69 —

Hefei 33/69 21/69 —

Hypertension — — 0.078
No 47/66 37/65 —

Yes 19/66 28/65 —

Smoking habits — — 0.530
Non-smokers 41/66 36/65 —

Ex-smokers 6/66 8/65 —

Current smokers 19/66 21/65 —

Alcohol consumption — — 0.921
Non-drinkers 33/66 29/65 —

Ex-drinkers 3/66 9/65 —

Current drinkers 30/66 27/65 —

Three-generation family history — — 0.556
No 33/63 29/66 —

Yes 30/63 37/66 —

Ever insulin therapy — — 0.093
No 46/65 55/65 —

Yes 19/65 10/65 —

Heel pain — — 0.134
No 55/66 46/65 —

Yes 11/66 19/65 —

Vision loss — — 0.005
No 37/66 19/65 —

Yes 29/66 46/65 —

Abbreviations: DM, type 2 diabetes mellitus (T2DM) without diabetic retinopathy; DR,
T2DM with diabetic retinopathy; BMI, body mass index; FPG, fasting plasma glucose;
HbA1c, glycated hemoglobin; LDL, low density lipoprotein; HDL, high density lipoprotein;
TG, triglyceride; TC, total cholesterol; SBP, systolic blood pressure; DBP, diastolic blood
pressure.
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(linoleic acid as key compound, negative linear trend of DR with
linoleic acid), disaccharides (trehalose, negative linear trend),
ethanolamines (choline, positive linear trend), HETE
(hydroxyeicosatetraenoic acid, 12-HETE, non-linear trend),
dipeptides (phenylacetylglutamine, non-linear trend), indoleacetic
acids (indoleacetamide, positive linear trend), saturated fatty acids
(hexadecanoic acid, negative linear trend), and amino acids, sulfur
(sulfocysteine, negative non-linear trend) (Figure 3C).

Integrated Pathway Analysis
Based on integrated pathway analysis, all identifiedmetabolites were
mapped to the KEGG and PubChem database and the DR-altered
metabolic network was generated by MetaMapp (Figure 4). The
integrated network revealed that DR-altered metabolites were
mainly gathered into several modules by chemical similarity,
including PUFAs and their derivatives (a), amino acids (b), and
indole and its derivatives (c). According to module a, most of ω-6
PUFAs, like linoleic acid (LA), γ-linoleic acid (GLA), arachidonic
acid (AA), et al., and ω-3 PUFAs, like a-linoleic acid (ALA),
docosahexaenoic acid (DHA), eicosapentanoic acid (EPA), et al.,

expressed a decreasing trend in DR patients while the metabolites of
ω-6 PUFAs (12-/15-HETE) were significantly up-regulated. Module
b was the central hub in the whole integrated network and was
linked to other modules through KEGG reactant pairs. Many amino
acids in module b related to glutamate pathways expressed
abnormally, such as L-glutamine, L-glutamic acid, L-theanine,
et al. Furthermore, the elements of cysteine-related pathways, like
L-cystathionine, S-adenosyl-L-homocysteine, L-cystine, L-cysteine,
et al., was also disturbed significantly in the DR-altered network.
Module c revealed that most indoles had increasing trends in DR
patients. The same trend applies to nucleotides and their derivatives.

Meta-Data Comparison With Previous
Study
To confirm the validity of this serum metabolomics study, the
results were compared with previous DR blood metabolomics
studies (Table 2). Consistent with previous studies, this study
showed that fatty acid metabolism (especially PUFAs and their
derivatives), amino acid metabolism (especially glycine, serine

A

B C

FIGURE 1 | (A) Volcano plot of metabolites between DM and DR patients (FDR <0.05; fold changes >1.2 or <0.8). (B) PLS-DA score plot. The model was
established using three principal components. Cumulative R2 archived 90.2%, Q2 achieved 77.9%, and accuracy achieved 97.2% with permutation test p-values less
than 0.001. (C)Heatmap for intensities of top 25 differentially expressed metabolites between DM and DR patients with the smallest paired t-test FDR q value. Euclidean
distance metric and Ward’s clustering method were applied for the hierarchical clustering. Red represents increased intensities and blue decreased intensities.
Abbreviations: DM, type 2 diabetes mellitus (T2DM) without diabetic retinopathy; DR, T2DM with diabetic retinopathy; PLS-DA, partial least squares discriminant
analysis; FDR, false discovery rate.
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and threonine metabolism, and glutamate and cysteine-related
pathways), and nucleotide-related pathways were significantly
perturbed in DR (Figure 4; Table 2). Meanwhile, serum creatine
was decreased in DR compared with DM, which was consistent
with a PDR vitreous metabolomics study(Tomita et al., 2021). We
did not see significant associations between DR and the following
metabolites that were demonstrated previously: pyruvic acid,
trans-oleic acid, hydroxybutyric acid, deoxyribonic acid,
erythritol, gluconic acid, ribose, maltose, fumaric acid, uridine,
cytidine, 2-piperidone. In contrast, most of PUFAs were
modulated in the opposite direction in our study compared
with Xuan’s study, while the derivatives (12-/15-HETE and
8,15-DiHETE) were modulated in the same direction (Xuan

et al., 2020). We noticed that thiamine metabolism was
significantly altered in DR (Figure 2). We also found the
following unreported metabolites that were significantly
different between DR and DM serum samples: trehalose,
choline, indoleacetic acids.

DISCUSSION

In this PSM-based case-control study, we comprehensively
described DR-disrupted metabolic pathways via metabolic
pathway analysis based on KEGG and PubChem database. We
corroborated the associations of some pathways with DR that were

A

C

B

FIGURE 2 | (A)Metabolic pathway analysis of differentially expressed metabolites between DM and DR patients. Y-axis shows -lg(p) calculated by hypergeometric
test using over-representation analysis. X-axis and the size show out-degree centrality using pathway topology. The color represents different categories of metabolic
pathways. (B) Statistic table for enriched metabolic pathways. (C) KEGG global metabolic network highlighting DR altered pathways (p-value < 0.05). The thickness of
the line represents the number of enriched metabolites in the pathway. Abbreviations: DM, type 2 diabetes mellitus (T2DM) without diabetic retinopathy; DR, T2DM
with diabetic retinopathy; KEGG, Kyoto Encyclopedia of Genes and Genomes database.
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reported previously, including biosynthesis of PUFAs, glycine,
serine and threonine metabolism, glutamate and cysteine-related
pathways, and nucleotide-related pathways (Li et al., 2011; Rhee
et al., 2018; Xuan et al., 2020; Zuo et al., 2021).We also found some
novel metabolic clusters associated with DR including thiamine
metabolism, tryptophan metabolism, disaccharides (trehalose as
key compound), ethanolamines (choline), and indoleacetic acids
(indoleacetamide). Contrary to previous studies, we did not
observe energy metabolism changes, possibly due to adjustment
for HbA1c and BMI. Our work also reveals that it is impossible to
study the metabolic alterations of diseases comprehensively based
on a single biological knowledge database at present, so integrated
pathway analysis may be an ideal remedy.

Thiamine metabolism is enriched in this study, mainly due to
the significantly reduced thiamine triphosphate (ThTP) and
elevated L-cysteine in DR. ThTP exists as the non-coenzyme
form of vitamin B1 in all living organisms (Bettendorff andWins,
2009). Although the mechanism is currently unclear, ThTP is

considered as the allosteric activator of glutamate dehydrogenase
(GDH), which promotes the metabolism of glutamate to alpha
ketoglutarate (essential substances for the tricarboxylic acid cycle)
(Bunik et al., 2016). The growth of serum glutamate proves this
opinion. In the other case, ThTP has a specific neurophysiological
role and can phosphorylate rapsyn, which may be linked to the
facilitation of acetylcholinergic neurotransmission (Bettendorff
and Wins, 2009). It partly explains the increased choline in DR.
Previous studies have reported the association between cysteine
and DR (Zhu et al., 2019; Zuo et al., 2021).

Tryptophan metabolism is one of the most disturbed metabolic
pathways according to KEGG global metabolic network. In
tryptophan metabolism, indole and its derivatives are increased
in DR patients (Figure 4) and indoleacetic acids are significantly
disturbed (Figure 3). The fraction of tryptophan reaching the
human colon can be catabolized by the gut bacteria to produce a
variety of indole derivatives and release them into the systemic
circulation (Platten et al., 2019). Platania et al. hypothesized that

A

C

B

FIGURE 3 | (A) ChemRICH analysis showed the most significantly altered metabolite clusters based on chemical similarity. Cluster size indicates the number of
metabolites in each cluster. The proportion of increased or decreasedmetabolites compared to DM patients are shown by color (red = increased, purple = partly decreased,
blue = decreased). Chemical enrichment statistics were calculated by the Kolmogorov–Smirnov test and only enrichment clusters with p < 0.05 are shown in the bubble plot.
(B) Statistics table for metabolite clusters (adjusted q value <0.01). (C) Associations of key metabolites with the odds (natural log-transformed) of DR after adjusting for
systolic blood pressure, duration of diabetes, and insulin treatment history. Abbreviations: ChemRICH, Chemical Similarity Enrichment Analysis for Metabolites; DM, type 2
diabetes mellitus (T2DM) without diabetic retinopathy; DR, T2DM with diabetic retinopathy; KEGG, Kyoto Encyclopedia of Genes and Genomes database.
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indole derivatives are innovative molecules endowed with both
anti-inflammatory and anti-angiogenic properties which are
beneficial in DR treatment and the results supported the
hypothesis (Platania et al., 2020). Our results further support
the above view and suggest that indole derivatives may inhibit
the progression of DR in humans by increasing compensatory
activity. A human trial has demonstrated that indoleacetic acid by
mouth can reduce blood glucose in diabetic patients (Diengott and
Mirsky, 1956). Therefore, indole derivatives have the potential to
treat DR.

Trehalose is found to be negatively correlated with DR. Chen
et al. used to explore the relationship between trehalose and DR but
failed because the concentration of trehalose could not be detected
in most plasma samples by gas chromatography-mass spectrometry
system (Chen et al., 2016). Due to the high sensitivity of the UPLC-
MS/MS system, this association could be identified. Trehalose
cannot be synthesized in the human body and is mainly used in
Asian countries as a food stabilizer (Sokolowska et al., 2021). A
randomized control study demonstrates that moderate
consumption of trehalose is helpful to maintain glucose
homeostasis in healthy people (Yoshizane et al., 2020). Existing
evidence reveals that trehalose can effectively govern hyperglycemia
of diabetic patients via relieving impaired glucose tolerance,

mitigating insulin resistance, and reducing postmeal insulin
bursts (Sokolowska et al., 2021). Meanwhile, Taya et al (Taya
et al., 2009) disclose that trehalose is capable of reducing the
production of inflammatory cytokines by protecting IkappaB-
alpha reduction in vivo. Since hyperglycemia and inflammation
are essential pathogenic factors contributing to DR and the safety of
trehalose has been confirmed (Sokolowska et al., 2021), it is
reasonable that trehalose supplement is beneficial to the
prevention and control of DR.

PUFAs and their derivatives-related pathways were
significantly altered in serum samples of DR patients. Both ω-
3 and ω-6 series of PUFAs are significantly decreased in DR,
which is contrary to a recent study (Xuan et al., 2020).
Supplementary Figure S8 showed that this declining trend is
stable in each stage of DR. By comparing differences in study
design, this opposite result may be caused by the adjustment for
HbA1c and BMI. Growing evidence reveals that PUFAs have
critical abilities in angiogenesis, regulation of inflammation, and
homeostasis maintenance (Elmasry et al., 2019; Xuan et al., 2020;
Zuo et al., 2021). They generally work in a two-step reaction
sequence. First, PUFAs will be over-released by the action of
phospholipase A2 enzyme from the cell membrane lipid layers in
a hyperglycemic or hypoxic environment. Second, the released

FIGURE 4 |Metabolic network visualizing by MetaMapp. Orange nodes indicate increased metabolites in DR patients compared to DM patients, while the green
nodes indicate a decrease. Node size indicates the magnitude of fold change. Purple edges denote KEGG reactant pair links, and grey edges symbolize Tanimoto
chemical similarity over 700. Module a mainly includes PUFAs and their derivatives, module b mainly includes amino acids, module c includes indole and its derivatives.
Abbreviations: DR, type 2 diabetes mellitus (T2DM) with diabetic retinopathy; DM, T2DM without diabetic retinopathy; KEGG, Kyoto Encyclopedia of Genes and
Genomes database.
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PUFAs are metabolized by either Cytochrome P450,
lipoxygenases, or Cyclooxygenases enzymes (Elmasry et al.,
2019). After then, the metabolites of ?-6 PUFAs (e.g., HETE)
induce proangiogenic and proinflammatory effects on the
promotion of DR, while most of ω-6 PUFAs have forceful
inhibitory impacts on the progress of DR (Houtsmuller et al.,
1981). This is further confirmed epidemiologically by the elevated
12-/15-HETE and reduced PUFAs in DR. On the other hand, the
harmful effects of HETEs are offset by the metabolites derived
from ω-3 PUFAs (Supplementary Figure S9).

Strengths and Limitations
Our work has several strengths. First, two knowledge databases,
including KEGG and PubChem, are integrated to assess the

metabolic pathway dysregulation in DR since no single
platform can cover all human metabolites so far. Second, the
UPLC-MS/MS platform rather than traditional detection
strategies is used to efficiently acquire metabolic profiling data,
which improves the credibility of our results. Third, the impacts
of potential confounding bias are adjusted by the PSM approach,
which can achieve an effect similar to multivariable analysis. This
study also has some limitations. First, the sample size of our study
is not large due to the high cost of metabolomics. Nevertheless,
the current sample size is sufficient since it has been thoroughly
assessed during study design with the power larger than 0.8.
Second, the enzymatic reactions among metabolites cannot be
directly calculated to map to the integrated metabolic network.
Third, though we reckon that our findings are robust because of

TABLE 2 | Summary of published studies on blood metabolomics of diabetic retinopathy.

Authors Year Platform Matching Case Control Patients Biomarker (up) Biomarker
(down)

Pathways
implicated

Li et al. (Li
et al.,
2011)

2011 GC-MS
(Plasma)

— 88 type 2
diabetes of
different
stages of DR

— Chinese Not validated pyruvic acid,
L-aspartic acid

Not validated
arachidonic acid,
trans-oleic acid,
linoleic acid, B-
hydroxybutyric acid

—

Chen
et al.
(Chen
et al.,
2016)

2016 GC-MS
(Plasma)

HbA1c 40 type 2
diabetes with
moderate
NPDR

40 type 2
diabetes
without
DR

Singaporeans
of South Indian

2-deoxyribonic acid, 3,4-
dihydroxybutyric acid,
erythritol, gluconic acid,
ribose

Maltose Pentose phosphate
pathway

Rhee
et al.
(Rhee
et al.,
2018)

2018 GC-MS,
UPLC-MS
(Plasma)

Age, sex 72 type 2
diabetes with
NPDR and 52
type 2
diabetes
with PDR

74 type 2
diabetes
without
DR

Korean Glutamine, glutamine/
glutamic acid

Glutamic acid —

Zhu et al.
(Zhu
et al.,
2019)

2019 LC-MS
(Plasma)

— 21 type 2
diabetes
with PDR

21 type 2
diabetes
without
DR

Chinese Not validated fumaric acid,
uridine, acetic acid,
cytidine

— Alanine, aspartate
and glutamate
metabolism, caffeine
metabolism, beta-
alanine metabolism,
purine metabolism,
cysteine and
methionine
metabolism, sulfur
metabolism,
sphingosine
metabolism,
arginine and proline
metabolism

Xuan
et al.
(Xuan
et al.,
2020)

2020 GC-MS,
LC-MS
(Serum)

Age, sex 350 type 2
diabetes of
different
stages of DR

111 type 2
diabetes
without
DR

Chinese 12-HETE, 2-piperidone — Energy metabolism,
amino acid
metabolism, lipid
metabolism

Zuo et al.
(Zuo
et al.,
2021)

2021 UPLC-
ESI-MS/
MS
(Serum)

Age, sex,
BMI,
HbA1c

46 type 2
diabetes of
different
stages of DR

46 type 2
diabetes
without
DR

Chinese Phenylacetylglutamine,
nicotinuric acid, ornithine

Linoleic acid linoleic acid
metabolism, alanine,
aspartate and
glutamate
metabolism,
phenylalanine
metabolism

Abbreviations: GC-MS, gas chromatography-mass spectrometry; UPLC-MS, ultra-performance liquid chromatography-mass spectrometry; LC-MS, liquid chromatography-mass
spectrometry; UPLC-ESI-MS/MS, ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry; HbA1c: glycated hemoglobin; BMI, body mass index;
DR, type 2 diabetes mellitus with diabetic retinopathy; NPDR, non-proliferative diabetic retinopathy; PDR, proliferative diabetic retinopathy.
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careful design, accurate measurements, and comprehensive data
analysis, they need to be verified by more prospective cohorts or
experimental studies.

In conclusion, the aforementioned results suggest that the
metabolism disorder in DR can be better understood through
integrating multiple bioinformatics databases. Apart from the
known PUFAs metabolism, amino acid metabolism, and
nucleotide metabolism, the occurrence and progression of DR
is also associated with the disturbance of thiamine metabolism
and tryptophan metabolism, decreased trehalose, and increased
choline and indole derivatives.
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