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Although viral infection and antiviral defence are ubiquitous,

genetic data are currently unavailable from the vast majority of

animal phyla — potentially biasing our overall perspective of

the coevolutionary process. Rapid adaptive evolution is seen in

some insect antiviral genes, consistent with invertebrate-virus

‘arms-race’ coevolution, but equivalent signatures of selection

are hard to detect in viruses. We find that, despite the large

differences in vertebrate, invertebrate, and plant immune

responses, comparison of viral evolution fails to identify any

difference among these hosts in the impact of positive

selection. The best evidence for invertebrate-virus coevolution

is currently provided by large-effect polymorphisms for host

resistance and/or viral evasion, as these often appear to have

arisen and spread recently, and can be favoured by virus-

mediated selection.
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Background
Viral infection and antiviral defence are universal

phenomena [1] and viral infections are reported across

the metazoa [e.g. 2–4]. However, research tends to

focus more on the coevolution of vertebrates (and

plants) and their viruses than on invertebrates and

their viruses, and relevant genetic data on viruses

and antiviral resistance are lacking for almost all invert-

ebrate phyla. If major lineages differ systematically

in their molecular or ecological interaction with viruses,

as might be expected given the differences in immune

mechanisms, then the research bias could skew our

overall perspective of host–virus (co)evolutionary pro-

cess [e.g. 5�].

In this review we present data from arthropods that

broadly suggest viruses do indeed drive invertebrate
www.sciencedirect.com 
evolution — selective sweeps, resistance polymorphisms,

and elevated rates of protein evolution have all been

attributed to virus-mediated selection. However, whether

this is part of a strict coevolutionary process [6,7] is less

clear: viruses certainly evolve in response to invertebrate

hosts, but as yet there is relatively little evidence demon-

strating that this occurs as part of a reciprocal selective

process.

Virus-driven invertebrate evolution
Selection by viruses could drive frequent and rapid fix-

ations in invertebrate populations, reducing genetic

diversity at the selected loci and elevating divergence

between species. Selection on amino-acid sequences,

which may be common for antagonistic host–virus inter-

action, could additionally elevate the rate of non-synon-

ymous substitution (dN). Comparison of such ‘footprints

of selection’ between immune genes and genes with

other functions argues in favour of pathogen-mediated

selection in arthropods generally [e.g. 8–11], and ident-

ifies the antiviral RNAi pathway as a potential coevolu-

tionary hotspot in Drosophila [9,12�,13]. Genes mediating

antiviral RNAi [Ago2 and Dcr2, reviewed in 14] are

among the fastest evolving 3% of protein sequences

across D. melanogaster and D. simulans, with adaptive

amino-acid fixations in this pathway estimated to happen

every 10–40 thousand years [15]. Moreover, there is

evidence for positive selection and recent selective

sweeps in antiviral RNAi genes from multiple Drosophila
lineages, while homologous ‘housekeeping’ genes do not

show this pattern [12�,15,16].

The hypothesis that this is driven by a molecular ‘arms

race’ with viruses is appealing [15], first because virus-

encoded suppressors of RNAi (VSRs) are widespread

among RNA viruses [reviewed in 17], second because

some VSRs are known to interact directly with AGO2 and

DCR2 [e.g. 18–20], and third because VSRs from Dro-

sophila Nora viruses can be highly specific to the host

species’ AGO2 [21��]. However, other invertebrate anti-

viral genes are not reported to display extensive positive

selection, and it remains possible that selection on Dro-
sophila RNAi genes has been mediated by other selective

agents [22]. To test whether such potential ‘hot spots’ of

immune system evolution are a general phenomenon will

require data from a wider range of invertebrate taxa, and

based on sequence analysis alone it will remain hard to

attribute selection to the action of viruses.

Virus-mediated selection may also be inferred using high-

frequency large-effect host resistance polymorphisms, as

these can result from negative frequency dependent
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selection (i.e. when rare alleles have higher fitness) or

incomplete/ongoing selective sweeps [reviewed in 7]. A

large-effect polymorphism in the D. melanogaster autop-

hagy-pathway gene ref (2)P conveys resistance to the

vertically-transmitted Drosophila melanogaster Sigma Virus

(DMelSV), with the resistant allele reducing viral trans-

mission by �90% in females and �60% in males

[reviewed in 23]. The resistant allele occurs at 25–35%

in European populations, and population-genetic analy-

ses suggest it arose roughly 1–10Kya and has increased in

frequency recently [24,25]. A second large-effect

DMelSV resistance polymorphism comprises a natural

Doc transposable element insertion into CHKov1 followed

by a partial duplication and inversion involving CHKov1
and CHKov2. The Doc insertion exists at high frequency

(80% in a North American population) and reduces in-

fection rates by �50%. The subsequent rearrangement

gave rise to a virus-inducible CHKov2 transcript associ-

ated with an 80–140 fold decrease in viral titre [26]. Again,

population genetic analyses of this locus suggest resist-

ance is derived and has recently increased in frequency

[26,27]. Resistance to Drosophila C virus (DCV) is associ-

ated with segregating variants in pastrel (�50% increase in

survival time) and Anaphase promoting complex 7 (>100%

increase, but this currently lacks experimental verifica-

tion [28��]), although both resistant alleles are currently

rare [15% and 3% of surveyed alleles in the wild, see 28��].
Finally, experimental evolution under recurrent chal-

lenge with DCV also identified functional polymorphism

in pastrel, and further identified virus-resistant alleles

segregating in Ubc-E2H and CG8492. The DCV-resistant

alleles of pastrel and Ubc-E2H respectively displayed a

24% and 14% selective advantage under experimental

conditions, and knock-downs of gene expression reduced

survival after challenge [29��].

High-frequency large-effect viral resistance polymorph-

isms have also been reported from other invertebrates.

For example, segregating resistance to the Orsay Virus in

the nematode Caenorhabditis elegans maps to a non-func-

tional truncation of Drh-1, one of three dicer-related

helicases involved in RNAi [30�]. Here the susceptible

allele is derived, but is nevertheless found at a global

frequency of 23% and appears to have spread recently,

perhaps suggesting the action of selection at a linked

locus [30�]. Polymorphism in the antiviral RNAi pathway

(Dicer-2) has also been proposed to underlie some of the

genetic variance for resistance to Dengue virus in the

mosquito Aedes aegypti [31]. In other cases the mechanism

for resistance is unknown. For example, some populations

of the pest moth Cydia pomonella have recently evolved

resistance to its Granulosis virus, via a single dominant

sex-linked allele that blocks viral replication [32,33].

Similarly, resistance to White Spot Syndrome Virus in

the shrimp Penaeus monodon has been mapped to single

marker associated with a �2000-fold reduction in viral

titre [34], which occurs at a frequency of 40–60% [35].
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Such polymorphisms are consistent with negative fre-

quency dependent selection or with incomplete/ongoing

selective sweeps [e.g. 28��], but because the resistant

allele is often recently derived and increasing in fre-

quency, it seems likely that many may be in the process

of fixing. However, robustly attributing evolution to

virus-mediated selection is challenging, and selection

by other agents [e.g. Doc insertion in CHKov1; 27], and

at linked loci [e.g. drh-1 deletion; 30�] have been

proposed in some cases. Nevertheless, experimental

evolution shows that virus-mediated selection can lead

to a rapid evolutionary response in Drosophila and can

select for segregating variants such as pastrel [29��] and

ref (2)P [36].

Invertebrate-driven virus evolution
It seems certain that viral evolution occurs in response to

invertebrates, if only because hosts always dominate the

viral environment. For example, viral adaptation may

underlie host-specificity seen in some insect viruses

[e.g. 21,37,38], and adaptation to the invertebrate host

has been attributed to specific amino-acid changes in

several invertebrate-vectored viruses, including Chikun-

gunya Virus, Venezuelan equine encephalitis virus, and

West Nile Virus [39–41]. Such adaptation to the host may

also be reflected by the tendency for Sigma Viruses to

replicate more effectively in closer relatives of their

natural hosts [42].

Given this, it is interesting to ask whether virus evolution

occurs in response to specific host immune mechanisms.

Genotype by genotype interactions — with host poly-

morphism for resistance and viral polymorphism for over-

coming that resistance — may be indicative of negative

frequency-dependent selection or incomplete on-going

selective sweeps in the virus, driven by selection

mediated by host resistance. For example, genotype by

genotype interactions have been reported between Den-

gue Virus 1 and Aedes aegypti mosquitoes [e.g. 43,44]. The

best-studied invertebrate case may be the interaction

between ref (2)P and DMelSV [reviewed in 23,45], where

a viral lineage capable of overcoming ref (2)P resistance

arose a few hundred years ago and subsequently spread to

become the most common form [46,47]. The rapid spread

of this resistance-insensitive virus was documented as it

occurred in two European populations [48,49], and exper-

iments suggest that the ref (2)P-insensitive virus can

replace the sensitive virus in a resistant ref (2)P host

background — indicating that host resistance may indeed

drive viral evolution [36]. The rapid spread of a viral

lineage may often be indicative of a selective sweep, and

such expansions have also been seen in the Sigma virus of

D. obscura [50]. However, without additional evidence of

pre-sweep genotypes or genomic regions such potential

sweeps cannot be differentiated from expansions [e.g. an

epidemic, 51], and cannot be attributed to host-mediated

selection.
www.sciencedirect.com
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Figure 1
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It is often argued that if host resistance drives the recur-

rent appearance of novel viral protein variants, then this

may elevate the ratio of non-synonymous to synonymous

variants (dN/dS) in the virus [e.g. 52, but see 53]. This is

widely accepted for some viral genes interacting with the

vertebrate immune system [e.g. 52,54], but although

several multi-isolate invertebrate datasets are available

[46,47,50,55–64], few present whole genomes or analyse

patterns of protein evolution [c.f. 51]. However, some

vertebrate and plant viruses interact with their invert-

ebrate vectors, allowing the additional impact of invert-

ebrate-mediated selection over and above that mediated

by vertebrates or plants to be detected [65,66]. Previous

analyses of viral surface proteins — which often interact

directly with host proteins — suggests that dN/dS is lower

in vector-borne viruses [dN/dS = 0.07 vs 0.17 for

vertebrates, 0.10 vs 0.19 for plants; see 65,66], either

because of increased constraint imposed by alternating

selective environments, or because of reduced positive

selection.

It was suggested that vector-borne vertebrate viruses may

display reduced dN/dS partly because the impact of

positive selection (detected as sites with dN > dS) is

reduced; first, because fewer viruses tested ‘positive’

for adaptive evolution [1 of 17 vs 12 of 27; 65], and

second, because the difference in dN/dS between vec-

tored and non-vectored viruses was reduced when puta-

tively positively selected sites were excluded [dN/

dS = 0.13 vs 0.06; 65]. Interestingly, the only viruses in
Constraint and positive selection in the protein-coding sequences of 40

RNA viruses infecting vertebrates, invertebrates, or plants. Plots

illustrate the distribution of estimated dN-dS for all codons in the

complete coding sequence of each virus (insects yellow, plants green

and vertebrates red; median and 95th percentiles are marked; dN = dS

implies neutrality). The dN-dS summary statistic is used in place of dN/

dS because estimates are more stable and tend to be closer to Gaussian

in their distribution. Grey boxes indicate the 95% credible interval for

each category mean, estimated using a Generalised Linear Mixed Model

(GLMM). Coloured circles indicate the number of positively selected

codons (PSCs), that is, those estimated to have dN > dS at a posterior

probability of 0.8 (pale circles: max = 55 min = 1) or 0.9 (dark circles:

max = 25 min = 0). A GLMM found no significant difference between

host types in the median viral dN–dS (likely to reflect overall constraint)

or in the number of PSCs (likely to reflect the impact of positive

selection). Note that the number of PSCs did not correlate with the total

number of codons. Viruses were chosen to encompass a wide

phylogenetic distribution, and were included if �20 complete genomes

were available (�16 complete genomes for invertebrates). If >100

genomes were available, the data were down-sampled at random to 100

sequences. Selection was inferred using FUBAR [71] from the HyPhy

package [72] on a 20 � 20 grid with 10 independent MCMC chains each

providing 1000 subsamples from the posterior (each 5 � 108 steps after

5 � 108 burn-in steps). Codons were only included if the effective

sample size from the posterior was �100. Overlapping reading frames

were excluded and recombination breakpoints were inferred using

GARD [73] before FUBAR analysis. GLMMs were fitted using

MCMCglmm [74], with host as a fixed effect and viral family as a random

effect. A Gaussian distribution was assumed for median dN–dS values,

while the number of PSCs was assumed to be Poisson distributed.

Significance was assessed by examination of the credibility intervals.

Current Opinion in Virology 2014, 8:73–78



76 Virus evolution
which positive selection was often detectable were non-

vectored vertebrate viruses [detected in 12 of 27, vs 1 of

17 for vectored vertebrate viruses, and 2 of 24 and 1 of 10

for vector-borne and non vector-borne plant viruses;

65,66]. Taken together, these data may suggest that

constraint is higher in vector-borne viruses, but that

neither plants nor invertebrates are as likely as

vertebrates to drive viral dN detectably above dS.

Figure 1 presents a new analysis for 40 complete RNA

virus genomes [c.f. surface proteins in 55,56], sampled

broadly across plant and animal hosts. We were unable to

identify any systematic difference between the viruses of

plants, insects and vertebrates in either the median dN–
dS value or the number of positively selected codons.

However, while invertebrate viruses are not strikingly

different from the others, the extremely small sample size

(n = 4) precludes any firm conclusions regarding patterns

of viral protein evolution in invertebrate hosts.

Conclusions
Despite the evidence for strong positive selection acting

on some antiviral immunity genes, there are generally few

sites in the viruses of vertebrates, arthropods, or plants

which exhibit detectable positive selection using the

dN > dS test, and the number does not differ significantly

between these groups (Figure 1). There is generally little

evidence for pervasive diversifying selection in either

surface proteins [65,66] or VSRs [67]. However, even

assuming that dN > dS is a good metric of positive selec-

tion, there are at least two reasons why it may be hard to

detect an arms race using such data from RNA viruses.

First, if hosts drive global selective sweeps to fixation in

the virus, then standing dN/dS within a population will

not strongly reflect the impact of positive selection [53].

Second, even if different viral lineages respond in parallel

to selection — so that comparisons between the lineages

might be expected to display elevated dN/dS — the dis-

parity in evolutionary rates means that host fixations will

be so infrequent, compared to viral mutations, as to have

virtually no impact on viral dN/dS [e.g. 67]. Therefore it is

perhaps unsurprising that the well-known examples of

pervasive diversifying selection in viruses are not driven

by coevolution with the host population, but by virus

evolution in response to the rapidly changing ‘adaptive’

immune response of vertebrates [e.g. 54].

Given the difficulty associated with inferring invert-

ebrate-virus coevolution from historic patterns of protein

evolution, the best evidence instead comes from patterns

of functional polymorphism. Although the most compel-

ling case is arguably the ref (2)P-DMelSV system, in

which resistance and the ability to overcome it have both

arisen recently and increased in frequency, and each is

known to be selectable by the other [reviewed in 23], such

large-effect polymorphisms increasingly appear common

in invertebrate-virus interaction. This mirrors what is

seen for plant–virus interaction [68] and some other
Current Opinion in Virology 2014, 8:73–78 
invertebrate–pathogen systems [e.g. 69], where large-

effect host polymorphisms for resistance and/or virus

polymorphisms for evasion or suppression seem almost

universal [i.e. ‘gene-for-gene’ and ‘matching alleles’

models; see 70], and suggest that ongoing and/or incom-

plete sweeps may be widespread. Indeed, if viral insen-

sitivity to resistance often arises rapidly, before the

resistant allele has fixed, then reciprocal invertebrate–
virus coevolution may be much more widespread than is

evident from reciprocal sweeps to fixation.
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