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Using persistent homology 
as preprocessing of early warning 
signals for critical transition in flood
Syed Mohamad Sadiq Syed Musa*, Mohd Salmi Md Noorani, Fatimah Abdul Razak, 
Munira Ismail, Mohd Almie Alias & Saiful Izzuan Hussain 

Flood early warning systems (FLEWSs) contribute remarkably to reducing economic and life losses 
during a flood. The theory of critical slowing down (CSD) has been successfully used as a generic 
indicator of early warning signals in various fields. A new tool called persistent homology (PH) was 
recently introduced for data analysis. PH employs a qualitative approach to assess a data set and 
provide new information on the topological features of the data set. In the present paper, we propose 
the use of PH as a preprocessing step to achieve a FLEWS through CSD. We test our proposal on water 
level data of the Kelantan River, which tends to flood nearly every year. The results suggest that the 
new information obtained by PH exhibits CSD and, therefore, can be used as a signal for a FLEWS. 
Further analysis of the signal, we manage to establish an early warning signal for ten of the twelve 
flood events recorded in the river; the two other events are detected on the first day of the flood. 
Finally, we compare our results with those of a FLEWS constructed directly from water level data and 
find that FLEWS via PH creates fewer false alarms than the conventional technique.

Flooding is one of the most destructive natural disasters. Flooding occurs worldwide and often results in a high 
number of deaths and massive losses of property. Historical records show that the impact of flooding on human 
livelihood is unavoidable. However, while flood events are unavoidable, flood early warning systems (FLEWSs) 
may help predict when the next flood may occur. Hydrologists have long studied FLEWSs or attempted to forecast 
floods by constructing models of hydrological processes. An excellent review on worldwide FLEWS issues and 
techniques can be found in Ref.1 and Malaysia FLEWS in Ref.2.

Because flooding is generally defined as an overflowing of water onto land that is normally dry, an under-
standing of observational and historical water levels is important because such data provide climatic indicators 
for flooding. Much work has been done to construct an optimal method for water level forecasting that can 
alert authorities to the potential occurrence of a flood3–10; these efforts include statistical modeling, machine 
learning, fuzzy analysis, and extreme machine learning. These methods involve prediction of water level data 
to obtain warning signals.

Several fields of scientific research have suggested the existence of generic early warning signals as an indi-
cator of systems approaching their critical tipping point11. These generic indicators are related to theory of 
critical slowing down (CSD)12. Theory of CSD states that the time series of indicator shows an increasing trend 
as a tipping point is approached13,14. Two possible CSD indicators of early warning signals include increases in 
variance15 and spectral density16. The significant aspect of CSD is that it captured hazard symptoms based on 
historical data. Therefore, early warning signal can be achieved without the need for prediction. This theory has 
been successfully used to capture the essence of shifts at tipping points in a wide range of systems ranging from 
ecosystems, to financial systems and the climate, detailed application can be found in refs.17–24. In our previous 
study, we showed that CSD theory is able to provide early warning signals of flood on the basis of the water 
level data of Kelantan River25. The need to develop a better FLEWS remains an urgent concern on account of 
the increasing intensity of floods.

Topological data analysis (TDA)26,27 provides a new approach to seek information from a data set based on 
a qualitative approach. TDA uses ideas and results from geometry and topology to study qualitative features 
or structures of data. Persistent homology (PH) is a new tool in TDA that can provide a precise description of 
qualitative features throughout their time evolution. PH is based on algebraic topology, which provides a well-
understood theoretical framework with which to study the qualitative or topological features of data with complex 
structures. The key advantage of PH is that it is robust with respect to small perturbations in input data. Also, 
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it is appealing for application for complex data set due to noise, high dimensionality or incomplete structure. 
These properties will be practical to deal with real-world data. A number of PH techniques have been applied to 
diverse problems, including spatial data clustering28, complex dynamical systems29, financial systems23, chemical 
and biological systems30,31. In particular, the exploration and application of TDA to the time delay embedding 
of a time series to model and classify dynamical systems and time-varying events has received great interest28,32.

Motivated by this new analytical tool and the existing need to develop better FLEWSs, in this paper, we 
propose the use of PH as a preprocessing step to obtain a FLEWS via CSD. We test our idea on the time series 
data of daily water levels collected at the Guillemard Bridge station, Kelantan River, Malaysia, from 01/01/2000 
to 13/10/2010. We use PH to extract the topological features of the water level data and develop a new signal 
with flood information. Then, CSD indicators will be calculated on the PH signal to obtain flood early warning 
signals. The result suggests that the PH signal exhibit CSD by demonstrating increasing pattern near flood events 
in the CSD indicators. We then use quantile estimation to verify the increase pattern and obtain dates for flood 
signals. Quantile estimation is a method in extreme value theory that has been used by hydrologists to study rare 
events and extreme values33,34. Finally, we compare the results of FLEWS via PH with those of a FLEWS arising 
directly from the water level data.

In “Methods”, we provide a concise and informal review of the proposed early warning system (EWS) using 
CSD and the PH methodology for time series processing. In “Data” we introduce our water level data. “Results 
and discussions” presents our analysis and results, and “Conclusion” concludes the paper. All computations in 
this paper are conducted in the R-package TDA35.

Methods
This section provides an introduction of EWS using CSD and basic concepts of PH processing for time series. 
Specifically, for PH processing pipeline we describe the reconstruction of the phase space and construct simplicial 
complexes and topological summaries of PH. Discussions on EWS using CSD and PH are provided by Scheffer 
et al.11 and Edelsbrunner and Harer36, respectively. Summary of the methodology implemented in this research 
is visualize as a flow chart in Appendix.

Early warning system using critical slowing down.  EWS is a tool consisting of a series of mechanisms 
and procedures used to detect hazards and monitor indicators, warning communications, and alarms. Previous 
researchers provided efficient EWSs for various disasters. However, developing an EWS based on real data is 
challenging and may lead to both false positive and false negative results. False negatives are situations in which 
a sudden shift occurs, but no early warning signal could be detected before the shift. False positives refer to situa-
tions in which a supposed early warning signal is not the result of an approaching critical point; this result is also 
called a false alarm. Therefore, improving the knowledge and applications of EWSs to obtain high-performance 
systems is necessary.

Scientific work in various fields has suggested that CSD is a valid indicator for EWS. Such slowing down, 
which is measured as increases in variance15 and spectral density16, may be shown to be a typical characteristic 
of a system approaching its tipping point. In the earth system, abrupt shifts in ocean circulation or climate may 
occur. Explanations for these abrupt climate changes usually invoke the existence of thresholds in external con-
ditions where the climate system reaches its critical tipping point. A recent analysis revealed that the significant 
increase in each of eight ancient abrupt climate changes was preceded by a characteristic CSD of the fluctuation 
beginning well before the actual shift13.

Our previous study using water level data of Kelantan River suggested that CSD could produce an early warn-
ing signal for flood detection25 because ten of twelve flood events were preceded by an early warning signal while 
the two other events were detected on the first day of the flood. Note that, throughout this study, the term of an 
early warning signal is meant by any signal that is determined before the day of the flood event. By this definition, 
signals detected on the day of the event are not considered as an early warning signal but labeled as detection on 
the first day. However, the FLEWS produced also created six false alarms (signals that are detected during period 
with no recorded flood event). Therefore, in this paper, we add a preprocessing step to our pipeline method using 
PH to obtain a better FLEWS. We believe that the new information extracted from water level data by PH can be 
used as a basis for FLEWS. The next section will discuss basic concepts of PH for time series analysis.

Reconstruction of the phase space.  PH is a method that extracts the topological features of a data 
set that are not readily available in a time series in its standard form. Therefore, we use Takens’ embedding 
theorem37 to prepare the data set. Takens’ embedding theorem states that a time series can be used to reconstruct 
the phase space of the associated dynamical system and yield point cloud data. Given a time series x1, x2, . . . , xN , 
the constructed phase space consists of vectors

where m is the embedding dimension and τ is the time delay. In this research, we set τ = 1 and m = 2 because 
our experience indicates that these values give good analytical results. Other studies using these values have also 
obtained good results25,29. Thus, we obtain two-dimensional point cloud data from the reconstruction of the 
phase space. We can then use PH to extract two forms of topological features, namely, connected components 
(zero-dimensional topological features) and holes (one-dimensional topological features).

Simplicial complexes.  The goal of PH is to analyze the topological features of a data set. Using the point 
cloud data obtained through the reconstruction of the phase space, we construct simplicial complexes. The 

(1)xn(m, τ) =
(

xn, xn+τ , . . . , xn+(m−1)τ

)

,
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building blocks for a simplicial complex are called k-simplexes, such as 0-simplex (vertex), 1-simplex (edge), and 
2-simplex (triangle), as illustrated in Fig. 1.

The idea of a filtered simplicial complex is used to analyze the evolution of topological features, particularly 
in terms of their appearance and disappearance. For example, consider the set of points in R2 shown in Fig. 2 
and let ε be a positive real number that is interpreted as a filtration parameter. By considering a ε ball at each data 
point, we build an edge (1-simplex) between two points a and b if and only if the distance between them is less 
than ε . Similarly, we build a triangle (2-simplex) if and only if the pairwise distances between three points are 
each less than ε . These operations will produce the filtered simplicial complexes illustrated in Fig. 2. This type of 
simplicial complex is known as a filtered Vietoris–Rips simplicial complex or Rips complex36.

Rips complexes provides information of basic topological features, such as the number of components and 
holes. Algebraic topology captures these topological features by counting the rank of each homology group of 
the simplicial complex. For example, algebraic topology can compute the k-dimensional homology Hk(X) for 
each natural number k ∈ {0, 1, 2, . . .} of each simplicial Complex X . The rank of the zero-dimensional homology 
group H0(X) counts the number of connected components, the rank of the one-dimensional homology group 
H1(X) counts the number of holes and so on. These ranks of homology groups are also known as Betti numbers, 
i.e., the p th Betti number counts the number of p-dimensional holes. Because the simplicial complexes evolve 
when the value of the filtration parameter increases, PH detects which topological features persist across the scale.

Figure 2 shows an example of a filtered simplicial complex for point cloud data consisting of four points in a 
rectangle. At filtration parameter ε0 , four components exist, i.e., H0(X) = 4 . These components persist through 
filtration values ε1 and ε2 . At filtration value ε3 , edges or 1-simplexes are formed; these simplexes join all of 
the points together into a single connected component and, hence, change the Betti number of the connected 
component to H0(X) = 1 . The connected component does not disappear as the filtration parameter is further 
increased. At filtration value ε3 , a one-dimensional hole in the data is born as the edges form a rectangle that gives 
H1(X) = 1 . The one-dimensional hole dies out at filtration parameter ε4 when 2-simplexes or triangles appear.

Topological summaries.  Besides the construction of filtered simplicial complexes, PH provides us with 
information on the evolution of topological features existing in a data set. Several tools to summarize all of the 
information captured by PH are available. These topological summaries provide a concise description of the 
evolution of topological features across the scale. The precise information stored by these topological summaries 
includes the birth, growth, and death of all topological features.

The first topological summary is known as a persistence diagram. Persistence diagrams are a finite multi-
set of all birth–death pairs of topological features points in the extended R2 plane, where R = R ∪ {∞} . The 
birth–death pair of a topological feature is written as point 

(

εi , εj
)

 , where εi refers to the birth point, εj refers death 
point of the topological feature, and j > i . If the topological feature lives forever, we represent its birth–death 
point by the interval (εi , ε∞) . A diagonal line in which all points on the line are born and die at the same time 
(i.e., each of the points on the diagonal has infinite multiplicity) exists in the persistence diagram. This diagonal 
line can help reveal which topological features are persistent. Points that lie close to the diagonal line indicate that 
the topological feature is not persistent, while points that lie far from the diagonal line correspond to persistent 
topological features.

Unfortunately, persistence diagrams are difficult to work with from the point of view of statistics and machine 
learning38. Therefore, we use another topological summary known as a persistence landscape39. Persistence 

Figure 1.   Construction of a simplicial complex using simplices.

Figure 2.   Filtered simplicial complex.
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landscapes are obtained by embedding the space of the persistence diagram into a function space. The advantage 
of a persistence landscape over a persistence diagram is that the former is a function, which means we can use 
the vector space structure of its underlying function space. Persistence landscapes also store all information 
obtained from persistence diagrams.

We now review the definition of persistence landscapes and the norm of a persistence landscape38. First, for 
a birth–death pair (b, d) , the piecewise linear function f(b,d) : R → [0,∞] is defined as follows:

The persistence landscape of the birth–death pairs {(bi , di)}ni=1 is the sequence of functions 
�k : R → [0,∞], k = 1, 2, 3, . . . where �k is the k-th largest value of 

{

f(bi ,di)(x)
}n

i=1
 . We set �k(x) = 0 if the 

k-th largest value does not exist; thus, �k = 0 for k > n . Similarly, the persistence landscape is a function 
� : Nx R → [0,∞] , where �(k, t) = �k(t) . In this definition, the assumption that b and d are finite is considered. 
For cases where b and/or d are infinite, see Bubenik and Dłotko38.

Given a set of persistence landscapes, �(1), . . . , �(N) , the average persistence landscape, � , is defined pointwise, 
� = 1

N

∑N
i=1 �

(i)
k (t) . The distance between persistence landscapes and between average persistence landscapes 

can be given by using the L∞ norm,

or the Lp norm; for 1 ≤ p < ∞,

In Bubenik39, the persistence landscape is stable with respect to the Lp distance when 1 ≤ p < ∞ . That is, 
under the hypothesis, sufficiently small perturbations of a function under the supremum norm led to small 
changes in the persistence landscape of the PH of the sublevel sets of that function under the Lp norm. In the 
upcoming computation, we will only consider the L1 norm.

Figure 3 shows the topological summaries for the point cloud data in Fig. 2. The left-most column shows a 
persistence diagram. The black dots on the persistence diagram correspond to connected components (zero-
dimensional topological features), and the red triangle corresponds to a hole (one-dimensional topological 
feature). The middle and right-most topological summaries reveal the persistence landscapes obtained from the 
persistence diagram. The middle persistence landscape represents connected components, and the right-most 
persistence landscape represents a hole.

Data
The climate in Malaysia is governed by two main regimes, namely, the southwest and northeast monsoons40. 
The southwest monsoon takes place between May to August and is responsible for the dry period of the whole 
country. The northeast monsoon usually begins in November, ends in February, and is responsible for the wet 
period in the eastern coast of Peninsular Malaysia. This wet period is often manifested as heavy rains, which 
frequently cause monsoon flooding.

Kelantan, a state located at the eastern coast of Peninsular Malaysia, is often affected by monsoon flooding. 
Kelantan River is one of the main rivers of the state; it is situated in the northeastern portion of Peninsular Malay-
sia between the latitudes 4◦40′ and 6◦12′ N and longitudes 101◦20′ and 102◦20′ E. At 248 km long, it is the longest 
river in Kelantan and drains an area of 13,100 km2 . The total area of Kelantan is 15,022 km2 , and approximately 
68.5% of the population in the area lives in the Kelantan River Basin. The basin has an annual precipitation about 
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Figure 3.   Topological summaries of the point-cloud data in Fig. 2—persistence diagram (left) and persistence 
landscape for connected components (middle) and holes (right).
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0 mm in the dry season from March to May and 1750 mm in the rainy or monsoon season from November to 
January. The estimated runoff of the Kelantan River measured at the Guillemard Bridge is 557.5 m3 s−1.

The Kelantan River originates from the Ulu Sepat mountain, moving northwards passing through such major 
towns as Kuala Krai, Tanah Merah, Pasir Mas and Kota Bharu, before finally discharging into the South China 
Sea. It divides into the Galas River and Lebir River near Kuala Krai, about 100 km from the river mouth. The 
Galas River has two main tributaries (the Nenggiri River and the Pergau River), while the Lebir River has one 
major tributary (the Relai River). About 95% of the catchment is steep mountainous country rising to a height 
of 2135 m which dominated by sedentary soils. While on riverine floodplains and low riverine terraces, alluvial 
soil appears. For the land use, the mountainous areas are covered with virgin jungle while agriculture (rubber, 
paddy and palm oil) are planted in the lowlands. A recent study on Kelantan River basin regarding land use and 
climate change41 (i.e., precipitation) reported that both of the variables are factor for floods, however precipita-
tion changes are the main driver.

Based on the report by the Department of Irrigation and Drainage (DID), Malaysia, on the flood at Kelantan42, 
starting with the year 2000, the first severe flood that hit Kelantan was reported in December 2001 due to unu-
sual tropical cyclone Vamei. Afterwards, in the year 2007 and 2009, heavy rainfall again had triggered major 
floods in Kelantan. To date, the worst flood reported in Kelantan was at the end of 2014, commonly known as 
the Kelantan Big Yellow Flood 201443. DID has assigned sixteen meters as the danger water level of Kelantan 
River at Guillemard Bridge station; water levels reaching this height are a good indicator of potential flooding.

In this research, our analysis focuses on water levels in Kelantan River. The daily water level data of Kelantan 
River recorded at the Guillemard Bridge station (measured in meters, m ) were obtained from the DID. Figure 4 
shows a time series plot of the daily water level data of Kelantan River obtained from 01/01/2000 to 13/10/2010. 
Some important statistical parameters of the time series are shown in Table 1. Table 2 lists the dates in which the 
water level data exceeded the danger level (16 m); these dates will be used as benchmark dates for flood events.

Results and discussions
Our results and discussion are divided into three parts. The first part describes the results obtained by applying 
PH to the water level data of Kelantan River. This part of the results investigates the evolution of topological 
features and quantifies the changes observed mathematically. In the second part of the results, we use the signal 
obtained from PH to search for a flood early warning signal using the CSD theory. Here, we found that PH signal 
exhibits CSD by demonstrating an increasing pattern near all flood events in the CSD indicators. Therefore, the 
new signal can be use as a basis for FLEWS. Then, in the last part of this section, we use quantile estimation to 

Figure 4.   Time series plot of the daily water level data of Kelantan River obtained at Guillemard Bridge station 
from 01/01/2000 to 13/10/2010.

Table 1.   Statistics of the time series of the daily water level data of Kelantan River obtained at Guillemard 
Bridge station from 01/01/2000 to 13/10/2010.

Statistics Daily

Number of data 3939

Average 9.52

Max 20.44

Min 8

Standard deviation 1.26

Skew 3.29

Kurtosis 15.64
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study potential CSD indicators and develop a FLEWS. A comparison of the results obtained through EWS with 
PH preprocessing and EWS arising directly from the water level data is also conducted.

Persistent homology of water level data.  This section describes the results of our reconstruction of the 
phase space, persistence diagrams, and persistence landscapes obtained by applying PH to the daily water level 
data of Kelantan River. Using the time series of water level data, we perform Takens’ time-delay embedding with 
τ = 1 and m = 2 . We then obtain two-dimensional point cloud data from the reconstruction of the phase space. 
Because our objective is to analyze the data based on the daily evolution of topological features, we introduce 
the concept of sliding windows. The size of the sliding windows used in this work has a length of ten days with 
τ = 1 . Hence, the input data for PH take the form of windows of the two-dimensional point cloud data with a 
length of ten. Each window is denoted by the end date of the data included in the window; thus, the output for 
each window is obtained from the data of previous dates only. PH is performed on this time-ordered sequence 
of sliding windows to study the daily evolution of topological features.

We visualize the results from PH by showing the evolution of topological features for the windows of one 
day before a flood, the first day of the flood, and the tenth day of the flood. Here we illustrate our results for the 
flood event of December 2004 because the highest water level reading in our data set (20.44 m) was obtained 
during this flood event (12/12/2004; Fig. 4). The evolution of the reconstructed phase space, persistence dia-
grams, and persistence landscapes of the flood event in December 2004 is shown in Fig. 5. The top row of Fig. 5 
shows the reconstructed phase space of three different windows with end dates 10/12/2004 (one day before 
flood), 11/12/2004 (first day of the flood), and 20/12/2004 (tenth day of the flood). In the window with end 
date 10/12/2004, the points in the reconstructed phase space are densely packed together, which indicates that 
the water level in this window are in the same range. The reconstructed phase space for the window with end 
date 11/12/2004 is very similar to that of the window with end date 10/12/2004, except for the existence of one 
point located slightly far from the densely packed points. This point indicates the beginning of the development 
of extreme values of the water level data. The window with end date 20/12/2004 shows scattered points, which 
indicates the presence of high values of water level data with a wide range.

The corresponding persistence diagrams for each reconstructed phase space of the windows is shown in the 
middle row of Fig. 5. The persistence diagram for the window with end date 10/12/2004 shows only black dots 
located near the origin and diagonal line, which indicates the presence of short-lived (non-persistent) connected 
components. The persistence diagram for the window with end date 11/12/2004 also consists of only black dots, 
but one dot has a y-coordinate that is higher than those of the other dots; this finding indicates the existence of 
one long-lived (persistent) connected component. For the window with end date 20/12/2004, more black dots 
located far from the origin and diagonal line are observed; these dots indicate the presence of a larger number 
of long-lived connected components in this window. In the window with end date 20/12/2004, a red triangle is 
located on the diagonal line; this triangle reflects the existence of a short-lived hole in the point cloud data of the 
window. Note that for all three windows, a black dot is observed at the highest value of the x-coordinate (i.e., the 
maximum filtration value). This black dot reveals that, once the graph is fully connected into a single connected 
component, it remains fully connected (i.e., the component never dies) as the filtration value is further increased.

We only visualize the zero-dimensional persistence landscape because we find that the existence of one-
dimensional topological features (i.e., holes) does not remarkably affect the results as most of the windows do 
not contain this feature. The bottom row of Fig. 5 illustrates the zero-dimensional persistence landscapes for the 
corresponding reconstructed phase space and persistence diagrams. The zero-dimensional persistence landscape 
for the window with end date 10/12/2004 consists of only a small sequence of functions (bottom left). The zero-
dimensional persistence landscape for the window with end date 11/12/2004 has one landscape function with 
an intermediate value (bottom middle). The persistence landscape for the window with end date 20/12/2004 
has a zero-dimensional persistence landscape that is more complex than those for the two other windows and 
shows greater landscape functions. This evolution of the zero-dimensional persistence landscapes can be further 
quantified by calculating the norm of the persistence landscapes.

Table 2.   Dates in which the water level data exceeded the danger water level (16 m) of Kelantan River—the 
data are obtained from the Guillemard Bridge station from 01/01/2000 to 13/10/2010.

No Date of flood events No Date of flood events

1 23/11/2000 7 12/02/2006–13/02/2006

2 24/12/2001–25/12/2001 8 08/01/2007

3 10/12/2003–11/12/2003 9 08/12/2007–18/12/2007

4 11/12/2004–14/12/2004 10 30/11/2008

5 24/11/2005 11 04/01/2009–05/01/2009

6 18/12/2005 12 06/11/2009–07/11/2009
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Figure 6 shows the time series of the L1 norm of the zero-dimensional persistence landscapes of the time-
ordered sequence of sliding windows of the water level data of Kelantan River obtained at Guillemard Bridge 
station from 11/01/2000 to 13/10/2010. The time series of the L1 norm illustrates the daily evolution of topologi-
cal features. The time series of the L1 norm of the zero-dimensional persistence landscapes is clearly consistent 
with the original time series of the water level data (Fig. 4). Peaks in the time series of the L1 norm may also be 
observed near the recorded flood events, which suggest that this time series contains information regarding the 
flood events of Kelantan River. Therefore, we use the time series of the L1 norm of the zero-dimensional persis-
tence landscapes as a signal to search for an early warning signal of flood events at Kelantan River.

Persistent homology signal exhibiting critical slowing down.  Now that the time series of the L1 
norm of the zero-dimensional persistence landscapes has been established, we apply the generic early warning 
signal indicators of CSD to test for an early warning signal. To this end, we quantify temporal variations in the 

Figure 5.   (a) Reconstructed phase space, (b) persistence diagrams, and (c) zero-dimensional persistence 
landscapes for windows with selected end dates during the flood events of 2004.
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persistence of connected components in the time-ordered set of the zero-dimensional persistence landscapes. 
We employ sliding windows with a length of ten days and a sliding step of one day to calculate the variance and 
average spectral density at low frequencies of the L1 norm time series. These windows should not be confused 
with the sliding windows of length ten days used earlier to reconstruct the phase space throughout the computa-
tion of the time series of the L1 norm of the persistence landscapes.

Figure 7 shows the obtained time series of the CSD indicators variance and average spectral density at low 
frequencies for EWS from the time series of the L1 norm of the persistence landscapes. The time series of variance 
and average spectral density at low frequencies substantially increase around the flood events listed in Table 2. 
This finding verifies that the signal obtained from PH, i.e., the time series of the L1 norm of the persistence land-
scapes, exhibits CSD. Figure 8 shows magnified plots of the CSD indicators (primary axis) for all twelve flood 

Figure 6.   Time series of the L1 norm of the zero-dimensional persistence landscapes of the time-ordered 
sequence of sliding windows.

Figure 7.   Time series of CSD indicators for early warning signals based on the PH framework—(a) variance 
and (b) average spectral density at low frequencies of the time series of the L1 norm of the zero-dimensional 
persistence landscapes.
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events at Kelantan River listed in Table 2 and their respective water level data (secondary axis). Both indicators 
show an increasing or fluctuation pattern near all of the flood events. Moreover, the increasing patterns of both 
indicators occur simultaneously or nearly simultaneously. These increasing patterns in the time series of the CSD 
indicators may be further examined to obtain signal for FLEWS.

Flood early warning systems.  To produce an EWS, we use quantile estimation. As the time series of the 
L1 norm of the zero-dimensional persistence landscapes exhibits CSD, i.e., an increasing pattern near all flood 
events, we use quantile estimation to determine dates with a significantly increasing pattern of the identified 
CSD indicators. These dates will specify whether the signal obtained from the CSD indicators is an early warn-
ing signal, a late signal (flood detection only), or a false alarm. This procedure will create a FLEWS for Kelantan 
River.

Figure 8.   Trends of the time series of the CSD indicators (primary axis) variance and average spectral density 
at low frequencies and their respective water level time series (secondary axis) for all twelve flood events at 
Kelantan River from 01/01/2000 to 13/10/2010.
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The extraction of dates using quantile estimation will provide us with thresholds for the CSD indicators. 
When we peak over these thresholds, we will obtain dates with extreme values that are responsible for the 
increasing pattern of the indicators. Because our time series water level data may be considered short and only 
twelve flood events are included in the data set, we can list all possible values of quantiles and find the optimum 
quantile required to obtain the FLEWS. Table 3 lists the results of FLEWS from the time series of the L1 norm of 
the persistence landscapes for all possible quantile values with their respective weights.

We explored many numbers for these quantiles, but it seems that at the range 10% to 20% is where the opti-
mum quantile may be found. Specifically, Table 3 shows that at 10% quantile, the number of the early signal 
obtained is five for the twelve actual flood events and it shows a non-effective FLEWS. So, there is no need to 
lower the number of the quantile value as it will only come out with a less effective FLEWS. At the quantile 20%, 
the number of false alarms is seventeen, which is more than total number of the actual flood events (twelve flood 
events). This number of false alarms also shows a non-efficient FLEWS. If we continue to increase the quantile 
value, it will only create a FLEWS with more false alarms. So, we can conclude that the optimum quantile is in 
the range 10% to 20% of the quantile values.

The optimum quantiles for the FLEWS from the time series of the L1 norm of the zero-dimensional persistence 
landscapes is at 12% and 13%. This is because, at these quantiles, the outcome for early and late signal start to 
be stationary while the number of false alarms continue to raise. Further quantification by assigning weights 
for each outcome of the EWS results (i.e., 0.5 for early signal, 0.3 for late signal, and − 0.2 for false alarm) and 

Table 3.   List of possible quantile values for the FLEWS from the time series of the L1 norm of the zero-
dimensional persistence landscapes with their respective results and weights.

Events/quantile 10% 11% 12% 13% 14% 15% 16% 17% 18% 19% 20%

Early signal 5 8 10 10 10 10 11 12 12 12 12

Late signal 7 4 2 2 2 2 1 0 0 0 0

False alarm 3 3 4 4 6 10 10 12 14 16 17

Weight 4.0 4.6 4.8 4.8 4.4 3.6 3.8 3.6 3.2 2.8 2.6

Table 4.   Results of FLEWS from the time series of the L1 norm of the zero-dimensional persistence landscapes 
(with PH preprocessing) and FLEWS arising directly from the water level data with optimum thresholds of 
12% and 15%, respectively.

Actual flood events FLEWS via PH (12%) FLEWS via water level (15%)

23/11/2000 22/11/2000 (early 1 day) 22/11/2000 (early 1 day)

None 19/01/2001 (false alarm) 19/01/2001 (false alarm)

None No signal 16/11/2001 (false alarm)

24–25/12/2001 16/12/2001 (early 8 days) 16/12/2001 (early 8 days)

None No signal 17/12/2002 (false alarm)

10–11/12/2003 02/12/2003 (early 8 days) 30/11/2003 (early 10 days)

None 29/01/2004 (false alarm) 30/01/2004 (false alarm)

None 29/10/2004 (false alarm) No signal

11–14/12/2004 10/12/2004 (early 1 day) 10/12/2004 (early 1 day)

24/11/2005 23/11/2005 (early 1 day) 23/11/2005 (early 1 day)

18/12/2005 15/12/2005 (early 3 days) 15/12/2005 (early 3 days)

12–13/02/2006 11/02/2006 (early 1 day) 12/02/2006 (first day)

08/01/2007 22/12/2006 (early 17 days) 21/12/2006 (early 18 days)

None No signal 04/11/2007 (false alarm)

08–18/12/2007 07/12/2007 (early 1 day) 07/12/2007 (early 1 day)

None 29/02/2008 (false alarm) 29/02/2008 (false alarm)

30/11/2008 30/11/2008 (first day) 29/11/2008 (early 1 day)

04–05/01/2009 28/12/2008 (early 7 days) 02/01/2009 (early 2 day)
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calculation of the total weights of each quantile, the results justify our observation. The largest weight, which is 
4.8, occurs at quantiles 12% and 13%. We thus choose the 12% quantile as the threshold because it is the quantile 
with the lowest value that produces the same results. Regarding the weight applied, the biggest weight of 0.5 is 
assigned to the outcome of early warning signals as it shows the effectiveness of the FLEWS. For a late signal 
(or detection), we assigned the weight 0.3 as this outcome is expected for some flood events. Lastly, we take the 
weight − 0.2 for false alarms, as these false alarms have a negative impact in terms of the efficiency of the EWS.

Table 4 shows the results of FLEWS from the L1 norm of the zero-dimensional persistence landscapes at the 
optimum quantile of 12%; the results of FLEWS arising directly from the water level data at the optimum quan-
tile 15% reported in Syed Musa et al.25, are also provided for comparison. The FLEWS from the L1 norm of the 
zero-dimensional persistence landscapes at the optimum quantile with threshold values of 4.8991 for the time 
series of variance and 2.8203 for the time series of the average spectral density at low frequencies succeeds in 
producing ten early warning signals of the twelve actual flood events. The signals for the two other flood events 
are detected on the first day of the flood without an early signal.

The same results are obtained through the FLEWS arising directly from the time series of water level in Syed 
Musa et al.38. The optimum quantile for the FLEWS from the time series water level data is 15% with threshold 
values of 0.4742 and 0.7909 for the time series of variance and average spectral density at low frequencies, 
respectively. The advantage of applying PH and obtaining the time series of the L1 norm of the zero-dimensional 
persistence landscapes in this research is that the FLEWS with PH preprocessing creates fewer false alarms; for 
example, the proposed system results in four false alarms, with rates of 25% compared with the six false alarms, 
with rates 33.33% created by the FLEWS arising directly from the water level data.

In details, in terms of early warning signals established, difference between FLEWS via PH and FLEWS via 
water level is just a couple of days’ ranges. For example, for flood event December 2003 FLEWS via water level 
provide an early warning two days before the FLEWS via PH, flood event January 2001 also FLEWS via water 
level provide an early warning one day ahead while for flood events January 2009, FLEWS via PH provide an 
early warning five days ahead of the FLEWS via water level. Another crucial results here when comparing both 
FLEWSs, we can see that there is a flood event in each FLEWS that gained better outcome compare to the other 
which is from detection on the first day of flood to early warning of one day ahead, which is flood event February 
2006 for FLEWS via PH and flood event November 2008 for FLEWS via water level.

In terms of false alarms, there are three false alarms that both FLEWSs detected at the same time, false alarms 
January 2001, January 2004, and February 2008. This consistency on detection of those false alarms by both 
FLEWSs could bring more insights if further study. The extra false alarm that is detected solely by FLEWS via 
PH is in October 2004 where there is no flood event recorded during that period. While FLEWS via water level 
created two more extra false alarms in November 2001 and December 2002. Notice, results from these both 
FLEWSs could offer an enhanced FLEWS if they can be merge or applied together.

Conclusion
This study investigates the application of PH and CSD theory to produce a reliable FLEWS. The proposed 
approach was tested on daily water level data of Kelantan River. PH was used to extract the signal of topological 
features from the water level date, and then CSD theory was applied to determine indicators for early warning 
signals. Quantile estimation was subsequently carried out to extract dates for flood signal. The following conclu-
sions may be drawn from the results of this study:

1.	 PH could be successfully applied to the hydrological field as a preprocessing step to analyze water level data 
and provide early warnings of flood disasters at Kelantan River.

2.	 The signal of topological features obtained through PH exhibits CSD by demonstrating an increasing pattern 
of the time series indicators of CSD (i.e., variance and average power spectral density at low frequencies).

3.	 Quantile estimation is carried out on the basis of the increasing pattern of CSD indicators to establish early 
warning signals for ten out of twelve actual flood events at Kelantan River; the two other signals are detected 
on the first day of the actual flood event.

4.	 Using PH as a preprocessing step for FLEWS provides an advantage over FLEWS arising directly from the 
water level data by producing fewer false alarms.

In summary, this study provides a new framework that integrates PH and CSD to achieve a reliable FLEWS. 
This framework may lead to more extensive studies on FLEWSs, wider applications of PH, and better estimations 
of flood risk. The first drawback of this study, which can be strengthened for future studies is to consider other 
climatic parameter to the FLEWS to achieve more comprehensive model. Besides, if predicted water level with 
flood event data can be attained, it can be used as a validation set for the model. This will authenticate the full 
performance of the proposed methods.
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