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Abstract: Burmannic acid (BURA) is a new apocarotenoid bioactive compound derived from Indone-
sian cinnamon; however, its anticancer effect has rarely been investigated in oral cancer cells. In this
investigation, the consequences of the antiproliferation of oral cancer cells effected by BURA were
evaluated. BURA selectively suppressed cell proliferation of oral cancer cells (Ca9-22 and CAL 27)
but showed little cytotoxicity to normal oral cells (HGF-1). In terms of mechanism, BURA perturbed
cell cycle distribution, upregulated mitochondrial superoxide, induced mitochondrial depolarization,
triggered γH2AX and 8-hydroxy-2-deoxyguanosine DNA damage, and induced apoptosis and cas-
pase 3/8/9 activation in oral cancer cells. Application of N-acetylcysteine confirmed oxidative stress
as the critical factor in promoting antiproliferation, apoptosis, and DNA damage in oral cancer cells.
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1. Introduction

There were 377,713 new cases and 177,757 deaths worldwide caused by oral cancer
in 2020 [1]. For oral cancer, males have twice the incidence than females. Oral cancers
cause exceptionally high morbidity in South Central Asia and Melanesia, contributing to
the habit of betel nut chewing [1]. Oral squamous cell carcinomas comprise the majority
of oral cancers (>90%) [2]. Oral cancer may grow on the tongue, cheeks, palate, lips, or
gums. Several tumor markers have been reported [3], but they may display differential
expression in different oral cancer locations [4]. Including more oral cancer cell types for
drug discovery in oral cancer studies may provide wider potential applications to cure
oral cancer. Chemo and radiotherapy for oral cancer is frequently accompanied by side
effects [5]. Hence, it is important to discover more anticancer agents to solve this problem.

Several natural dietary products have anticancer effects [6,7]. Spices are also reported
as potential anticancer sources [8–12]. For example, extracts of Indian spices can suppress
the proliferation of esophageal cancer cells [9]. The “king of spices”, pepper or Piper nigrum,
also shows anticancer effects [11]. The therapeutic effects of spices can be attributed to
their bioactive compounds, including alkaloids, terpenes, flavonoids, phenylpropanoids,
and anthocyanins [10].
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Moreover, dietary phytochemicals have been shown to generate oxidative stress and
to induce the killing of cancer cells [13]. Several spices also induce apoptosis of cancer cells
as an anticancer effect. Therefore, the anticancer effect of different spices warrants detailed
investigation, especially by study of the role of oxidative stress and apoptosis.

Many dietary isoprenoids, including β-ionone, exhibit chemo-preventive
functions [14,15]. β-ionone demonstrated selective killing, anti-metastatic, and apoptosis-
inducing abilities towards tumor cells in vitro and in vivo [16,17]. The endocyclic double
bond in β-ionone undergoes epoxidation to 5,6-epoxy-β-ionone [18], which was more ef-
fective in inhibiting phorbol ester action in lymphocytes than β-ionone. Therefore, detailed
investigation to identify the function of β-ionone derivatives is warranted.

Cinnamomum burmannii, also called Indonesian cinnamon, is widely distributed in
Southeast Asia and Indonesia. C. burmannii is a commonly used spice in Indonesia [19],
and its bark is the source of the spice cinnamon. Some homosesquiterpenoids [20] and
amides have been isolated from C. burmannii stems. Using C. burmannii roots, we identified
a new apocarotenoid and a novel β-ionone derivative, burmannic acid (BURA) [21], with
a carboxylic acid group binding to C-5 of 3-hydroxy-5,6-epoxy-β-ionone. However, its
molecular functioning has not yet been reported, according to a PubMed search carried out
by the authors.

The present investigation evaluated the antiproliferation effects of C. burmannii-
derived BURA on oral cancer cells for the first time. Oral cancer cell lines derived from
gingival, tongue, and buccal mucosa tissues (Ca9-22, CAL 27, and OC-2) were selected for
testing the cellular response to BURA. We further addressed the detailed mechanism for
anti-oral-cancer cell effects of BURA, focusing on oxidative stress, apoptosis, and DNA
damage.

2. Materials and Methods
2.1. BURA Preparation

BURA (MW 296) was purified from the roots of C. burmannii as previously de-
scribed [21]. Broadly, the roots of C. burmannii (203.4 g) were air-dried for MeOH
(1 L × 3) extraction. After reduced pressure, the concentrated MeOH extract (11.2 g)
was processed in a silica gel column for CH2Cl2 elution, to which MeOH was gradually
added to generate three fractions. Part of fraction 3 (2.51 g) was processed by chromatogra-
phy by n-hexane/EtOAc (100:1) elution, enriched with EtOAc, to generate four additional
fractions (3-1~3-4). Fraction 3-1 (0.82 g) was re-processed by chromatography and purified
by TLC analysis using n-hexane/EtOAc to yield BURA. The purity of BURA was greater
than 90%, as confirmed by HPLC.

2.2. Reagents

To evaluate the involvement of oxidative stress, a specific inhibitor, N-acetylcysteine
(NAC) [22–24], was applied in the pretreatments (10 mM, 1 h). It was purchased from
Sigma-Aldrich (St. Louis, MO, USA) and dissolved in PBS. To evaluate the involvement
of caspases, (Cas) 8 and 9, their specific inhibitors, such as Z-IETD-FMK (Z-IETD) and
Z-LEHD-FMK (Z-LEHD) (Selleckchem.com; Houston, TX, USA), were applied in pretreat-
ments (10 µM for 2 h) to examine the response to Cas 3 activity.

2.3. Cell Cultures

ATCC oral cancer (CAL 27) and normal oral (HGF-1) cell lines (Manassas, VA, USA),
as well as RIKEN BioResource Research Center oral cancer (Ca9-22) cell lines (Tsukuba,
Ibaraki, Japan), were used. The OC-2 oral cancer cell line was provided by Dr. Wan-Chi
Tsai (Kaohsiung Medical University, Kaohsiung, Taiwan) [25]. The medium for cell culture
of the CAL 27, Ca9-22, and OC-2 cells was a 3:2 mixture of Dulbecco’s Modified Eagle
Medium (DMEM) and F12 (Gibco, Grand Island, NY, USA), while a 4:1 mixture was used
for the HGF-1 cells. Other cell culture information has previously been reported [26].
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2.4. Cell Viability Assay

A tetrazolium agent, able to sensitively react with mitochondrial enzymes in living
cells, was used to generate colored formazan dye for detection at 490 nm by a multi-plate
reader. A tetrazolium-based MTS kit (Promega Corporation, Madison, WI, USA) was
employed, according to the user manual, to determine cell viability after 24 h of drug
treatment [27].

2.5. Cell Cycle Determination

After overnight fixation with 75% ethanol, DNA was stained by 7-aminoactinmycin D
(7AAD) (1 µg/mL, 30 min) (Biotium; Hayward, CA, USA) [28]. This processing enables
cell cycle discrimination using an Accuri C6 flow cytometer (Becton-Dickinson, Mansfield,
MA, USA).

2.6. Apoptosis Determination by Annexin V/7AAD Method

Apoptotic cells were detected using annexin V (1:1000 dilution)/7AAD (1 µg/mL)
dyes [29] (Strong Biotech; Taipei, Taiwan), with binding buffers provided in the kit, for 1
h at 37 ◦C. The dye intensities were examined by flow cytometer (Accuri C6), to identify
annexin V (+)/7AAD (+ or −) marked populations according to their apoptotic state.

2.7. Apoptosis Determination by Pancaspase and Caspase 3/8/9 (Cas 3/8/9) Assays

Caspase activation is a standard indicator for apoptosis signaling. To explore this
characteristic of apoptosis activity, several caspase-based detection assays were performed,
including pancaspase- and Cas 3/8/9-detected flow cytometry. A pancaspase (active)-FITC
staining kit (Abcam, Cambridge, UK) was used for the fast-screening of caspases-1 and 3
to 9 [27], according to the user’s manual. The pancaspase intensity was measured using a
flow cytometer (Accuri C6).

In particular, the Cas 3/8/9 activities were individually examined by peptide-based
flow cytometry [30]. In brief, substrates for detecting Cas 3/8/9 activities provided in
OncoImmunin kits (Gaithersburg, MD, USA) (PhiPhiLux-G1D2, CaspaLux8-L1D2, and
CaspaLux9-M1D2) are composed of a peptide, homo-doubly labeled with a fluorophore.
The activated Cas 3/8/9 can cleave their specific substrates and generate green fluorescence
for flow cytometry detection [30]. Cells were incubated with 10 µM substrate solution for
Cas 3/8/9 (1:1000) at 37 ◦C for 1 h. After washing, their intensities were measured by a
flow cytometer (Accuri C6) (FL1 channel). The flow cytometry for Cas 3/8/9 detections
had to be performed separately because they show the same green fluorescence.

2.8. Oxidative Stress Determination by Mitochondrial Superoxide (MitoSOX), and Mitochondrial
Membrane Potential (MMP) Assays

When oxidative stress was over-produced, MitoSOX generation and MMP destruc-
tion were induced. These were probed using MitoSOX™ Red [31] (50 nM, 30 min) and
DiOC2(3) [32] (Invitrogen; San Diego, CA, USA) (5 nM, 30 min), respectively. These re-
actions were performed in darkness at 37 ◦C. Their intensities were measured by a flow
cytometer (Accuri C6).

2.9. DNA Damage Determination by γH2AX and 8-Hydroxy-2-Deoxyguanosine
(8-OHdG) Assays

DNA damage was detected by probing with the markers γH2AX [33] and 8-OHdG [34].
Briefly, cells were fixed overnight. After washing with PBS, γH2AX was detected by γH2AX
antibody [33] (Santa Cruz Biotechnology; Santa Cruz, CA, USA) (4 ◦C, 1 h) and Alexa
Fluor®488-labeled secondary antibody (Cell Signaling Technology). Subsequently, 7AAD
(5 µg/mL, 30 min) was added. 8-OHdG was detected by 8-OHdG-FITC antibody (Santa
Cruz Biotechnology) (4 ◦C, 1 h). The γH2AX and 8-OHdG intensities were examined by
flow cytometry (Accuri C6).
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2.10. Statistical Analysis

The statistical significances of multi-comparisons were evaluated by one-way analysis
of variance (ANOVA) followed by Tukey HSD post hoc test. Data top-labeled with different
lower-case letters differ significantly.

3. Results
3.1. BURA Shows Selective Antiproliferation in Oral Cancer Cells

The cell viability (%) of the oral cancer cells (Ca9-22, CAL 27, and OC-2) was sup-
pressed by BURA in a dose-dependent manner (Figure 1A). In contrast, normal oral cells
(HGF-1) maintained higher viability than the three oral cancer cell lines. Therefore, BURA
can selectively inhibit proliferation of oral cancer cells but exhibits less cytotoxicity to
normal oral cells.

To test oxidative stress involvement, an inhibitor (NAC) was applied to examine the
change in cell viability of the oral cancer cells. The BURA-induced antiproliferation in
oral cancer cells was alleviated by NAC pretreatment (Figure 1B). To test extrinsic (Cas 8)
and intrinsic (Cas 9) apoptosis involvement, their inhibitors (Z-IETD and Z-LEHD) were
applied to examine the change in the cell viability of the oral cancer cells. The BURA-
induced antiproliferation of oral cancer cells was alleviated by Z-IETD pretreatment for
Ca9-22 and CAL 27 cells (Figure 1C). The BURA-induced antiproliferation of oral cancer
cells was alleviated by Z-LEHD pretreatment for CAL 27 cells but not for Ca9-22 cells.
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3.2. BURA Induces Cell Cycle Redistribution in Oral Cancer Cells 
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cordingly, the cell cycle changes in oral cancer cells following BURA treatment were mon-
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Figure 1. Cell viabilities of oral cancer cells following BURA exposure. (A) 24 h MTS assay. (B) NAC effects on cell viability
of BURA-treated oral cancer cells. After NAC (10 mM, 1 h) treatments or not, oral cancer cells (Ca9-22, CAL 27, and OC-2)
and normal oral cells (HGF-1) were treated with BURA (0 (control) and 10 µg/mL (33.8 µM)) for 24 h. NAC/BURA indicate
the pre-and post-treatment. (C) Effects of Cas 8 and Cas 9 inhibitors on cell viability of BURA-treated oral cancer cells. After
Cas 8 and Cas 9 inhibitor treatments (10 µM, 2 h), cells were treated with BURA (7.5 µg/mL (25.3 µM)) for 0 (control) for
24 h. Data, mean ± SD (n = 3). Data top-labeled with non-overlapping lower-case letters differ significantly with respect to
multi-comparisons of the same cell line (p < 0.05).

3.2. BURA Induces Cell Cycle Redistribution in Oral Cancer Cells

Antiproliferation is commonly associated with cell cycle redistribution [35,36]. Accord-
ingly, the cell cycle changes in oral cancer cells following BURA treatment were monitored
(Figure 2A); subG1 populations were more evident in BURA-treated oral cancer cells than
in the controls (Figure 2B), suggesting that BURA causes subG1 accumulation, which is an
apoptosis-indicating phenomenon.

In addition, the action of oxidative stress in cell cycle change was examined by
NAC pretreatment (Figure 2C). The subG1 populations were more evident in BURA-
treated oral cancer cells than in the controls, an effect which was reduced by NAC
pretreatment (Figure 2D).
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cells (Ca9-22 and CAL 27) were treated with BURA (control (0.1% DMSO), 7.5 µg/mL (25.3 µM), and 10 µg/mL (33.8 µM),
24 h). (C,D) NAC effect on cell cycle distribution and quantification. After NAC treatment (10 mM, 1 h), cells were treated
with BURA (10 µg/mL) for 0 (control), 12 and 24 h. They were labeled with NAC and NAC/BURA. Data, mean ± SD
(n = 3). Data top-labeled with non-overlapping lower-case letters differ significantly according to multi-comparisons of the
same cell cycle phase (p < 0.05).

3.3. BURA Increases Annexin V-Positive Population in Oral Cancer Cells

Annexin V is a probe for detecting apoptotic cells. BURA-induced apoptosis of oral
cancer cells was monitored by flow cytometry detection for annexin V/7AAD (Figure 3A).
Annexin V (+) populations were more evident in BURA-treated oral cancer cells than in the
controls in a dose-responsive manner (Figure 3B), indicating that BURA causes apoptosis.

Further, the action of oxidative stress in triggering apoptosis was examined for NAC
pretreatment (Figure 3C). Annexin V (+) populations were more evident in BURA-treated
oral cancer cells than in the controls in a time-dependent manner, which was reduced by
NAC pretreatment (Figure 3D).
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3.4. BURA Promotes Pancaspase Activation in Oral Cancer Cells

Sequential activation of caspases is essential in triggering apoptosis [37]. BURA-
induced apoptosis of oral cancer cells was monitored by flow cytometry detection for
active pancaspase (Figure 4A). Active pancaspase (+) populations were more evident in
BURA-treated oral cancer cells than in the controls in a dose-responsive manner (Figure 4B),
indicating that BURA causes pancaspase activation triggering apoptosis.
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Moreover, the role of oxidative stress in triggering pancaspase activation was exam-
ined by NAC pretreatment (Figure 4C). Active pancaspase populations were more evident
in BURA-treated oral cancer cells than in the controls in a time-dependent manner, which
was reduced by NAC pretreatment (Figure 4D).

3.5. BURA Promotes Caspase Signaling Activation in Oral Cancer Cells

Since the active pancaspase kit detects some caspases, Cas 3/8/9 activations of apop-
tosis signaling were further assessed (Figure 5A,C,E,G,I,K). In Cas 3/8/9 flow cytometry,
BURA promoted Cas 3/8/9 activations in oral cancer cells (Figure 5B,F,J). Moreover, these
intrinsic (Cas 9) and extrinsic (Cas 8) apoptosis protein expressions were inhibited by NAC
pretreatment (Figure 5D,H,L).
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3.6. BURA Generates MitoSOX in Oral Cancer Cells

Oxidative stress, such as MitoSOX, was examined in the present study. It was mon-
itored by flow-cytometry-based-MitoSOX detection (Figure 6A). MitoSOX (+) popula-
tions were more evident in BURA-treated oral cancer cells than in the controls in a dose-
responsive manner (Figure 6B), suggesting that BURA causes oxidative stress.
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Figure 6. BURA causes MitoSOX production in oral cancer cells. (A,B) MitoSOX pattern and quantification. Oral cancer
cells (Ca9-22 and CAL 27) were treated with BURA (control (0.1% DMSO), 7.5 µg/mL (25.3 µM), and 10 µg/mL (33.8 µM),
24 h). (+) located within the patterns represent MitoSOX (+). (C,D) NAC effect on MMP pattern and quantification. After
NAC treatment (10 mM, 1 h), cells were treated with BURA (10 µg/mL) for 0 (control), 12 and 24 h. Data, mean ± SD (n = 3).
Data top-labeled with non-overlapping lower-case letters differ significantly according to multi-comparisons (p < 0.05).
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Moreover, the action of oxidative stress in generating MitoSOX was examined by
NAC pretreatment (Figure 6C). MitoSOX (+) populations were more pronounced in BURA-
treated oral cancer cells than in the controls in a time-dependent manner, which was
reduced by NAC pretreatment (Figure 6D).

3.7. BURA Causes MMP Reduction in Oral Cancer Cells

Mitochondrial dysfunction such as MMP reduction may induce oxidative stress and
cell death [38]. Accordingly, change in MMP levels in oral cancer cells following BURA
treatment was monitored (Figure 7A). MMP (−) populations were more evident in BURA-
treated oral cancer cells than in the controls in a dose-responsive manner (Figure 7B),
suggesting that BURA causes MMP reduction.

Moreover, the action of oxidative stress in MMP reduction was inspected by NAC
pretreatment (Figure 7C). MMP (−) populations were more evident in BURA-treated
oral cancer cells than in the controls in a time-dependent manner (Figure 7B), which was
reduced by NAC pretreatment (Figure 7D).
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3.8. BURA Causes DNA Damage in Oral Cancer Cells

DNA damage is also a typical response to oxidative stress [39]. BURA-induced
DNA damage in oral cancer cells was monitored by flow cytometry-based γH2AX and
8-OHdG detection (Figures 8A and 9A). γH2AX and 8-OHdG (+) populations were more
evident in BURA-exposed oral cancer cells than in the controls in a dose-responsive manner
(Figures 8B and 9B), suggesting that BURA caused DNA damage.

Moreover, the action of oxidative stress in triggering DNA damage was examined by
NAC pretreatment (Figures 8C and 9C). γH2AX and 8-OHdG (+) populations were more
evident in BURA-treated oral cancer cells than in the controls in a time-dependent manner,
which was reduced by NAC pretreatment (Figures 8D and 9D).
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4. Discussion

The molecular functions of BURA have not previously been reported. In the present
investigation, we validated, for the first time, the antiproliferation effects of C. burmannii-
derived BURA on oral cancer cells. In terms of mechanism, BURA causes oxidative stress
involving cell cycle disturbance, apoptosis, and DNA damage in oral cancer cells.



Antioxidants 2021, 10, 1588 11 of 15

4.1. BURA Shows Antiproliferation Effect in Oral Cancer Cells

In the present study, the C. burmannii root-derived BURA showed IC50 values of 8.1,
7.5, and 10 µg/mL (27.4, 25.3, and 33.7 µM) at a 24 h MTS assay of oral cancer cells (Ca9-22,
CAL 27, and OC-2). In contrast, BURA showed less cytotoxicity to normal oral cells than
to oral cancer cells. Since cytotoxicity for BURA was not identified in a PubMed search
(2021/07/30), compounds from the stems of C. burmannii, such as β-sitosterol [20], were
compared. β-sitosterol showed an IC50 value of 75 and 266.2 µM at a 24 h MTT assay in
lung (A549) [40] and colon (COLO 320) [41] cancer cells. By comparison, the clinically
applied drug cisplatin showed an IC50 value of 7.9 and 9.6 µM (MW 301.1) at a 24 h MTS
assay in oral cancer cells (Ca9-22 and HSC-3) [34]. In a 72 h MTS assay, cisplatin-treated
oral cancer cells (SAS and H103) showed IC50 values of 3.74 and 20.12 µM, respectively [42].
Therefore, the antiproliferation effect of BURA in oral cancer cells has first been reported in
the present study.

4.2. BURA Shows Oxidative Stress in Oral Cancer Cells

Many cancers exhibit oxidative stress overproduction and mitochondrial dysfunction,
resulting in cellular oxidative damage [43]. Drugs with oxidative stress accumulation
ability may destroy redox homeostasis to kill cancer cells and become welcome chemical
additions in anticancer therapy [44,45]. For example, pomegranate extract (POMx) [7],
manoalide [26], sinuleptolide [31], cryptocaryone [32], 4beta-hydroxywithanolide E [33],
and tenuifolide B [46], can generate oxidative stress and trigger apoptosis in oral cancer
cells.

Mitochondria are the primary source of oxidative stress because of electron leakage
during ATP production. Although an antioxidant system is available in mitochondria,
drug-induced ROS overexpression may exceed the tolerance of this defense system, causing
mitochondrial damage [38]. This ROS overexpression may trigger MitoMP depolarization
for MitoMP loss. Consequently, damaged mitochondria generate more oxidative stress,
such as ROS and MitoSOX [47]. Therefore, drug-induced minor MitoMP loss may be
amplified by this positive feedback action to induce cell death. Moreover, drug-induced
oxidative stress may cause several types of non-apoptosis cell death in addition to apop-
tosis [48]. Apart from MitoMP loss, other lethal processes may be dysregulated by the
drug-induced oxidative stress response, including autophagy, ferroptosis, and necroptosis.

Similarly, BURA demonstrated MitoSOX overproduction and MMP reduction in
oral cancer cells (Figures 6 and 7), revealing that BURA exhibits oxidative stress-regulated
functions in oral cancer cells. Moreover, these oxidative stresses may be accompanied by the
activation of compensatory antioxidant signaling [43]. This warrants detailed investigation
of the antioxidant gene responses for oral cancer cells following BURA treatment.

In addition, drug-induced oxidative stress may regulate the Warburg effect in cancer
cell proliferation. For example, the red ginseng-derived ginsenoside, 20(S)-Rg3, suppressed
the Warburg effect by inhibiting the proliferation of ovarian cancer cells [49]. Morin
inhibited the Warburg effect and induced apoptosis, to cause antiproliferation in colon
cancer cells [50]. Similarly, BURA induced oxidative stress in oral cancer cells. This
warrants a detailed examination of the Warburg effect in oral cancer cells following BURA
treatment in the future.

4.3. BURA Shows Apoptosis and DNA Damage in Oral Cancer Cells

Oxidative stress overproduction can also induce apoptosis and become an effective
anticancer strategy [51]. Moreover, oxidative stress accumulation also causes cell cycle dis-
turbance and triggers caspase signaling leading to apoptosis [52]. For example, tenuifolide
B from C. tenuifolium overproduces oxidative stress and triggers apoptosis in oral cancer
cells [46]. Similarly, BURA induces subG1 accumulation (Figure 2) and annexin V-detected
apoptosis in oral cancer cells (Figure 3). The involvement of caspase was confirmed by
pancaspase activation (Figure 4). More specifically, BURA activates the end executors of
apoptosis, such as Cas 3 (Figure 5). The extrinsic and intrinsic apoptosis proteins, such as
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Cas 8 and Cas 9, were also activated by BURA. In addition, the cell death contributions
of Cas 8 and Cas 9 were examined by using their inhibitors (Figure 1C). For Ca9-22 cells,
Cas 8 had higher killing effects on cell viability after BURA treatment than Cas 9. For CAL
27 cells, both Cas 8 and Cas 9 have killing effects on cell viability after BURA treatment.
Therefore, Cas 8 and Cas 9 may involve differential regulatory processes for the viability of
different oral cancer cell types.

Furthermore, high oxidative stress levels can damage macromolecules such as pro-
teins, lipids, and DNA, and destroy their functions [52]. For DNA damage, oxidative stress
may induce oxidative changes, such as double-strand breaks and oxidative binding to nu-
cleotides such as γH2AX and 8-OHdG, respectively [52]. Consistent with the present study,
γH2AX and 8-OHdG were highly expressed in oral cancer following BURA treatments.
In addition to DNA damage, oxidative stress also causes protein damage by peroxidation
that may suppress DNA repair ability. For example, UVA promotes oxidative stress and
promotes DNA repair inhibition [53]. This warrants specific inspection of DNA repair
responses in oral cancer cells following BURA treatment.

4.4. Antiproliferation Mechanisms of BURA in Oral Cancer Cells Depend on Oxidative Stress

NAC is a common antioxidant for oxidative stress removal in several oxidative stress
studies. The action of oxidative stress after drug-induced changes was confirmed by NAC
pretreatment [54]. For example, manoalide promotes antiproliferation, apoptosis, and
DNA damage, and these changes are suppressed by NAC [26]. Similarly, NAC reduces
antiproliferation, reverses the cell cycle disturbance and apoptosis, and suppresses the
DNA damage for BURA-treated oral cancer cells. These findings support the view that the
antiproliferation mechanisms of BURA in oral cancer cells are oxidative-stress-dependent.

4.5. Potential Targets

β-ionone is an effective apoptosis inducer in several cancer cell lines derived from
gastric, prostate, breast, and bone tissue [55–59]. However, they work through different
mechanisms. For example, β-ionone downregulated the extracellular signal-regulated
kinase, upregulated p38 and Jun N-terminal kinase [56], and dephosphorylated phos-
phatidylinositol 3-kinase (PI3K)-AKT levels [57] in gastric cancer cells. β-ionone can acti-
vate the prostate-specific G protein-coupled receptor (PSGR) in prostate cancer cells [58],
and suppress cyclooxygenase-2 (COX-2) in breast cancer cells [59]. BURA, a β-ionone
derivative, contains a carboxylic acid group binding to C-5 of 3-hydroxy-5,6-epoxy-β-
ionone. However, the potential targets of BURA remain unclear. This warrants detailed
investigation of the changes in the candidate targets of β-ionone in the future.

5. Conclusions

The present study, for the first time, confirms that BURA exhibits selective antiprolif-
eration in oral cancer cells with little damage to normal oral cells. Our findings revealed
that several kinds of oxidative stress, apoptosis, and DNA damage were upregulated in
response to BURA treatment in oral cancer cells. In terms of mechanism, MitoSOX and
MMP were dysregulated by BURA. Apoptosis and its caspase signaling were triggered by
BURA. γH2AX and 8-OHdG DNA damage was accumulated with BURA treatment in oral
cancer cells. Furthermore, these mechanisms were blocked by NAC pretreatment, revealing
that oxidative stress plays an important role in regulating antiproliferation by BURA in
oral cancer cells. Therefore, our study demonstrated that BURA generates oxidative stress
and causes apoptosis and DNA damage that inhibits oral cancer cell proliferation.
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