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ABSTRACT

Antibiotic resistance in bacteria limits the effect of
corresponding antibiotics, and the classification of
antibiotic resistance genes (ARGs) is important for
the treatment of bacterial infections and for un-
derstanding the dynamics of microbial communi-
ties. Although several methods have been devel-
oped to classify ARGs, none of them work well
when the ARGs diverge from those in the refer-
ence ARG databases. We develop a novel method,
ARG-SHINE, for ARG classification. ARG-SHINE uti-
lizes state-of-the-art learning to rank machine learn-
ing approach to ensemble three component meth-
ods with different features, including sequence ho-
mology, protein domain/family/motif and raw amino
acid sequences for the deep convolutional neu-
ral network. Compared with other methods, ARG-
SHINE achieves better performance on two bench-
mark datasets in terms of accuracy, macro-average
f1-score and weighted-average f1-score. ARG-SHINE
is used to classify newly discovered ARGs through
functional screening and achieves high prediction
accuracy. ARG-SHINE is freely available at https:
//github.com/ziyewang/ARG SHINE.

INTRODUCTION

With the wide spread use and misuse of antibiotics in clin-
ical and agricultural practices, antibiotic resistance (AR),
the resistance of bacterial pathogens to antimicrobials, has
become an urgent public health problem (1,2). Accord-
ing to US Centers for Disease Control (CDC), over 2.8
million people are infected by AR pathogens and over
35 000 people die from antimicrobial resistance each year
in US alone. An estimated annual cost of $20–35 billion
is spent on antibiotic-resistant pathogens (https://www.cdc.
gov/drugresistance/index.html). Therefore, it is essential to
find the antibiotic-resistant genes (ARGs) from the clin-
ical and environmental samples and to identify ARGs’
type to develop targeted treatment or control measures (3–
6). Moreover, the rapid identification of ARGs in the
pathogens can help optimize the antibacterial treatment (3).

Culture-based antimicrobial susceptibility testing (AST)
can provide phenotypic resistance results of the microbes,
but it may take weeks, and it is less informative than
sequencing-based methods in terms of resistance gene epi-
demiology (7). Culture-based methods are not applicable to
the unculturable bacteria (8). Functional metagenomics ap-
proaches select antibiotic resistance DNA sequences in a
metagenomic library by transforming the candidate frag-
ments into the recombinant expressed host and exposing
the host to antimicrobials (7,9). However, the original host
and the recombinant expression host with the same gene
may have different phenotypes for the antimicrobials, lim-

*To whom correspondence should be addressed. Tel: +1 213 7402413; Fax: +1 213 7408631; Email: fsun@usc.edu

C© The Author(s) 2021. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

http://orcid.org/0000-0001-5850-0049
http://orcid.org/0000-0002-6067-5312
https://github.com/ziyewang/ARG_SHINE
https://www.cdc.gov/drugresistance/index.html


2 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 3

iting the use of functional genomics approaches. Finally,
the selected fragments need to be annotated by alignment-
based methods or machine learning methods.

With the development of next-generation sequencing
(NGS) technologies, sequencing-based methods for antimi-
crobial resistance identification spring up as a complement
to culture-based and functional metagenomics methods (7).
According to the input, sequencing-based ARG identifica-
tion methods can be divided into two categories: assembly-
based methods and read-based methods. In assembly-based
methods, the reads are first assembled into contiguous re-
gions (contigs) using assembly programs and then these
contigs are aligned to known reference ARG databases or
hidden Markov models (HMM) for ARGs. The read-based
methods, on the other hand, directly map the reads to se-
quences in reference ARG databases. Boolchandani et al.
(7) presented an excellent review on experimental and com-
putational methods for ARG identification in NGS data.

Although these alignment-based and map-based meth-
ods can successfully identify known ARGs in the reference
databases, they cannot identify or classify ARGs that are
highly different from those in the reference databases re-
sulting in high rate of false negatives. To overcome this is-
sue, two machine learning based methods, DeepARG (10)
and TRAC (11), have been developed to classify ARGs into
different classes. DeepARG aligns a query sequence to the
reference ARG database to obtain the similarity distribu-
tion of a query sequence to known ARGs and uses the sim-
ilarity distribution as features for a deep learning model.
DeepARG was shown to be able to identify and classify
ARGs that do not have high similarity with sequences in
the reference ARG database. To further increase the classi-
fication accuracy for ARGs, Hamid et al. (11) first built an
antibiotic resistance gene database, COALA, by integrating
15 available antibiotic resistance gene databases. They then
developed a transfer learning based deep neural network
model, TRAC (TRansfer learning for Antibiotic resistance
gene Classification), for ARG classification and showed
that TRAC achieved much better performance than other
alignment-based methods and their self-attention based re-
current neural network model (11). Despite the successes
of DeepARG and TRAC on the classification of ARG se-
quences, they possess several limitations that can be further
improved to increase ARG classification accuracy.

Currently available ARG classification methods have sev-
eral limitations. First, the protein functional information is
not used for ARG classification. Protein domains/motifs
are the fundamental units of the proteins and they con-
tain information about the ARG classes. However, neither
DeepARG nor TRAC uses protein domain/family/motif
information for ARG classification. Second, currently avail-
able ARG classification methods use only one source of in-
formation, either alignment to known ARGs or amino acid
composition, but do not integrate the predictions from dif-
ferent approaches. Although DeepARG (10) uses low iden-
tity cutoff and a deep learning method, it does not learn
representation over raw sequences, limiting its performance.
TRAC (11) learns representation over raw sequences using
deep Recurrent Neural Network (RNN). However, the au-
thors did not evaluate the performance of the methods for
the proteins with high sequence identity scores against the

database. Furthermore, the machine learning methods may
not work as well as the alignment-based methods on the se-
quences with close homolog against the genes in the ARG
database (see Supplementary Table S1 and Table 4 for de-
tails). We hypothesize that ARG classification accuracy can
be improved by integrating multiple data sources.

To overcome the limitations of the available ARG clas-
sification methods mentioned above, we developed a novel
ensemble method, ARG-SHINE, for antibiotic resistance
class prediction. ARG classification is a multi-class predic-
tion problem. Learning to Rank (LTR) (12) is widely used
to solve the multi-label prediction problems and has been
successfully used for protein function prediction integrating
multiple information sources (13,14). A multi-class prob-
lem can be regarded as the simplification of the multi-label
problem by ranking the correct label before the incorrect
labels. Therefore, ARG-SHINE utilizes LTR to integrate
three component methods, ARG-CNN, ARG-InterPro and
ARG-KNN, using raw sequences, protein functional infor-
mation, and sequence homology information for ARG clas-
sification, respectively.

We developed ARG-CNN, ARG-InterPro and ARG-
KNN for ARG classification, as the component meth-
ods for the ensemble model. ARG-CNN applies a deep
convolutional neural network (CNN) over raw protein se-
quences. Deep convolutional neural networks have achieved
good performance on multiple classical machine learning
tasks such as image classification (15,16), object detec-
tion (17) and sentence classification (18). Convolutional
neural networks can extract local features (19). They are
suitable for ARG classification because the phenotype is re-
lated to several specific antibiotic resistance mechanisms,
such as antibiotic efflux and antibiotic modification. ARG-
InterPro applies InterProScan (20) to find the domain, fam-
ily and motif information from sequences and uses the
obtained functional signatures for logistic regression. The
domain/family/motif information represents biological do-
main knowledge. The method has been proven useful in
protein function prediction (13). Antibiotic resistance is re-
lated to some protein functions, such as antibiotic efflux.
Our ARG-InterPro model can be regarded as the version of
the corresponding method used in protein function predic-
tion (13) trained on the ARG database. ARG-KNN aligns
the sequences against the database generated from the train-
ing data with BLAST (21), and the k-nearest neighbor
(KNN) method is used for achieving the final classification.
The method can utilize homology-based information.

We compared ARG-SHINE and our component meth-
ods with several available ARG classification methods in-
cluding BLAST (21), DIAMOND (22), DeepARG (10),
RGI (23), HMMER (24) and TRAC (11). ARG-CNN and
ARG-InterPro can achieve better performance compared
with other available methods when the query sequence is
not highly similar to the known ARG sequences. Our re-
sults show that ARG-KNN and BLAST best hit achieve
better performance compared with DIAMOND best hit
and DeepARG for sequences with high similarity with
known ARG sequences. Compared with other methods,
ARG-SHINE achieves the best performance on the bench-
mark datasets in terms of accuracy, macro-average f1-score,
and weighted-average f1-score in general. Compared with
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BLAST best hit, our final model can achieve much bet-
ter performance on the sequences with low identity scores
against the database, and slightly better performance on the
sequences with high identity scores against the database.

MATERIALS AND METHODS

In this section, we present (i) the descriptions of the bench-
mark datasets; (ii) the overview of ARG-SHINE; (iii) the
implementation of three proposed component methods
used for integration and the ensemble model; (iv) the meth-
ods we choose for comparison and (v) the metrics to evalu-
ate the performance.

Datasets

Hamid et al. (11) created the COALA (COllection of ALl
Antibiotic resistance gene databases) dataset curated from
15 available antimicrobial gene databases (see Supplemen-
tary Material for the details) to provide benchmark datasets
for improving antibiotic resistance class prediction. They
performed CD-HIT (25) clustering of ARG sequences with
different identity thresholds, 40% and 70%, respectively, on
the original COALA dataset to remove similar sequences
and generated two datasets.

We built the COALA90 dataset to include the sequences
with higher identity scores than those used in (11) by per-
forming CD-HIT with 90% identity threshold based on the
COALA dataset. A fasta file of the representative sequences
for the clusters that CD-HIT generated was kept. After re-
moving the ARG classes containing less than 15 sequences,
17 023 proteins from 16 antibiotic resistance classes remain.
Each pair of sequences in the COALA90 dataset has at most
90% identity (using CD-HIT).

In addition, we used CD-HIT with 100% identify thresh-
old to build a complete dataset, COALA100, by just re-
moving the duplicate sequences. We removed ARG classes
with less than 45 sequences resulting in 41 851 proteins from
17 ARG classes. We used different thresholds for the num-
bers of sequences in ARG classes for the COALA90 and
COALA100 datasets since the sequences in COALA100 are
more similar than that in COALA90. These thresholds yield
similar numbers of ARG classes of interest.

To train and evaluate the component methods and the en-
semble model, we randomly divided each dataset into four
parts: (i) training data for the component methods (70%).
We used the training data to build the training database for
the BLAST or DIAMOND alignment-based methods; (ii)
validation data (10%); (iii) test data (10%) and (iv) training
data for the LTR model (10%). Table 1 and Supplementary
Table S2 present the names of the ARG classes and the cor-
responding number of sequences for each ARG class in the
COALA90 and COALA100 datasets, respectively.

Overview of ARG-SHINE

We developed a novel method, ARG-SHINE, for antibiotic
resistance class prediction. Figure 1 shows the framework
of ARG-SHINE, which consists of two modules: (i) ‘Com-
ponent module’ for obtaining the prediction scores of three
different component methods: ARG-CNN (deep learning),

ARG-InterPro (domain/family/motif), and ARG-KNN
(homology) and (ii) ‘Ensemble module’ for integrating the
predictions generated from the ‘Component module’ by the
learning to rank framework to improve the overall perfor-
mance. More descriptions of ARG-SHINE are as follows.

The component module: three different component meth-
ods using different features––ARG-CNN, ARG-InterPro and
ARG-KNN

ARG-CNN: deep Convolutional Neural Network (CNN)
model for ARG classification. Supplementary Figure S1
shows the architecture of ARG-CNN. It consists of four
main layers: (i) an embedding layer for representing each
amino acid with a dense vector; (ii) a convolution layer for
capturing local information of the sequences; (iii) a two-
layer self-attention network for capturing the most relevant
parts of the given protein sequence for ARG classification
and (iv) a fully connected layer and softmax output. Cross-
entropy loss is used as the loss function during the training
process. More details about the training strategy of ARG-
CNN is described in the Supplementary Material. The de-
tailed explanations for each part of ARG-CNN are as fol-
lows.

Embedding Layer. We used a trainable dense vector to rep-
resent each amino acid in the embedding layer, which can
capture rich semantic information of amino acids (26). For
a given L-length protein p, the output of the embedding
layer, X(CNN) ∈ R

L×d , is as follows:

X(CNN) = (x(CNN)
1 ; x(CNN)

2 ; ...; x(CNN)
L ), (1)

where x(CNN)
j ∈ R

d is the d-dimensional embedding of the
j-th amino acid in the protein sequence.

Convolutional Layer. We used a one-dimensional convo-
lutional layer to extract the local information of the given
protein sequence. The output G ∈ R

L−S+1 of the convolu-
tional layer for each filter of size S is defined as:

gi = f (Wc · X(CNN)
i :i+S−1 + bc), (2)

G = (g1, g2, ..., gL−S+1)T, (3)

where Wc ∈ R
S×d is the weight matrix of the filter, bc is the

bias, ‘·’ indicates dot multiplication and f is the ReLU (27)
activation function. Then we obtained the output of the
convolutional layer H ∈ R

(L−S+1)×k for k filters as follows:

H = (G1, G2, ..., Gk), (4)

Self-attention layer. We used a two-layer fully connected
neural network to select key input information for process-
ing, and it is similar to the self-attention network used in
(11,28). For a given H, to extract r important parts from
the sequences using the attention layer, we generated the
weights α ∈ R

r×(L−S+1) (attentions) for outputs as follows:

α = sof tmax(WF2(tanh(WF1 HT + bs))), (5)

Q = αH, (6)
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Table 1. The numbers of sequences for each class in the COALA90 dataset

ARG Class
Whole
dataset

Training data for
component methods

Training data for
LTR

Validation
data Test data

MULTIDRUG 382 263 34 37 48
AMINOGLYCOSIDE 1189 844 110 122 113
MACROLIDE 756 563 64 66 63
BETA-LACTAM 5845 4051 606 586 602
GLYCOPEPTIDE 2304 1638 193 243 230
TRIMETHOPRIM 666 424 91 71 80
FOLATE-SYNTHESIS- 2448 1730 249 249 220
INHIBITOR (FSI)
TETRACYCLINE 2056 1448 205 185 218
SULFONAMIDE 315 217 32 36 30
FOSFOMYCIN 138 102 15 10 11
PHENICOL 460 318 50 46 46
QUINOLONE 229 154 27 23 25
STREPTOGRAMIN 19 11 2 3 3
BACITRACIN 127 90 16 11 10
RIFAMYCIN 23 15 3 3 2
MACROLIDE/LINCOSAMIDE/ 66 48 5 11 2
STREPTOGRAMIN (MLS)

Figure 1. The framework of ARG-SHINE for ARG class prediction. In the first module, we develop three component methods: ARG-CNN, ARG-InterPro
and ARG-KNN for the classification of the ARG sequences. In the second module, we use learning to rank (LTR) to integrate the three component
prediction scores from the first module for ARG classification (‘None’ means that the query sequence does not have any alignment against the training
database with an e-value no more than 1e-3).
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where WF1 ∈ R
d1×k and WF2 ∈ R

r×d1 are the weight matri-
ces of the two-layer feed-forward neural network, d1 denotes
the number of the hidden units of the network, bs denotes
the bias and tanh is the activation function. In Equation (5),
softmax() is performed along the second dimension of its in-
put. We flattened the output matrix Q into a T (=r × k) size
vector, M.

Fully connected layer and softmax. Let NC denote the
number of antibiotic resistance classes. We used a fully
connected layer and softmax to obtain the final prediction
scores ŷ ∈ R

NC for all classes as follows:

ŷ = sof tmax(WM + bF ), (7)

where W ∈ R
NC×T denotes the weight matrix of the fully

connected network and bF ∈ R
NC denotes the bias.

ARG-InterPro: logistic regression model using InterPro fea-
tures. The InterPro database integrates protein domains,
families, and functional sites from multiple resources (29).
First, we ran InterProScan (20) on the sequences to obtain
their functional information against the InterPro database.
Then, we generated n signatures according to the Inter-
ProScan output of the training data, and each signature
(InterPro ID) corresponds to a protein domain, family, or
functional site. For protein pi, the binary feature vector X(I)

i
is as follows:

X(I)
i = (x(I)

i,1 , x(I)
i,2 , ..., x(I)

i,n ), (8)

where x(I)
i, j = 1 means pi has the j-th signature. We then used

the feature vectors of the sequences for multi-class logistic
regression.

ARG-KNN: KNN (k-nearest neighbor) method us-
ing BLAST alignment results as input. We aligned
the sequences against the training database generated
from the training data with BLAST (e-value ≤1e − 3;
max target seq: 30) to find homologous sequences, as
suggested in (30) that protein:protein alignments with
expectation values < 1e-3 can reliably be used to infer
homology. If the lowest e-value is >1e-3, we say that
the protein sequence cannot be aligned to the training
database. For each query sequence, the alignment results
of the k proteins in the training database with the highest
bit scores are kept for classification. For a given query
sequence pq, the score for the ARG class Ci, S(Ci, pq) is
defined as Equation (9).

S(Ci , pq ) =
∑

p∈Tq

I(Ci , p) × B(pq , p), (9)

where Tq denotes the set of proteins having the top k bit
scores for pq identified by BLAST, p denotes any protein
in Tq, I(Ci, p) is a binary indicator that shows whether p
belongs to the ARG class Ci and B(pq, p) is the bit score
of the alignment between protein pq and p. The normalized
values of S(, pq) by softmax for the ARG classes are used
for subsequent integration. The ARG class with the highest
score is the result of ARG-KNN.

The ensemble module

ARG-SHINE: an ensemble method for antibiotic resistance
class prediction. After generating prediction scores of the
three component methods for the antibiotic resistance
classes, we used LambdaMART (31), an advanced LTR al-
gorithm, to rank all the antibiotic resistance classes for each
sequence. For the sequences that could not be aligned to the
training database, ARG-KNN did not provide prediction
values, and we used the LTR model trained by the predic-
tions of ARG-CNN and ARG-InterPro to make the predic-
tion. For any other sequence, its identity score is defined as
the highest identity score against the database according to
the BLAST output in ARG-KNN. An identity score of 50%
is the usual cutoff used in the best hit approach (10). For the
sequences with high identity scores (> 50%) with some se-
quences in the training database, we used the LTR model
trained by the identity scores and the prediction scores of
ARG-CNN and ARG-KNN to make the prediction. For
the sequences with low identity scores (≤ 50%), we used the
LTR model trained by the identity scores and the predic-
tion scores of ARG-CNN, ARG-InterPro and ARG-KNN
to make the prediction. The strategy of the ensemble model
is determined by its performance on the COALA90 valida-
tion data and more details are given in the Supplementary
Material.

Competing methods and implementation details

We compared our methods with several methods for ARG
classification using the protein sequences or genes as in-
put. The benchmark datasets were curated from multiple
databases. Most existing alignment-based methods are de-
veloped based on one specific database, which limits their
performance in our experiments. We chose RGI (23) as a
representative method, which predicts resistomes based on
the CARD database (23,32).

BLAST best hit. BLAST (21) is one of the most powerful
tools for sequence alignment, which is used by most of the
alignment-based methods. We ran it with ‘-max target seqs
1’ and different e-value cutoffs as the representatives of the
best hit approach.

DIAMOND best hit. DIAMOND (22) is another widely
used sequence alignment tool. We ran it with ‘–max-target-
seqs 1’ and different e-value cutoffs in the ‘sensitive’ mode.

DeepARG. In DeepARG (10), sequences are represented
by their bit scores to known ARGs by aligning them against
the known ARGs using DIAMOND. A deep learning
model is then used for ARG classification. We retrained
DeepARG-LS 1.0.1 (model for long sequences) using our
training data. The retrained DeepARG-LS model could not
achieve good performance using default parameters, so we
changed several parameters. For the predictions with low
probability, DeepARG-LS may report more than one ARG
class as the results, and other methods can also report more
than one ARG class. Therefore, we kept the ARG class with
the highest predicted probability for comparison.
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RGI. RGI (23) predicts resistome based on homology.
RGI analyzes sequences under three paradigms according
to the bit score: Perfect, Strict and Loose (low bit score). We
report the results with the Loose hits and the results without
the Loose hits.

HMMER. HMMER (24) can be used for searching se-
quence homologs against HMM profiles. The training
sequences from each class were aligned using MAFFT
v7.475 (33) and the alignments were used to build HMM
profiles with HMMER 3.3.2 (24) using ‘hmmbuild’. The
testing sequences were classified with the HMM profiles us-
ing ‘hmmsearch’ with parameters ‘-E 1000, –domE 100 –
max’ as done in (34).

TRAC. The transfer-learning based model, TRAC (11),
contains three training stages: (i) the general-domain lan-
guage model; (ii) the target task language model and (iii)
the target task classifier. We retrained their fine-tuned lan-
guage model using the sequences in the datasets that are not
included in the dataset they used and retrained the classi-
fier using our training data. In their paper (11), they trained
ten classifiers, ran ten classifiers, and built a soft majority
voting classifier for predictions. To make a fair compari-
son with other baselines and our component methods, we
only trained one classifier for predictions. The training pro-
cess reproduces the strategies mentioned in (11) as much as
possible. We used the AdamW (35) optimizer and the label
smoothing cross entropy for training.

Evaluation metrics

We used prediction accuracy and f1-score to evaluate the
performance. F1-score is the harmonic mean of the preci-
sion and recall. The metrics were defined as universal def-
initions and were detailed in DeepARG (10). We also re-
ported the macro-average results and weighted-average re-
sults. Macro-average means that the average performance of
each class, and weighted-average means the average perfor-
mance of each class weighted by the number of sequences.

RESULTS

ARG-SHINE outperforms other available ARG classifica-
tion tools on the COALA90 dataset

We compared the performance of ARG-SHINE with
currently available ARG classification methods including
BLAST-best hit (21), DIAMOND-best hit (22), DeepARG
(10), RGI (23), HMMER (24) and TRAC (11). In this
section, we reported the results of the competing meth-
ods using the parameters that achieve the best performance
on the validation data. Supplementary Tables S3 and S4
show the prediction accuracy of BLAST, DIAMOND and
DeepARG with the different parameters on the COALA90
data. Parameter settings of the compared methods and our
methods are given in Supplementary Table S5.

Overall performance. Table 2 shows the accuracy, macro-
average f1-score and weighted-average f1-score of the vari-
ous methods on the COALA90 test data. Among the stand-
alone methods, ARG-CNN performs the best in terms of

Table 2. ARG-SHINE outperforms existing ARG classification programs
and the component methods in terms of classification accuracy, macro-
average F1-score and weighted-average F1-score on the COALA90 test
data

Methods Accuracy

Macro-
average

F1-score

Weighted-
average

F1-score

BLAST best hit 0.8092 0.8258 0.8423
DIAMOND best hit 0.7986 0.8103 0.8423
DeepARG 0.7810 0.7303 0.8419
RGI 0.0528 - -
(perfect+strict)
RGI 0.5584 - -
(perfect+strict+loose)
HMMER 0.4938 0.4499 0.4916
TRAC 0.8115 0.7399 0.8097
ARG-CNN 0.8467 0.8167 0.8427
ARG-InterPro 0.8197 0.7382 0.8151
ARG-KNN 0.8115 0.8047 0.8457
ARG-SHINE 0.8614 0.8555 0.8591

The best results among all the methods and best results among the stand-
alone methods are in bold. The ARG classes we used are different from
that used by RGI and thus RGI’s macro-average F1-scores and weighted-
average F1-scores are not shown.

accuracy. Compared with TRAC, which achieves the best
performance among the available methods, ARG-CNN in-
creases the accuracy from 0.8115 to 0.8467. Among the
alignment-based methods, ARG-KNN and BLAST best hit
achieve better performance than DIAMOND best hit and
DeepARG. ARG-SHINE performs better than the compo-
nent methods and other compared methods in terms of all
the metrics as shown in Table 2. Compared with the best
performer among the available methods, ARG-SHINE in-
creases the value from 0.8115 to 0.8614 in accuracy, from
0.8258 to 0.8555 in macro-average f1-score and from 0.8423
to 0.8591 in weighted-average f1-score. There is no one-to-
one correspondence between the ARG classes of RGI and
that in our study, so we do not report its average f1-score.
To investigate the robustness of ARG-SHINE, we further
compared its performance with two well-performing tools,
BLAST best hit and TRAC, and our component methods
using 5-fold cross-validation. The results and more details
about the experiments are given in Table 3 and Supplemen-
tary Material. The main findings are consistent with those
shown in Table 2.

The three component methods synergistically contributed to
the results. We next investigated the contributions of each
component method to ARG-SHINE. Figure 2 A shows
the venn diagram for the sequences in the COALA90 test
data correctly classified by the three component methods.
The three component methods complement each other in
classification. Among all the 1703 test sequences, 43, 25
and 17 sequences are uniquely correctly classified by ARG-
CNN, ARG-InterPro and ARG-KNN, respectively. There
are 1259 sequences that are correctly classified by all the
three component methods. Venn diagram for the three com-
ponent methods and ARG-SHINE is shown in Figure 2 B.
It reflects that all the component methods contribute to the
final results, especially for ARG-CNN, which provides 31
unique correctly classified sequences for ARG-SHINE. We



NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 3 7

Table 3. ARG-SHINE outperforms existing ARG classification programs and the component methods in terms of classification mean accuracy, macro-
average F1-score and weighted-average F1-score on the COALA90 dataset based on 5-fold cross-validation

Methods Accuracy Macro-average F1-score Weighted-average F1-score

BLAST best hit 0.8045 (±0.0047) 0.8414 (±0.0163) 0.8452 (±0.0042)
TRAC 0.8075 (±0.0150) 0.7615 (±0.0374) 0.8042 (±0.0158)
ARG-CNN 0.8402 (±0.0059) 0.8405 (±0.0279) 0.8373 (±0.0058)
ARG-InterPro 0.8244 (±0.0069) 0.7703 (±0.0345) 0.8211 (±0.0078)
ARG-KNN 0.8065 (±0.0035) 0.8381 (±0.0140) 0.8472 (±0.0030)
ARG-SHINE 0.8557 (±0.0055) 0.8595 (±0.0230) 0.8534 (±0.0057)

The best results among all the methods and best results among the stand-alone methods are in bold. Standard deviation of accuracy is shown in the
brackets.

Figure 2. The Venn diagrams for the sequences in the COALA90 test data that are correctly classified by the three component methods and ARG-SHINE.
(A) Venn diagram for the three component methods. (B) Venn diagram for the three component methods and ARG-SHINE.

further analyzed the specific genes that only ARG-SHINE
could discover. Our component methods classify both se-
quences incorrectly but generate a relatively high probabil-
ity for the correct class. For example, one of the sequences
is from the TETRACYCLIN class with 38.78% identify
score against the training database. ARG-KNN and ARG-
InterPro classify it as the BETA-LACTAM class, but they
give the second-highest probability for the TETRACY-
CLIN class. ARG-CNN classifies it as the FSI class (predic-
tion probability: 0.2968) but with a relatively high probabil-
ity for the TETRACYCLIN class (prediction probability:
0.1014). ARG-SHINE integrates the prediction probabili-
ties for all the classes of the component methods and the
identify score, and classifies the sequence into the correct
class.

ARG-SHINE markedly improves the classification accuracy
for sequences with relatively low sequence similarity against
the training database. When an ARG sequence is highly
similar to one of the sequences in the training database,
we expect that it is relatively easy to classify the ARG se-
quence just by BLAST best alignment. However, when an
ARG sequence diverges from the sequences in the train-
ing database, alignment-based methods will not work well.
Therefore, we compared the performance of ARG-SHINE

with other available ARG classification methods accord-
ing to the highest similarity between the query ARG se-
quence and the sequences in the training database. To assess
the methods with different identity cutoffs, we divided the
test data into three groups according to their highest iden-
tity scores against the training database according to the
BLAST output in ARG-KNN. Among the 1703 sequences,
142 of them cannot be aligned to the database using BLAST
with e-value no more than 1e-3. Table 4 shows the pre-
diction accuracy of the methods stratified by the identify
score against the training database. Among the available
methods, BLAST best hit achieves the best performance
on the sequences with identity scores. Compared with the
BLAST best hit, ARG-SHINE increases the prediction ac-
curacy from 0.6243 to 0.6864 on the sequences with iden-
tity scores no more than 50%, and it achieves slightly bet-
ter performance on sequences with high identity scores. For
the sequences that cannot be aligned to the database us-
ing BLAST, ARG-SHINE achieves 0.4648 accuracy. More-
over, ARG-CNN and ARG-InterPro achieve better perfor-
mance than other stand-alone methods on the sequences
with identity scores no more than 50%, and the accuracy
is 0.6538 and 0.6509, respectively. ARG-SHINE has better
performance compared with our component methods. We
also present the results with different identity cutoffs using
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Table 4. The prediction accuracy of the different methods on the se-
quences of the COALA90 test data stratified by identity scores against the
training database

Identity score None ≤50% >50%
Number of sequences 142 338 1223

BLAST best hit 0.0000 0.6243 0.9542
DIAMOND best hit 0.0000 0.5740 0.9534
DeepARG 0.0000 0.5266 0.9419
HMMER 0.0563 0.2751 0.6051
TRAC 0.3521 0.6124 0.9199
ARG-CNN 0.4577 0.6538 0.9452
ARG-InterPro 0.4085 0.6509 0.9141
ARG-KNN 0.0000 0.6361 0.9542
ARG-SHINE 0.4648 0.6864 0.9558

The best results among all the methods and best results among the stand-
alone methods are in bold. The lowest identity score among the test data
is 21.32%. ‘None’ means that the sequences do not have any alignment
against the training database with the e-value no more than 1e-3.

lower e-value cutoffs and the results are presented in Sup-
plementary Table S6. The same conclusions are obtained.

Prediction performance for each antibiotic resistance class.
We next evaluated the performance of the different meth-
ods for each ARG class and the results are given in Ta-
ble 5. We analyze the following results based on the f1-
score metric. ARG-SHINE performs the best in ten classes
among the sixteen ARG classes, and it ties with other meth-
ods in five classes of the ten classes. ARG-SHINE also
achieves the highest macro-average f1-score (0.8555) and
weighted-average f1-score (0.8591). The BLAST best hit,
DIAMOND best hit, DeepARG and TRAC perform best
in five, five, five and two ARG classes, respectively. Supple-
mentary Table S7 shows the results of our component meth-
ods and ARG-SHINE on the COALA90 test data for each
antibiotic resistance class. We can find that ARG-SHINE
achieves the best performance for the antibiotic resistance
classes containing <50 sequences in the training data (the
STREPTOGRAMIN class, the RIFAMYCIN class and
the MLS class), and this is due to the good performance
of ARG-CNN and ARG-KNN on these classes. We sup-
pose that the identity scores of the query sequences against
the database affect the accuracy. For example, both test-
ing sequences from the MLS class have over 50% identity
scores against the training data. Therefore, BLAST best
hit and ARG-SHINE achieve good performance in this
class in our experiments. HMMER does not perform well
in most classes. This may be due to the low reliability of
the multiple sequence alignments (MSAs). To confirm this
hypothesis, we calculated the Transitive Consistency Score
(TCS) (36,37) of the MSA for each ARG class and com-
pared it with the f1-score based on the HMMER prediction
(Supplementary Table S8). The TCS score measures the re-
liability of MSA. We also observed that the lengths of se-
quences in each ARG class vary widely, which can markedly
impact the reliability of MSA (Supplementary Figure S2A).
For example, when the standard deviation of the sequence
lengths in an ARG class is less than 50, all the TCS scores
are at least 770. However, the TCS scores for all other ARG
classes are less than 700. We observed that the f1-score of
the HMMER model increases with TCS with a Pearson cor-

relation coefficient of 0.54 (p-value = 0.03) (Supplementary
Figure S2B). When TCS > 550, only one out of seven ARG
classes has an f1-score less than 0.5. On the other hand,
when TCS < 550, seven out of nine ARG classes have an
f1-score less than 0.5. The f1-score was also observed to
decrease with the standard deviation of the lengths of se-
quences in the ARG class.

Prediction performance on the COALA100 dataset

To investigate the performance of ARG-SHINE on the
dataset containing more sequences with high identity scores
against the training data than that based on COALA90,
we further compared its performance with two well-
performing tools, BLAST best hit and TRAC, and our com-
ponent methods on the COALA100 dataset. Table 6 shows
that ARG-KNN and ARG-CNN perform the best among
the stand-alone methods in general. BLAST best hit out-
performs TRAC. Compared with BLAST best hit, ARG-
SHINE increases the accuracy 0.9066 to 0.9286, the macro-
average f1-score from 0.9131 to 0.9225, and the weighted-
average f1-score from 0.9221 to 0.9276. The prediction ac-
curacy of the different methods on the sequences of the
COALA100 test data stratified by identity scores against the
training database is shown in the Supplementary Table S9.
The table shows that the improvement in prediction accu-
racy mainly comes from sequences with relatively low iden-
tify scores against the training data.

Analysis of the motifs identified by ARG-CNN

We further analyzed the functional information of the mo-
tifs identified by ARG-CNN to explain why this method
works well. We took the SULFONAMIDE class that ARG-
InterPro achieves the best performance on the COALA90
test data (Supplementary Table S7) for analysis. For each
protein belonging to the SULFONAMIDE class in the
COALA90 test data, we selected the five most important
S-length (S = 20) fragments according to their attention
scores for each of the r attention sets. We obtained 877 frag-
ments from 30 protein sequences. We then ran InterProScan
on these fragments and obtained seven ARG-CNN identi-
fied InterPro signatures. As shown in Supplementary Ta-
ble S10, the important fragments generated by ARG-CNN
can identify six out of nine InterPro signatures relevant to
the SULFONAMIDE class in ARG-InterPro. These results
show that our ARG-CNN can find motifs that cover se-
quence functional information.

Validation on Novel ARGs

Campbell et al. (38) used functional metagenomics to probe
for novel ARGs. They used 15 antibiotics or antibiotic com-
binations to functionally screen the 16 functional libraries
they created and generated the annotation of 332 ARGs
(GenBank: MK935708–MK936039). Most of them are
from the BETA-LACTAM, TETRACYCLINE, AMINO-
GLYCOSIDE and PHENICOL classes. We utilized EM-
BOSS Transeq (39) to translate the nucleic acid sequences
to their corresponding peptide sequences. Ten of the se-
quences have low identity scores (<50%, BLAST) against
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Table 5. The f1-scores of the compared methods and ARG-SHINE on the COALA90 test data for each class

ARG Class BLAST best hit DIAMOND best hit DeepARG HMMER TRAC ARG-SHINE

MULTIDRUG 0.8791 0.8696 0.8889 0.4268 0.7327 0.8842
AMINOGLYCOSIDE 0.8783 0.8929 0.8571 0.5382 0.8789 0.9099
MACROLIDE 0.9612 0.9612 0.9764 0.8552 0.9394 0.9767
BETA-LACTAM 0.8335 0.8299 0.8355 0.4518 0.8424 0.8584
GLYCOPEPTIDE 0.8284 0.8353 0.8451 0.6048 0.7637 0.8416
TRIMETHOPRIM 0.9630 0.9625 0.9434 0.6527 0.9068 0.9419
FSI 0.8578 0.8732 0.8683 0.1412 0.7443 0.8565
TETRACYCLINE 0.7923 0.7932 0.8241 0.6617 0.7824 0.8069
SULFONAMIDE 1.0000 1.0000 1.0000 0.8333 0.9836 1.0000
FOSFOMYCIN 0.7826 0.7826 0.9524 0.2778 0.7692 0.8696
PHENICOL 0.5366 0.5500 0.5823 0.2000 0.4675 0.5946
QUINOLONE 0.9804 0.7805 0.4375 0.8136 0.9600 0.9804
STREPTOGRAMIN 0.5000 0.5000 0.0000 0.0645 0.0000 0.5000
BACITRACIN 0.9524 1.0000 0.9524 0.5405 1.0000 1.0000
RIFAMYCIN 0.6667 0.6667 0.5000 0.0385 0.6667 0.6667
MLS 0.8000 0.6667 0.2222 0.0976 0.4000 1.0000
Macro-average 0.8258 0.8103 0.7303 0.4499 0.7399 0.8555
Weighted-average 0.8423 0.8423 0.8419 0.4916 0.8097 0.8591

‘Macro-average’ means that we average the f1-score of each individual class; ‘Weighted-average’ means that we average the f1-score of each individual class
weighted by the number of sequences. The best values of f1-score for per class are in bold.

Table 6. ARG-SHINE outperforms existing ARG classification programs
and the component methods in terms of classification mean accuracy and
weighted-average F1-score on the COALA100 test data

Methods Accuracy
Macro-average

F1-score
Weighted-average

F1-score

BLAST best hit 0.9066 0.9131 0.9221
TRAC 0.9043 0.8963 0.9020
ARG-CNN 0.9219 0.9176 0.9206
ARG-InterPro 0.8689 0.8135 0.8654
ARG-KNN 0.9112 0.9215 0.9266
ARG-SHINE 0.9286 0.9225 0.9276

The best results among all the methods and best results among the stand-
alone methods are in bold.

our COALA90 training database. ARG-SHINE correctly
classifies 328 of the 332 sequences. For the other four se-
quences, three of them are annotated as ‘efflux transporter-
like’, which does not match the ARG class labels of our
database, and our database does not contain the category
of another sequence.

Willms et al. (40) used function-based metagenomic
library screening to discover novel sulfonamide and
tetracycline resistance genes in soil samples, and iden-
tified eight unknown ARGs (GenBank: MK159018 to
MK159025). Three of the eight sequences have low iden-
tity scores (<50%, BLAST) against our COALA90 train-
ing data (database). ARG-SHINE correctly classifies seven
of eight novel ARGs into the SULFONAMIDE class
or the TETRACYCLINE class. ‘pLAEG3 tet01’ (Gen-
Bank: MK159022) is classified into the PHENICOL (AM-
PHENICOL) class by ARG-SHINE. As shown in Table
6 of (40), the gene also influences the effect of lincomycin
antibiotic, belonging to the LINCOSAMIDE class. As
presented in Figure 1A of (7), antibiotics in the LIN-
COSAMIDE class, and antibiotics in the AMPHENI-
COL class share the same target site. The COALA90
database does not contain the LINCOSAMIDE class.
Therefore, it is understandable that ARG-SHINE classi-

fies the pLAEG3 tet01 (GenBank: MK159022) into the
PHENICOL class.

DISCUSSION

In this paper, we developed an ensemble method, ARG-
SHINE, for ARG classification based on LTR. ARG-
SHINE consists of two modules for extracting differ-
ent features and achieves better performance compared
to existing methods. The ‘Component module’ contains
three component methods, and they are applied for ARG
classification. The component methods are then inte-
grated using stat-of-the-art LTR ensemble method. To the
best of our knowledge, this is the first time that pro-
tein domains/families/motifs are used for ARG classifi-
cation and they are effectively integrated with alignment-
based and amino acid representation-based deep learning
methods. We evaluated ARG-SHINE and other methods
on two benchmark datasets, COALA100 and COALA90,
and showed that ARG-SHINE outperforms other avail-
able ARG classification methods including DeepARG and
TRAC. Moreover, compared with BLAST best hit, our fi-
nal model can achieve much better performance on the se-
quences with low identity score (<50%) against the training
database, and slightly better performance on the sequences
with high identity score against the database (Table 4). Note
that two of the component methods, ARG-CNN and ARG-
InterPro, can also achieve better performance compared
with other published methods. Furthermore, ARG-KNN
and BLAST best hit usually have better performance than
the DIAMOND best hit and DeepARG-LS in our experi-
ments.

Without changing any parameters of the model trained
by the COALA90 dataset, we also tested ARG-SHINE on
some novel ARGs identified by functional metagenomics.
Among the eight novel ARGs from the SULFONAMIDE
class or the TETRACYCLINE class, ARG-SHINE cor-
rectly classified seven ARGs, with the eighth classification
sharing the same antibiotic target site with the true class.
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Among the 332 ARGs annotated by Campbell et al. (38),
ARG-SHINE correctly classified 328 ARGs.

Despite the successes of ARG-SHINE for ARG classi-
fication, it has several limitations. First, we only focus on
ARG classification using ARG-like protein sequences. If
users want to apply ARG-SHINE on the genes, including
the genes that are not ARGs, DIAMOND or other meth-
ods need to be used to select the ARG-like sequences like
DeepARG does. Suppose users would like to use this tool
on the assembled contigs from a metagenomic data set. We
recommend using Prodigal (41) to predict the ORFs and
to obtain the translated sequences first. Next, DIAMOND
can be used to align these translated sequences against the
ARG database. Sequences meeting the e-value and identity
requirement are considered ARG-like sequences and can be
further classified using our tool. The choice of the param-
eters for passing the ARG-like sequences is a trade-off be-
tween false positives and false negatives. If users would like
to discover more novel ARG genes at the cost of higher
false-positive rates, the parameters should be loose, and
ARG-SHINE can find more novel ARGs with a looser
threshold. Second, the ARG-like sequences cannot be cor-
rectly classified if they are not from the ARG classes in-
cluded in the database. Third, the classification accuracy of
ARG sequences for sequences with low identity score with
known ARGs is still relatively low and needs to be further
increased.

In summary, ARG-SHINE provides a powerful method
for ARG classification and integrates three component
methods using different features. The component methods
utilize sequence homology to known ARGs, protein func-
tional information, or raw sequences, respectively. Users
can also choose one of the component methods for ARG
classification in specific applications. The methods pro-
posed in this paper can be used for improving the classi-
fication of novel ARGs.
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