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Abstract 

Background Phenotypic age (PhenoAge), a widely used marker of biological aging, has been shown to be a robust 
predictor of all-cause mortality and morbidity in different populations. Existing studies on biological aging have 
primarily focused on individual domains, resulting in a lack of a comprehensive understanding of the multi-systemic 
dysregulation that occurs in aging.

Methods PhenoAge was evaluated based on a linear combination of chronological age (CA) and 9 clinical biomark-
ers in 952 multi-ethnic Asian women of reproductive age. Phenotypic age acceleration (PhenoAgeAccel), an aging 
biomarker, represents PhenoAge after adjusting for CA. This study conducts an in-depth association analysis of Pheno-
AgeAccel with clinical, nutritional, lipidomic, gut microbiome, and genetic factors.

Results Higher adiposity, glycaemia, plasma saturated fatty acids, kynurenine pathway metabolites, GlycA, ribofla-
vin, nicotinamide, and insulin-like growth factor binding proteins were positively associated with PhenoAgeAccel. 
Conversely, a healthier diet and higher levels of pyridoxal phosphate, all-trans retinol, betaine, tryptophan, glutamine, 
histidine, apolipoprotein B, and insulin-like growth factors were inversely associated with PhenoAgeAccel. Lipidomic 
analysis found 132 lipid species linked to PhenoAgeAccel, with PC(O-36:0) showing the strongest positive association 
and CE(24:5) demonstrating the strongest inverse association. A genome-wide association study identified rs9864994 
as the top genetic variant (P = 5.69E-07) from the ZDHHC19 gene. Gut microbiome analysis revealed that Erysipel-
otrichaceae UCG-003 and Bacteroides vulgatus were inversely associated with PhenoAgeAccel. Integrative network 
analysis of aging-related factors underscored the intricate links among clinical, nutritional and lipidomic variables, 
such as positive associations between kynurenine pathway metabolites, amino acids, adiposity, and insulin resistance. 
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Furthermore, potential mediation effects of blood biomarkers related to inflammation, immune response, and nutri-
tional and energy metabolism were observed in the associations of diet, adiposity, genetic variants, and gut microbial 
species with PhenoAgeAccel.

Conclusions Our findings provide a comprehensive analysis of aging-related factors across multiple platforms, 
delineating their complex interconnections. This study is the first to report novel signatures in lipidomics, gut microbi-
ome and blood biomarkers specifically associated with PhenoAgeAccel. These insights are invaluable in understand-
ing the molecular and metabolic mechanisms underlying biological aging and shed light on potential interventions 
to mitigate accelerated biological aging by targeting modifiable factors.

Keywords Biological aging, PhenoAge, Age acceleration, GWAS, Lipidomics, Gut microbiome

Background
Aging is a complex biological process characterized by 
several hallmark features such as chronic inflammation, 
genomic instability, epigenetic alterations, cellular senes-
cence and mitochondrial dysfunction, leading to deterio-
ration in function [1]. It is one of the leading risk factors 
for many chronic diseases such as type 2 diabetes, car-
diovascular disease, dementia, and cancer [2, 3]. Thus, 
in a rapidly aging society, research into the mechanisms 
underlying aging can provide insights into how to extend 
healthy longevity by delaying the onset of age-related dis-
eases. Biological aging is an increase in the rate of decline 
in physiological systems and functional ability that 
involves multiple organs and is gradual and progressive 
[4, 5]. While everyone ages chronologically at the same 
rate, substantial variance exists in biological aging. Thus, 
the identification of early life biomarkers to identify indi-
viduals at risk of accelerated biological aging may help in 
the prevention of age-related chronic diseases. Generally, 
women live longer and have lower biological ages than 
men, however there is a mortality-morbidity paradox 
where women on average appear to have poorer health in 
later life [6]. Hence, to address this paradox and promote 
healthy aging, there is a need to understand the funda-
mental cellular and molecular mechanisms of biological 
aging in women to prevent morbidity in older age.

Many biomarker assays have been developed to meas-
ure biological aging, such as the epigenetic clock [7], 
telomere length, metabolomics-based scores, and com-
posite clinical biomarkers. There is no perfect gold-
standard biological aging clock, however, composite 
clinical biomarkers representing a manifestation of mul-
tifactorial aging processes, have shown better predic-
tive performance in morbidity and mortality than other 
markers such as the epigenetic clock [8, 9]. Most com-
posite clinical biomarkers incorporate routine clinical 
biomarkers [10], and may include physiological clinical 
measures such as body mass index (BMI), blood pressure, 
hand grip strength and lung function [11, 12].

A measure of biological age, known as Phenotypic Age 
or PhenoAge, was developed using clinical data from the 

third National Health and Nutrition Examination Survey 
(NHANES) [13], and validated in the fourth NHANES 
[9]. PhenoAge incorporates composite routine clinical 
haematology and chemistry biomarkers (albumin, creati-
nine, glucose, C-reactive protein (CRP), lymphocyte per-
cent, mean red cell volume, red cell distribution width, 
alkaline phosphatase, and white blood cell count) based 
on parametrization from a Gompertz mortality model 
and was optimized to differentiate mortality risk among 
persons of the same chronological age (CA) [9, 13]. Phe-
noAge was shown to be a robust predictor of aging out-
comes, strongly predicting risk of all-cause mortality in 
large cohorts, and in the general US population [9, 13]. 
BioAge, was another measure of biological age based on 
CA and 7 biomarkers including albumin, alkaline phos-
phatase, creatinine, C-reactive protein, glycated hemo-
globin (HbA1c), SBP, and total cholesterol [10]. It was 
also trained in the third NHANES for mortality predic-
tion. Compared to BioAge, PhenoAge performed better 
for prediction of mortality among healthy individuals [9]. 
In this study, we selected PhenoAge as the measure of 
biological aging as it uses routine clinical biomarkers that 
are readily available and can predict mortality and mor-
bidity risk for healthy people. PhenoAge has been applied 
to Asian populations [14, 15] and showed a high corre-
lation with CA (R = 0.8 ~ 0.96). PhenoAge was shown to 
predict mortality in Chinese patients with multi-vessel 
coronary artery disease [14]. Several studies have exam-
ined the association of lifestyle factors with PhenoAge 
[16, 17]. Genome-wide association studies of Pheno-
AgeAccel (PhenoAge after adjusting for CA) have been 
reported using data from the UK biobank [18] and Tai-
wan biobank [15] cohorts. One common genetic variant 
(rs1260326) in the GCKR (glucokinase regulator) gene 
was found in both studies.

Although aging is characterized by the simultane-
ous dysregulation of multiple systems, most studies on 
biological aging focus on a single system. To compre-
hensively understand the physiological and molecular 
aspects of biological aging, an integrative and multifac-
eted approach is essential. Moreover, few studies have 
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focussed on women alone, and the majority of studies 
predominantly featured Caucasian populations. The Sin-
gapore Preconception Study of Long-Term Maternal and 
Child Outcomes (S-PRESTO) longitudinal preconcep-
tion cohort, a deeply-phenotyped, multi-ethnic cohort 
of Asian women of reproductive age, provides a prom-
ising opportunity to address these research gaps. We 
chose to study relatively young Asian women in order 
to characterize the pre-disease state, before the tipping 
point, where disease progression is still reversible [19]. 
To deepen our understanding of the mechanisms of bio-
logical aging in Asian women, we investigated the asso-
ciation of PhenoAgeAccel with various factors, including 
clinical, nutritional, lipidomic, gut microbiome and 
genetic factors. Furthermore, we applied an integrative 
network analysis to unveil potential biological pathways 
associated with biological aging.

Methods
Study population
Participants were from S-PRESTO (registered on Clini-
calTrials.gov as NCT03531658), a prospective precon-
ception cohort study in Singapore that recruited 1032 
Chinese, Malay or Indian (or any combination thereof ) 
women aged 18–45 years, attempting to conceive within 
the next 12 months, from February 2015 to October 2017 
[20]. The S-PRESTO study was designed to examine the 
influences of events in the pre-conceptional period and 
early pregnancy on metabolic and mental health out-
comes for both mother and offspring in later life. The 
primary outcomes were offspring adiposity and neuro-
cognitive and behavioural development. The secondary 
outcomes included gestational age, mode of delivery, 
offspring and maternal metabolic and mental health. 
Women who were currently pregnant, were using oral 
or implanted contraception, or who were undergoing 
fertility treatment (apart from those taking clomiphene 
or letrozole alone in the past 1  month) were excluded 
from the study. Women with health conditions includ-
ing established diabetes, on systemic steroids, anticon-
vulsants, HIV or Hepatitis B or C medication in the 
past 1 month were also excluded. The cohort profile has 
been described in detail [20]. This study was conducted 
according to the guidelines laid down in the Declaration 
of Helsinki. Ethics approval was obtained from the Sin-
gHealth Centralized Institute Review Board (reference 
2014/692/D). All participants provided written informed 
consent.

Clinical characteristics of participants
At the baseline visit, information on sociodemographic 
characteristics, obstetric history and lifestyle factors was 
obtained, together with measurements of weight, height, 

waist and hip circumference, blood pressure (BP) and 
fasting blood collection. A fecal collection kit was also 
provided to the participants to return to the laboratory 
by courier. Ethnicity was based on self-reported paren-
tal ethnic group and coded as Chinese, Malay, Indian or 
mixed ethnicity. Education was assessed by the highest 
attainment of academic level, classified as below, or at/
above university levels. Physical activity was evaluated 
using metabolic equivalent task scores in minutes (MET-
minutes) using data obtained from an accelerometer 
(Actigraph wGT3X-BT) worn over 7 days. Time in physi-
cal activity was calculated using prediction equations 
according to Hildebrand et al. [21]. The Pittsburgh Sleep 
Quality Index (PSQI) was used to estimate sleep dura-
tion and quality [22]. The PSQI contains 19 items that 
generate 7 subcomponents scores (i.e., subjective sleep 
quality, sleep latency, sleep duration, habitual sleep effi-
ciency, sleep disturbances, sleep medication, and daytime 
functioning) on a 0–3 scale and a summed global score 
ranging from 0 to 21; higher scores represent poorer sub-
jective sleep quality. Dietary intake was assessed using a 
validated food frequency questionnaire [23], and healthy 
eating index (HEI) scores were calculated to reflect over-
all diet quality based on recommendations from the Sin-
gapore dietary guidelines for non-pregnant women [24]. 
Smoking exposure was defined as any active or passive 
cigarette smoking. Alcohol intake was assessed based on 
the consumption of any alcoholic beverage in the past 
three months.

Weight was measured using a SECA 803 weighing scale 
(Hamburg, Germany) to the nearest 0.1  kg; height was 
measured using a SECA 213 stadiometer (Hamburg, Ger-
many) to the nearest 0.1  cm. Waist circumference was 
measured using a SECA 212 non-stretchable measur-
ing tape (Hamburg, Germany), at the uppermost lateral 
border of the ilium. Blood pressure was measured on the 
right upper arm using a semi-automatic blood pressure 
monitor (Microlife BP 3AS1-2). All measurements were 
taken in duplicate and averaged. Body mass index (BMI) 
was calculated as weight (kg)/ height (m)2. Body fat anal-
ysis was performed using air-displacement plethysmog-
raphy on the Bod PodTM® Body Composition Tracking 
System (Cosmed, Rome, Italy). The participants wore the 
recommended form-fitting clothing and were weighed on 
a calibrated electronic scale. The mean of two measure-
ments was used as the body volume and the fat mass (kg) 
and fat free mass (kg) were determined using the manu-
facturer’s software (software version 5.2.0) [25].

The fat in the abdomen, liver, muscle, and pancreas 
was determined by magnetic resonance imaging (MRI) 
and spectroscopy (MRS) on Siemens Skyra 3 T MR scan-
ner. The liver spectra were obtained from left and right 
lobes of the liver by point-resolved spectroscopy (PRESS) 
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sequence. The water and lipid peak areas were determined 
using LCModel [26] and used to estimate liver fat percent-
age by weight using validated methods [27]. The muscle 
spectra were obtained from the soleus and tibialis muscle 
compartments using PRESS sequence and processed using 
LCModel. The fat within the muscle fibres (intramyocellu-
lar lipids) was expressed as a percentage of the water signal. 
Abdominal fat was determined from axial image slices of 
the abdomen using 2-point Dixon sequence. Deep learn-

ing based automated segmentation was performed to seg-
ment and quantify subcutaneous (SAT) and visceral (VAT) 
adipose tissue depots between L1 and L5 vertebrae [28]. 
To estimate pancreatic fat, multiple regions of interest 
(ROIs) were selected within the pancreas (head-body and 
tail) in the fat fraction image obtained using 6-point Dixon 
sequence. The pancreatic fat was quantified as the mean 
proton density fat fraction within the selected ROIs.

Data concerning depressive and anxiety symptoms 
were collected through the administration of question-
naires [29]. Depressive symptoms were evaluated using 
the Edinburgh Postnatal Depression Scale (EPDS), which 
comprises ten questions about typical depressive symp-
toms experienced within the past week. Anxiety was 
assessed using the Spielberger State-Trait Anxiety Inven-
tory (STAI), featuring 40 items graded on a 4-point Likert 
scale. Of these items, twenty were designated to measure 
the state of anxiety, capturing temporary anxiety char-
acteristics (e.g., anxiety disorders), while the remaining 
twenty items assessed the trait aspect of anxiety, reflect-
ing a more enduring personality trait such as an anxious 
disposition.

Derivation of PhenoAge acceleration
Mean red blood cell volume, red cell distribution width, 
white blood cell count, and lymphocyte percent were 
analysed in whole blood collected in EDTA blood tubes 
at the KK Women’s and Children’s hospital (KKH) clini-
cal laboratory [20]. Fasting glucose was analysed in 
plasma from blood collected in fluoride blood tubes at 
the KK Women’s and Children’s hospital (KKH) clini-
cal laboratory. Creatinine, C-reactive protein and alka-
line phosphatase were analysed in serum on Alinity c 
(Abbott, Illinois, USA) at the National University Hos-
pital (NUH) clinical laboratory. Albumin was measured 
in EDTA plasma using an automated nuclear magnetic 
resonance (NMR)-based high throughput metabolomics 

platform (Nightingale Health Ltd., Helsinki, Finland). 
These 9 biomarkers were combined with CA in the equa-
tion described in Liu et al. [9] to obtain phenotypic age.

where

Phenotypic age acceleration (PhenoAgeAccel) was cal-
culated as the residuals resulting from the regression of 
phenotypic age on chronological age [9].

Blood biomarkers
A total of 70 biomarkers were measured in blood sam-
ples. They include lipid profile, liver enzymes, glycaemic 
measures, vitamins, metabolites, growth factors, fatty 
acids, amino acids, and protein biomarkers.

A clinical lipid panel (triglyceride, total cholesterol, 
HDL-cholesterol) and liver enzymes (alanine transami-
nase (ALT), aspartate transaminase (AST) and gamma 
glutamyl transferase (GGT)) were measured in serum 
samples using enzymatic colorimetric methods on 
AU5800 (Beckman Coulter, USA) at the National Univer-
sity Hospital (NUH) clinical laboratory. LDL-cholesterol 
was calculated using the Friedewald equation (LDL-
cholesterol (mmol/L) = Total cholesterol (mmol/L) – 
HDL-cholesterol (mmol/L) – triglyceride (mmol/L) /2.2). 
Fasting plasma glucose (FPG) and insulin concentrations 
were measured after an overnight fasting (8–14  h), and 
2-h post-load glucose concentration (2hPG) was meas-
ured at two hours after taking 75 g of glucose. HOMA-
IR was calculated by the mathematical equation (insulin 
(mU/mL) x FPG (mmol/L)/22.5) [30]. HbA1c was ana-
lysed in whole blood at the KK Women’s and Children’s 
hospital (KKH) clinical laboratory. Fasting insulin con-
centration was measured using immunoassay on Beck-
man DxI 800.

Serum folate and vitamin B12 were measured on 
Access2 (Beckman Coulter, USA) at the NUH clinical 
laboratory. Other vitamins (thiamine, riboflavin, nicoti-
namide, pyridoxal phosphate, vitamin D, all-trans retinol, 
alpha tocopherol and gamma tocopherol), one carbon 
pathway metabolites (homocysteine, methionine, betaine, 
choline, dimethylglycine, cystathionine and cysteine), 
and tryptophan metabolites (tryptophan, kynurenine, 

PhenotypicAge = 141.50+
ln[−0.00553× ln(1−M)]

0.09165

M = 1− exp(
−1.51724 × exp(xb)

0.0076927
)

xb = − 19.907− 0.0336× albumin+ 0.0095× creatinine + 0.1953× glucose + 0.0954 × ln(CRP)

− 0.0120× lymphocyte percent + 0.0268×mean cell volume + 0.3306× red blood cell distribution width

+ 0.00188× alkaline phosphatase + 0.0554 × white blood cell count + 0.0804 × chronological age
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kynurenic acid, 2-hydroxylynurenine, xanthurenic acid, 
3-hydroxyanthranilic acid, quinolinic acid and neopterin) 
were measured in EDTA plasma using a targeted liquid 
chromatography-tandem mass spectrometry platform 
(BEVITAL AS Ltd., Bergen, Norway). Growth hormone, 
insulin-like growth factors (IGF-1 and IGF-2) and insu-
lin-like growth factor binding proteins (IGFBP-1, IGFBP-3, 
IGFBP-4, IGFBP-5, IGFBP-6 and IGFBP-7) were meas-
ured using a multiplex Luminex assay. Fatty acid (FA) 
measures (total FAs, degree of unsaturation, n-3 FAs (%), 
n-6 FAs (%), PUFAs (polyunsaturated FAs, %), MUFAs 
(monounsaturated FAs, %), SFAs (saturated FAs, %), LA 
(linoleic acid, %), DHA (docosahexaenoic acid, %) and 
two ratios: PUFAs / MUFAs and n-6 FAs / n-3 FAs), amino 
acids (alanine, glutamine, glycine, histidine, total concentra-
tion of branched-chain amino acids, isoleucine, leucine, 
valine, phenylalanine and tyrosine), apolipoproteins and 
glycoprotein acetyls (GlycA) were measured in EDTA 
plasma using the high-throughput proton Nuclear Mag-
netic Resonance (1HNMR) metabolomics (Nightingale 
Health, Helsinki, Finland).

Plasma lipidomics
High coverage quantitative lipidomics was performed 
as described previously [31]. Briefly, total lipids were 
extracted using a single-phase butanol: methanol (1:1, 
v/v) extraction solvent containing class specific internal 
standards. These lipid extracts were analysed by using 
Agilent 6495 QQQ mass spectrometer interfaced with an 
Agilent 1290 series HPLC system. Lipids were separated 
on a ZORBAX RRHD UHPLC  C18 column (2.1 × 100 mm 
1.8  mm, Agilent Technologies) with temperature main-
tained at 45 ºC. Mass spectrometry analysis was per-
formed in ESI positive ion mode with dynamic multiple 
reaction monitoring (dMRM). QC samples were analysed 
along with the samples to monitor sample extraction effi-
ciency as well as LC–MS performance and were subse-
quently used to do batch corrections. Lipid species were 
dropped if quality control coefficient of variation were 
greater than 25% after batch correction. Finally, a total 
of 689 plasma lipid species representing 36 lipid classes 
were used for the downstream data analysis.

Whole genome sequencing
DNA extraction, library preparation, sequencing and 
quality check were reported previously [32]. Briefly, 
samples were sequenced on the Illumina HiSeq 4000 
platform (30 × and 2 × 150  bp). Samples failed by vari-
ant quality score recalibration (VQSR) were removed. 
Reads were aligned to human reference genome GRCh37 
using BWA MEM (0.7.15) and duplicates were removed 
with sambamba (0.6.5). BAM files were processed with 
GATK version 4.0. Samples with cryptic relatedness, or 

ethnic discrepancies were excluded. Bi-allelic SNPs were 
extracted for genome-wide association studies.

Gut microbiome
The fresh fecal samples were collected and delivered to 
the lab within 24  h with cold chain transportation and 
stored in the -80 °C freezer. The fecal genomic DNA was 
extracted from 250 mg feces using the Qiagen PowerFecal 
Pro Kit (QIAGEN, Inc., Netherlands). Amplification of 
the V4 region of the 16S rRNA gene was carried out with 
the updated 515F (Parada)—806R (Apprill) primer set 
(FWD-GTG YCA GCMGCC GCG GTAA; REV-GGA CTA 
CNVGGG TWT CTAAT) [33–35]. The jagged ends of 
DNA fragments were converted into blunt ends by using 
T4 DNA polymerase, Klenow Fragment and T4 Polynu-
cleotide Kinase. Then an ’A’ base was added to each 3’ end 
to make it easier to add adapters. After all that, fragments 
too short were removed by AMPure beads. Paired-end 
sequencing of 2 × 250  bp was performed using the Illu-
mina HiSeq 2500 platform (Illumina, San Diego, CA, 
USA) at BGI Genomics Co., Ltd (Shenzhen, China).

Statistical analysis
Out of 1032 women, 952 had blood collected for meas-
urement, with a small proportion of women not fasted 
or refused blood collection or unable to collect blood. 
Finally, a total of 952 women were included in this study 
with available CA and the measures of nine biomarkers 
required in the equation of phenotypic age described in 
Liu et al. [9]. A subset of participants had available clini-
cal, nutritional, lipidomic (N = 923), gut microbiome 
(N = 630) and genetic data (N = 882) after quality check. 
Sample sizes of clinical and nutritional data are listed in 
Additional file 1: Table S1-2. The flow chart of the study 
is shown in Fig.  1A. Normality was checked for all the 
continuous variables. As the distributions of some con-
tinuous variables were skewed, log10 transformation was 
applied for further analysis. The association analyses with 
PhenoAgeAccel were performed using IBM SPSS Statis-
tics v26 and MATLAB 2022b.

Clinical analysis
Linear regression was used to study the association 
between PhenoAgeAccel (outcome) and clinical variables 
(predictors) using univariate and multivariate analyses. 
For continuous predictors, z-scores of predictor variables 
were used in regression analysis, and the effect sizes β 
were reported as years of age acceleration per SD change 
in predictors. For categorical predictors (i.e., ethnicity, 
educational attainment, smoking status, alcohol assump-
tion and parity), the effect sizes β were reported as dif-
ference in years of age acceleration between groups. Age, 
BMI, ethnicity, educational attainment and parity were 
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adjusted in multivariate analysis. The participants with 
missing values were excluded in the analysis of each fac-
tor. The adjusted p-values  (Padj) were calculated by the 
Benjamini-Hochberg (BH) method for multiple testing 
correction.

Lipidomic analysis
Plasma lipidomics data based on LC–MS/MS quantifica-
tion were  log10 transformed for analysis. The association 
analysis was applied between the log-transformed lipid-
omic data and PhenoAgeAccel by linear regression after 
the adjustment for age, ethnicity, educational attainment, 
parity and BMI (N = 923). The regression coefficients (β) 
were converted to % change in lipid concentration per 
year of age acceleration (% change =  (10β– 1) × 100). The 
adjusted p-values  (Padj) were calculated by the Benjamini-
Hochberg (BH) method for multiple testing correction.

Genome‑wide association studies (GWAS)
Several participants with mixed ethnicity were excluded 
from this analysis. In total, 882 subjects (667 Chinese, 
134 Malay and 81 Indian) were studied in this GWAS 
analysis. SNPs with call rates less than 95% or minor 
allele frequency (MAF) less than 5% or Hardy–Wein-
berg equilibrium (HWE) P value less than 1.00E-06 were 

excluded. Finally, 5,835,822 SNPs were used for GWAS. 
The genotypes of each genetic variant were coded as 
0-AA, 1-Aa and 2-aa using additive model (A- reference 
allele and a- alternate allele). The association between the 
coded genotype data and PhenoAgeAccel were studied in 
regression analysis after the adjustment of age and eth-
nicity. The effect size is denoted in years of age accelera-
tion per dosage change of effect allele (alternate allele). 
GWAS was performed in PLINK 1.9.

Gut microbiome analysis
The initial raw sequencing data underwent process-
ing using DADA2 to obtain the number of Amplicon 
Sequence Variant (ASV) in each sample [36]. Taxonomic 
classifications for each ASV’s representative sequence 
were assigned employing a Naive Bayes classifier trained 
on the V4 region of the 16S rRNA gene with the SILVA 
database v138.1 in QIIME2 [37, 38]. The phylogenetic 
tree was constructed with the SEPP method within the 
fragment-insertion plugin [39]. A total of 630 women 
contributed fecal samples for 16S rRNA gene V4 region 
sequencing, resulting in a dataset comprising 54,129,873 
high-quality reads. The sequencing depth averaged 
85,920 ± 25,339 reads per sample. In total, 1,191 ASVs 
were obtained for subsequent analysis. To mitigate dis-
crepancies arising from varying sequencing depths 

Fig. 1 The phenotypic age acceleration (PhenoAgeAccel) study. A A flow chart of sample selection and analysis steps. B A diagram illustrating 
the investigation of PhenoAgeAccel through the integration of clinical measurements, blood biomarkers and multi-omics
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among the samples, the abundances of ASVs in each 
sample underwent rarefaction to a standardized depth 
of 20,000 reads per sample for subsequent analysis. The 
diversity plugin in QIIME2 was utilized for the genera-
tion of alpha-diversity indices, beta-diversity distance 
matrices, and ordination matrices through the core-
metrics-phylogenetic method. Multi-way ADONIS per-
mutation-based statistical test was applied to determine 
whether gut microbiome was associated with Pheno-
AgeAccel after adjusting for the effects of covariates in 
vegan-R. The gut microbes associated with PhenoAgeAc-
cel were identified using a Random Forest Regressor with 
q2-sample-classifier [40], which involved a nested strati-
fied tenfold cross-validation approach using 500 decision 
trees. The seed used by random number generator is 123. 
Association between alpha-diversity indices/microbial 
species and age acceleration adjusting for covariates was 
performed with MaAsLin2 [41].

Network analysis
Integrative network analysis was performed based 
on Spearman’s rank correlation coefficients using the 
Cytoscape software (version 3.10.1) [42]. Two networks 
were studied for (1) the interconnection between ele-
ments of PhenoAge and selected aging-related factors, 
and (2) the interconnection among aging-related fac-
tors. Pairwise correlation heat map was generated for 
the overview of their interconnection. To simplify the 
networks, the connections with a correlation coefficient 
of ≥ 0.30 were selected for network visualization. The 
correlation coefficients between them were used as the 
edge table. The factors were categorized based on their 
properties in the node table.

Mediation analysis
Mediation analysis was performed to investigate the 
effects of candidate mediators on the associations 
between predictors and the outcome (PhenoAgeAccel) 
using the “mediate” function from the R package “media-
tion” (boot = TRUE, sims = 1000, R version 4.4.1). First, 
mediation analysis was performed for 10 predictors (diet 
(HEI score), adiposity (fat mass, liver fat, and visceral adi-
pose tissue), 3 genetic variants and 3 gut microbial spe-
cies) and 36 candidate mediators (aging-related blood 
biomarkers). Second, mediation analysis of 7 predictors 
(diet, adiposity, and genetic variants) and 3 candidate 
mediators (gut microbial species) were investigated. Age, 
ethnicity, educational attainment, parity and BMI were 
adjusted in analysis models. Linear models were used in 
most of the analysis, except that generalized linear mod-
els were applied for gut microbial species. The results of 
average causal mediation effects (ACME), average direct 
effects, and total effect were reported. For each predictor, 

the adjusted p-values were calculated by the Benjamini-
Hochberg (BH) method for multiple testing correction.

Results
Participant characteristics and PhenoAgeAccel
Depending on the availability of key variables required 
for this study, data from 952 of 1032 women were ana-
lysed from the S-PRESTO cohort. PhenoAge of each par-
ticipant was calculated based on CA and nine biomarkers 
(Additional file 1: Table S1 and Methods). Subsequently, 
PhenoAgeAccel was calculated as the residuals resulting 
from the regression of PhenoAge on CA. Clinical char-
acteristics of all participants in this study are shown in 
Table 1. A flow chart outlining the steps for sample selec-
tion and data analysis is provided in Fig. 1A. The associa-
tion with PhenoAgeAccel was investigated through the 
integration of clinical measurements, blood biomarkers, 
and multi-omics (Fig.  1B). In this study, the majority of 
the participants were Chinese (72%), with 63% having a 
university-level education and 65% being nulliparous. 
The mean PhenoAge (Mean ± SD: 26.91 ± 6.68) was lower 
than the mean chronological age (31.34 ± 3.72), with a 
strong correlation (R = 0.52, Fig. 2A and Additional file 1: 
Fig. S1A). PhenoAgeAccel was fairly normally distributed 
(0.00 ± 5.69, Fig.  2B) with some outliers in the positive 
(older) direction. Among all the participants, 427 (45%) 
exhibited an accelerated biological aging (positive Phe-
noAgeAccel), while 525 (55%) displayed a decelerated 
biological aging (negative PhenoAgeAccel). PhenoAg-
eAccel was slightly higher in older women (0.23 ± 4.94, 
N = 140, aged ≥ 35  years) compared to younger women 
(-0.04 ± 5.81, N = 812, aged < 35 years), but the group dif-
ference was not statistically significant (Additional file 1: 
Fig. S1B).

Compared to Chinese women, Malay had a younger 
CA and a similar PhenoAge (Additional file 1: Fig. S1C), 
but a higher PhenoAgeAccel (Fig.  2C). Indian women 
had the highest PhenoAge (Additional file  1: Fig. S1C) 
and PhenoAgeAccel (Fig.  2C) amongst all the ethnici-
ties. Higher educational attainment was associated with 
lower PhenoAgeAccel (Table 1 and Fig. 2D). Multiparous 
women (Mean ± SD: 0.21 ± 5.82) had a higher PhenoAg-
eAccel than nulliparous women (-0.10 ± 5.63), but the 
association was not strong (Table  1 and Fig.  2E). There 
was a strong positive association between BMI and Phe-
noAgeAccel (Fig. 2F). Specifically, PhenoAge was acceler-
ated by 2.50 years per SD increase in BMI. Notably, this 
effect was mainly driven by variation in weight, as height 
was not associated with PhenoAgeAccel (Table  1). To 
account for the effects of potential confounding factors, 
chronological age, ethnicity, educational attainment, par-
ity, and BMI were adjusted for further analysis.
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Clinical factors associated with PhenoAgeAccel
Both univariate and multivariate analyses of clinical 
measurements (i.e. adiposity, blood pressure, pregnant 
status within 12 months after recruitment, mental health, 
and lifestyle) were performed on PhenoAgeAccel (Addi-
tional file 1: Table S2). Effect size β was reported as years 
of age acceleration per SD change for continuous predic-
tors or difference in years of age acceleration between 
groups for categorical predictors.

As for adiposity factors, fat mass (β = 1.86 and 
P = 3.61E-03), visceral adipose tissue (β = 1.69 and 
P = 1.08E-04) and liver fat (β = 0.67 and P = 3.45E-02) dis-
played a strong positive association with PhenoAgeAc-
cel even after adjusting for covariates (Fig.  2G). Waist 
to hip ratio, fat free mass, subcutaneous adipose tissue, 
pancreatic fat, intramyocellular fat (tibialis anterior), 
intramyocellular fat (soleus) and blood pressure only 
exhibited a strong association in univariate analysis, but 
lost significance after adjusting for covariates. This study 
also explored the association between PhenoAgeAccel 
and mental health using the EPDS and STAI scores. No 
strong association was observed. The association of fer-
tility with PhenoAgeAccel revealed that the women who 
conceived within 12 months after recruitment had lower 
PhenoAgeAccel (-0.51 ± 5.58) compared to those who did 
not conceive within the same timeframe (0.43 ± 5.76). 
However, this association was only significant in uni-
variate analysis (β = -0.94 and P = 1.22E-02). Women who 

were smokers had higher PhenoAgeAccel (β = 1.99 and 
P = 8.12E-04) compared to non-smokers, while women 
who were alcohol drinkers had lower PhenoAgeAccel 
(β = -1.07 and P = 7.37E-03) compared to non-drinkers in 
univariate analysis, but the associations lost significance 
after adjusting for covariates. There was no observed 
association of PhenoAgeAccel with physical activity, 
sleep duration and sleep quality. A higher HEI score was 
associated with lower PhenoAgeAccel (β = -0.45 and 
P = 8.39E-03, Fig. 2G).

Blood biomarkers associated with PhenoAgeAccel
In this study, we investigated the association between 
PhenoAgeAccel and a wide range of biomarkers meas-
ured in serum or plasma (Additional file  1: Table  S2). 
For glycaemic traits, since fasting glucose was one of the 
biomarkers included in the calculation of PhenoAge and 
contributed positively to it (Additional file  1: Table  S1), 
higher levels of 2-h post-load glucose, fasting insulin, 
HbA1c and HOMA-IR were associated with acceler-
ated biological aging, as expected. Serum triglyceride 
(β = 0.97 and P = 1.42E-07), LDL-cholesterol (β = 0.42 and 
P = 2.18E-02), liver enzymes (ALT: β = 0.89 and P = 1.47E-
06 and AST: β = 0.58 and P = 1.52E-03 and GGT: β = 1.22 
and P = 3.06E-11) showed a positive association with 
PhenoAgeAccel, while serum HDL-cholesterol had 
an inverse association with PhenoAgeAccel (β = -1.49 
and P = 2.63E-16) in univariate analysis; however, these 

Table 1 Clinical characteristics of the participants in this study

* Association analysis with PhenoAgeAccel

Variable N Mean (SD) / % Univariate Analysis*

β (95% CI) p-value

PhenoAgeAccel (years) 952 0.00 (5.69) –- –-

PhenoAge (years) 952 26.91 (6.68) 4.85 (4.64, 5.04) 2.03E-269
Chronological Age (years) 952 31.34 (3.72) 0.00 (-0.36, 0.36) 1.00

Ethnicity

 Chinese 686 72.06% Ref Ref

 Malay 143 15.02% 3.40 (2.43, 4.37) 1.24E-11
 Indian 88 9.24% 5.17 (3.97, 6.37) 9.50E-17
 Mixed 35 3.68% 3.51 (1.67, 5.34) 1.85E-04
Educational Attainment

 Below University 352 37.01% Ref Ref

 University 599 62.99% -2.40 (-3.14, -1.67) 2.23E-10
Parity

 Nulliparous 616 64.84% Ref Ref

 Multiparous 334 35.16% 0.31 (-0.45, 1.07) 4.26E-01

Weight (kg) 947 60.99 (13.79) 2.46 (2.13, 2.79) 3.11E-44
Height (cm) 946 159.89 (5.60) 0.15 (-0.21, 0.52) 4.17E-01

Body Mass Index (kg/m2) 946 23.86 (5.27) 2.50 (2.17, 2.83) 1.26E-45



Page 9 of 23Chen et al. Genome Medicine          (2024) 16:128  

associations were not significant after adjusting for 
covariates.

Out of the ten vitamins, pyridoxal-5-phosphate 
(β = -0.51 and P = 3.43E-03) and all-trans retinol 
(β = -0.79 and P = 3.09E-06) were inversely associ-
ated with PhenoAgeAccel while thiamine (β = 0.38 and 
P = 2.33E-02), riboflavin (β = 0.43 and P = 1.08E-02) and 
nicotinamide (β = 0.57 and P = 8.81E-04) showed a posi-
tive association with PhenoAgeAccel (Additional file  1: 
Table  S2). Vitamin B12, folate and vitamin D showed 
a significant inverse association with PhenoAgeAccel 

only in univariate analysis. No strong association was 
observed between alpha/gamma tocopherol and Pheno-
AgeAccel. Among the seven plasma one-carbon pathway 
metabolites, lower betaine (β = -0.42 and P = 1.25E-02) 
and higher choline (β = 0.36 and P = 3.96E-02) and homo-
cysteine (β = 0.35 and P = 3.94E-02) levels were asso-
ciated with higher PhenoAgeAccel (Additional file  1: 
Table  S2). No association was observed for methionine. 
Dimethylglycine, cystathionine, and cysteine showed a 
positive association with PhenoAgeAccel only in uni-
variate analysis. Association of plasma metabolites in 

Fig. 2 PhenoAgeAccel and its association results. A Phenotypic age vs. chronological age. B Histogram of PhenoAgeAccel. C-E Boxplots 
of ethnicity, educational attainment and parity with PhenoAgeAccel. F PhenoAgeAccel vs. BMI. G Effect size plot of 40 aging-related factors derived 
from multivariate analysis of clinical measurements and blood biomarkers with a nominal p-value < 0.05. *: Padj < 0.05
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tryptophan metabolism with PhenoAgeAccel was studied 
(Additional file  1: Table  S2). Tryptophan (β = -0.45 and 
P = 8.25E-03) showed an inverse association with Pheno-
AgeAccel. However, kynurenine (β = 0.92 and P = 1.65E-
07), 3-hydroxykynurenine (β = 0.89 and P = 1.47E-07), 
3-hydroxyanthranilic acid (β = 1.04 and P = 3.80E-09), 
quinolinic acid (β = 1.08 and P = 1.61E-09), and neopterin 
(β = 1.52 and P = 3.92E-20) exhibited a positive associa-
tion with PhenoAgeAccel. There was no observed asso-
ciation for xanthurenic acid.

Associations of PhenoAgeAccel with plasma growth 
hormone and insulin-like growth factors were investi-
gated (Additional file  1: Table  S2). IGF-1 (β = -0.68 and 
P = 1.61E-04) and IGF-2 (β = -0.62 and P = 5.04E-04) 
exhibited an inverse association with PhenoAgeAc-
cel while IGFBP-1 (β = 0.54 and P = 1.39E-02), IGFBP-3 
(β = 0.43 and P = 1.34E-02) and IGFBP-6 (β = 0.48 and 
P = 7.04E-03) showed a positive association with Phe-
noAgeAccel. Among the plasma fatty acids, total FAs 
(β = -0.35 and P = 4.33E-02), degree of unsaturation 
(β = -0.44 and P = 1.52E-02), PUFAs (β = -0.45 and 
P = 1.74E-02), LA (β = -0.55 and P = 1.21E-03) and DHA 
(β = -0.41 and P = 2.94E-02) showed an inverse asso-
ciation with PhenoAgeAccel, whereas SFAs (β = 0.45 
and P = 7.94E-03) exhibited a positive association with 
PhenoAgeAccel (Additional file  1: Table  S2). Out of the 
plasma amino acids and proteins, higher plasma glu-
tamine (β = -0.72 and P = 1.31E-05), histidine (β = -0.49 
and P = 3.02E-03), leucine (β = -0.38 and P = 3.69E-02), 
and apolipoprotein B (ApoB) (β = -0.61 and P = 4.88E-
04) concentrations were associated with lower Pheno-
AgeAccel, while higher plasma phenylalanine (β = 0.41 
and P = 1.83E-02), tyrosine (β = 0.43 and P = 2.63E-02) 
and GlycA (β = 1.02 and P = 7.44E-07) concentrations 
were associated with higher PhenoAgeAccel (Additional 
file 1: Table S2). Overall, plasma neopterin displayed the 
strongest positive association (β = 1.52) with PhenoAg-
eAccel, while plasma all-trans retinol demonstrated the 
strongest inverse association (β = -0.79) in these 70 stud-
ied biomarkers.

In total, 40 aging-related factors (P < 0.05) were derived 
from clinical measurements and blood biomarkers and 
are illustrated in Fig.  2G. Among them, 30 showed a 
strong association with a more stringent Padj < 0.05.

Multi-omics studies of PhenoAgeAccel
Plasma lipid signatures linked with PhenoAgeAccel
Association of plasma lipidomic profile with PhenoAg-
eAccel was investigated after the adjustment of age, eth-
nicity, educational attainment, parity and BMI. Out of 
689 lipid species in 36 lipid classes, 132 showed signifi-
cance with a nominal p-value threshold (P < 0.05), and 16 

demonstrated a strong association with a more stringent 
Padj < 0.05 (Additional file 2: Table S3 and Fig. 3A-B).

For neutral lipids, higher concentrations of acylcarni-
tines (AC(16:0)), triacylglycerol (TG(48:0) and TG(50:0)) 
and diacylglycerol (DG(16:0_16:0)) with even-chain and 
saturated fatty acids were associated with higher Phe-
noAgeAccel, whereas odd-chain (AC(15:0), TG(O-54:4) 
[NL-17:1]) and unsaturated fatty acids (DG(18:2_18:2), 
TG(52:4), TG(54:6) and TG(O-54:4) [NL-18:2]) were 
associated with lower PhenoAgeAccel (Fig. 3A). Six cho-
lesterol ester species were inversely associated with Phe-
noAgeAccel regardless of chain length or unsaturation 
degree. Amongst these, CE(24:5) showed the strongest 
association (P = 1.36E-03) with 0.93% decrease in con-
centration per year increase of age acceleration (Addi-
tional file 2: Table S3).

Out of the 32 aging-associated sphingolipids, 26 from 
ceramide (Cer), deoxy-ceramide (DeoxyCer), dihy-
droceramide (dhCer), sphingosine-1-phosphate (S1P), 
sphingosine (Sph), sphingomyelin (SM) and mono/di/
trihexosylceramide (HexCer, Hex2Cer and Hex3Cer) 
lipid classes displayed a positive association with Phe-
noAgeAccel while only six lipid species (Cer(d19:1/24:0), 
Cer(d20:1/23:0), Cer1P(d18:1/16:0), GM3(d18:1/18:0), 
HexCer(d18:2/22:0)) and Hex3Cer(d18:1/18:0) showed 
an inverse association with it (Additional file 2: Table S3 
and Fig.  3A). Amongst these, 7 lipids showed a strong 
association with  Padj < 0.05 (Fig.  3B). Cer(d18:1/18:0) 
exhibited the strongest association (P = 3.77E-05) with 
0.93% increase in concentration per year increase of age 
acceleration.

For aging-associated phospholipids (PL), 51 lipid spe-
cies from phosphatidylcholine (PC), alkylphosphatidyl-
choline (PC(O)), phosphatidylethanolamine (PE), alkyl/
alkenylphosphatidylethanolamine (PE(O) and PE(P)), 
phosphatidylinositol (PI) and phosphatidylserine (PS) 
showed a positive association with PhenoAgeAccel. 
Conversely, 11 lipid species, including phosphatidyl-
choline (PC), alkenylphosphatidylcholine (PC(P)) and 
alkenylphosphatidylethanolamine (PE(P)) with odd-
chain (PC(17:0_18:2), PC(17:1_18:2), PC(P-35:2), PC(P-
17:0/20:4) and PE(P-17:0/22:6)) and branched-chain 
structures (PC(15-MHDA_22:6)), as well as certain poly-
unsaturated fatty acids (PC(16:1_22:6), PC(18:0_22:6), 
(PC(40:7) and PC(P-38:5)), displayed an inverse associa-
tion with PhenoAgeAccel (Additional file 2: Table S3 and 
Fig.  3A-B). Amongst these, 5 phospholipids showed a 
strong association with Padj < 0.05 (Fig.  3B). PC(O-36:0) 
showed the strongest positive association (P = 2.03E-05) 
by 1.26% increase in concentration per year increase of 
age acceleration, while PC(40:7) showed the strongest 
inverse association (P = 1.67E-03) by 0.61% decrease in 
concentration per year increase of age acceleration.
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Among the 20 aging-associated lysophospholipids, 
higher concentrations of lipid species from lysoalkylphos-
phatidylcholine (LPC(O)), lysophosphatidylethanolamine 

(LPE), lysophosphatidylinositol (LPI) and lysophos-
phatidylserine (LPS) were associated with higher 
PhenoAgeAccel, whereas higher concentrations of 

Fig. 3 Lipidomics and GWAS results of PhenoAgeAccel. A Forest plot of lipidomics results. Diamand: P ≥ 0.05, circle: P < 0.05 and square: Padj < 0.05. 
Full names of lipid classes are provided in Additional file 2: Table S3. B Volcano plots of lipidomics results. Lipid species with Padj < 0.05 are labelled. 
C Manhattan plot of the GWAS results. The top 3 mapped genes are labelled
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lysophosphatidylcholine (LPC) containing odd-chain 
(LPC(17:0), LPC(17:1) and LPC(19:0)) and branched-
chain fatty acids (LPC(15-MHDA)) were associated with 
lower PhenoAgeAccel. Among those, four lysophos-
pholipids showed a strong association with Padj < 0.05 
(Fig.  3B). Overall, LPI(18:1) showed the strongest posi-
tive association (P = 3.82E-05) by 1.10% increase in con-
centration per year increase of age acceleration while 
LPC(19:0) displayed the strongest inverse association 
(P = 3.73E-3) by 0.69% decrease in concentration per year 
increase of age acceleration.

Genome‑wide association study of PhenoAgeAccel
A genome-wide association study (GWAS) of PhenoAg-
eAccel was investigated after the adjustment of age and 
ethnicity. No genetic variants passed the typical thresh-
old for genome-wide significance (P < 5.00E-08). The 
quantile–quantile (Q-Q) plot are illustrated in Fig. S2. 
The genomic inflation factor of 1.02 indicated that the 
study exhibited very minor inflation and slight devia-
tions in test statistics from the null distribution. A Man-
hattan plot was illustrated in Fig.  3C, highlighting the 
top 3 mapped genes (ZDHHC19, SIRPA, and PMEPA1). 
Boxplots were illustrated for the representative SNPs of 
the top 3 mapped genes (Additional file 1: Fig. S3A). The 
LocusZoom plots of ZDHHC19-rs9864994 and SIRPA-
rs112608975 showed these two genes have multiple SNPs 
in LD (Additional file 1: Fig. S3B). The GWAS results of 
genetic variants with P < 1.00E-03 were shown in Addi-
tional file 3: Table S4A and a list of genetic variants with 
synonymous or missense mutations were illustrated in 
Additional file 3: Table S4B. Interestingly, missense muta-
tions of NADPH oxidase 4 (NOX4), interleukin 4 receptor 
(IL4R), defensins (DEFB128 & DEFB127) and acyl-CoA 
synthetase bubblegum family member 2 (ACSBG2) were 
associated with PhenoAgeAccel.

For enrichment analysis, top 150 mapped genes (Addi-
tional file  3: Table  S4C) from the GWAS results were 
analysed by Metascape (https//metascape.org) based on 
the following ontology sources: KEGG Pathway, GO Bio-
logical Processes, Reactome Gene Sets, Canonical Path-
ways, CORUM, WikiPathways, and PANTHER Pathway. 
Overall, top 20 clusters were found with their enriched 
terms with a p-value < 0.01, a minimum count of 3, and 
an enrichment factor > 1.5 (Additional file 3: Table S4D). 
Their associated pathways included calcium ion trans-
membrane transport, ERBB2 activates PTK signaling, 
regulation of cardiac muscle cell contraction, apoptotic 
process involved in development, circadian entrainment, 
memory, regulation of phosphatase activity and Ras sign-
aling pathway etc. (Additional file 1: Fig. S4).

In our study, we also performed a candidate analy-
sis of the SNPs reported in the GWAS results of 

PhenoAgeAccel from the UK biobank [18] and Taiwan 
biobank [15]. The results were shown in Additional file 3: 
Table S4E-F. Out of the 29 significant SNPs identified in 
the UK biobank, 26 SNPs were found in our SNP list after 
QC, with only two of them (IL6R-rs4129267: P = 9.87E-
03 and FADS1/2-rs174548: P = 2.85E-02) showing weak 
associations (Additional file 3: Table S4E). Among the 11 
significant SNPs identified in the Taiwan biobank, 8 SNPs 
remained in our SNP list after QC, with only one SNP 
(AXIN1-rs7206286: P = 1.34E-02) exhibiting a weak asso-
ciation (Additional file 3: Table S4F).

Gut microbiome association with PhenoAgeAccel
To explore the relationship between gut microbiome 
and PhenoAgeAccel, the alpha- and beta-diversity anal-
ysis were performed. PhenoAgeAccel was significantly 
inversely associated with 2 gut microbiome alpha-
diversity measurements, Pielou’s evenness and Faith’s 
phylogenetic diversity (Additional file 1: Table S5). How-
ever, the significance was not retained after account-
ing for confounding factors, including BMI, age, 
ethnicity, educational attainment, and parity (Additional 
file  1: Table  S5). Principal Coordinate Analysis (PCoA) 
based on Unweighted UniFrac distance, a metric measur-
ing gut microbial community dissimilarity, demonstrated 
a statistically significant association with PhenoAgeAc-
cel. Notably, this relationship remained significant even 
after adjusting for the aforementioned confounding vari-
ables (Padj = 0.003, Fig. 4A and Additional file 1: Table S6).

To identify specific gut microbial species associated 
with PhenoAgeAccel, we employed a machine learning 
approach—nested cross-validated random forest regres-
sor. This analysis identified the top 14 microbial species 
associated with PhenoAgeAccel, including Streptococcus 
salivarius, Akkermansia, Erysipelotrichaceae UCG-00, 
Dorea, Enterococcus, Megasphaera, Dorea, Blautia, Lach-
noclostridium, Weissella, Allisonella, Massiliomicrobiota 
timonensis, Bifidobacterium, and Bacteroides vulgatus 
(Fig.  4B). Out of these, three microbial species retained 
their significant associations with PhenoAgeAccel after 
comprehensive adjustment for BMI, age, ethnicity, edu-
cational attainment, and parity (Fig.  4C and Additional 
file 1: Table S7). Erysipelotrichaceae UCG-003 and Bac-
teroides vulgatus were significantly negatively associated 
with PhenoAgeAccel, whereas Bifidobacterium showed 
an inverse association (Fig. 4C).

Network analysis of aging-related factors
A schematic diagram was generated to illustrate the 
factors linked to accelerated biological aging based on 
association results from different platforms (Fig.  5A). 
Subsequently, 73 aging-related factors were selected for 
network analysis. These include 4 factors identified in 
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clinical measurements (Fig. 2G), and 36 blood biomark-
ers (Fig. 2G), 16 lipids (Padj < 0.05, Fig. 3B), 3 representa-
tive SNPs of the top 3 mapped genes (ZDHHC19, SIRPA 
and PMEPA1, Fig. S3A), and 14 gut microbial species 
(Fig.  4B). Firstly, to understand how these aging-related 
factors correlate with elements of PhenoAge (9 clinical 
biomarkers and CA), a network was generated based on 
their pair-wise correlation coefficients with |R|≥ 0.30 
(Additional file  1: Fig. S5). From this network, ln(CRP) 
was the element most strongly correlated with adiposity 
measures, glycaemic traits, FAs, lipid species, kynurenine 

pathway metabolites, tyrosine, IGF-1, and GlycA, fol-
lowed by white blood cell count and alkaline phos-
phatase, which also showing strong associations with 
these factors, except for lipid species, kynurenine path-
way metabolites, tyrosine, and IGF-1. Fasting glucose was 
only strongly associated with glycaemic traits and adipos-
ity measures. Albumin and creatinine were associated 
with fat mass and IGFBP-6, respectively.

Next, to explore the roles of aging-related factors 
derived from different platforms in the biological aging 
process, the interconnections among these factors 

Fig. 4 Association between the gut microbiome and PhenoAgeAccel. A Principal Coordinate Analysis of Unweighted UniFrac distance illustrating 
the gut microbiome of women with different PhenoAgeAccel. Padj was obtained using multi-way ADONIS permutation-based statistical test 
after adjusting for the effects of ethnicity, BMI, age, educational attainment and parity. B The feature importance of the top 14 gut microbial 
species identified through nested cross-validated random forest regression. C Three microbial species significantly associated with PhenoAgeAccel 
identified via MaAsLin2 analysis
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were investigated. The pairwise correlation heat map 
showed the overall connections between these factors 
with a p-value < 0.05 (Additional file  1: Fig. S6). From 
the heatmap, adiposity measures, blood biomarkers 
and plasma lipid species showed a very strong intercon-
nection among themselves but had a relatively weaker 
association with SNPs or gut microbial species. Of the 
3 SNPs, ZDHHC19-rs9864994 was inversely associ-
ated with IGF-1, IGF-2 and histidine, but positively 

associated with Cer(d18:1/18:0) and Lachnoclostridium. 
SIRPA-rs112608975 showed a positive association with 
thiamine, quinolinic acid and phenylalanine. PMEPA1-
rs157092 exhibited a positive association with fat mass, 
liver fat, kynurenine pathway metabolites and 8 lipids 
from dihydroceramide, lysoalkenylphosphatidylethan-
olamine, lysophosphatidylinositol, alkylphosphatidyl-
choline, phosphatidylinositol and sphingosine while it 
showed an inverse association with HEI score, all-trans 

Fig. 5 Network visualization of accelerated biological aging and aging-related factors. A Schematic diagram summarizing the factors linked 
to accelerated biological aging. B Network visualization of aging-related factors using Cytoscape. Each connection has a Spearman’s rank correlation 
coefficient of ≥ 0.30. Red – positive correlation and blue – negative correlation. Line width – magnitude of coefficient. These factors are grouped 
by their properties, denoted as different shapes of nodes
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retinol, plasma PUFAs, DHA, and degree of unsatura-
tion. Among the three significant gut microbial species, 
Erysipelotrichaceae UCG-003, which showed an inverse 
association with PhenoAgeAccel, also exhibited a nega-
tive association with fat mass, liver fat, choline, SFAs and 
6 lipids from dihydroceramide, alkylphosphatidylcholine, 
phosphatidylinositol and sphingosine. But it was posi-
tively associated with pyridoxal phosphate, PUFAs and 2 
lipids from alkylphosphatidylethanolamine. Conversely, 
Bifidobacterium, which showed a positive association 
with PhenoAgeAccel, showed an inverse association with 
the HEI score, IGF-2, all-trans retinol and 3 amino acids 
(tryptophan, histidine, and leucine). Additionally, it was 
positively associated with homocysteine, neopterin, SFAs 
and 3 lipids from ceramide, lysoalkenylphosphatidyletha-
nolamine and alkylphosphatidylcholine.

To simplify the complicated interconnections among 
these factors (Additional file  1: Fig. S6), only factors 
with |R|≥ 0.30 were selected for network visualiza-
tion (Fig. 5B). The 3 SNPs and 10 gut microbial species 
were not presented in the network due to their weak 
associations with other factors (|R|< 0.30). The left 4 
gut microbial species were kept only due to their strong 
interconnections among themselves. This integrative 
network highlighted complex correlations within and 
between categories of adiposity measures, blood bio-
markers, and plasma lipid species. Several intriguing 
findings were observed. First, we observed strong cor-
relations among adiposity measures, glycaemic traits, 
lipid-related components (such as fatty acids, ApoB, and 
lipids), and GlycA. Most of these correlations were posi-
tive, except for PUFAs, DHA, and degree of unsatura-
tion, which were inversely associated with GlycA, lipids, 
adiposity and glycaemia. Second, IGFBP-1 exhibited 
a robust inverse relationship with adiposity measures, 
insulin, and HOMA-IR. Third, amino acids including leu-
cine, tyrosine and phenylalanine displayed pronounced 
positive associations with adiposity measures, glycaemic 
traits, kynurenine pathway metabolites, and glycoprotein 
acetyls. Fourth, kynurenine pathway metabolites showed 
positive associations with glycaemic traits, adiposity 
measures, and GlycA. Fifth, nicotinamide (Vitamin B3) 
exhibited a strong positive connection with plasma lipids 
from sphingosine, ceramide, dihydroceramide, alkylphos-
phatidylcholine and lysoalkenylphosphatidylethanola-
mine. Lastly, homocysteine was inversely associated with 
HEI score.

Mediation effects of blood biomarkers
The influences of diet, adiposity, genetic variants, and 
gut microbial species on PhenoAgeAccel may be con-
tributed through clinical biomarkers and circulating 
metabolites. Mediation analyses were performed for 10 

predictors (HEI score, fat mass, liver fat, visceral adi-
pose tissue, ZDHHC19-rs9864994, SIRPA-rs112608975, 
PMEPA1-rs157092, Erysipelotrichaceae UCG-003, Bifi-
dobacterium, and Bacteroides vulgatus) and 36 media-
tors (aging-related blood biomarkers). Aging-related 
plasma lipid species were excluded due to their concur-
rent measurement with blood biomarkers, precluding 
causal inference. Additionally, plasma FA measures and 
ApoB were used as lipid biomarkers in this analysis. A 
total of 62 linkages (Fig.  6, Additional file  4: Table  S8) 
were identified to mediate the associations between these 
predictors and PhenoAgeAccel through blood biomark-
ers  (PACME < 0.05), with 39 linkages remaining significant 
after multiple testing correction (Fig. 6, FDR < 0.2).

HEI score was negatively associated with PhenoAg-
eAccel, mediated by multiple biomarkers related to lipid 
metabolism (DHA, SFAs, and degree of unsaturation), 
insulin/IGF signalling (insulin and IGF-1/2), immune 
activation and inflammation (tryptophan, neopterin, 
and 3-hydroxykynurenine), and nutritional metabolism 
(betaine, retinol, pyridoxal phosphate, thiamine, and 
riboflavin). The positive associations between adiposity 
measures (fat mass, liver fat, and visceral adipose tissue) 
and PhenoAgeAccel were mediated by multiple biomark-
ers linked to glucose metabolism (2-h post-load glucose, 
HbA1c, and HOMA-IR), insulin/IGF signalling (insulin, 
IGF-1 and IGFBP-6), immune activation and inflam-
mation (kynurenine pathway metabolites and GlycA), 
nutritional metabolism (retinol and leucine), and lipid 
metabolism (LA, SFAs, and ApoB). For genetic variants, 
the association between SIRPA-rs112608975 and Pheno-
AgeAccel was mediated by biomarkers of immune acti-
vation and inflammation (neopterin and kynurenine) 
and insulin resistance (insulin and HOMA-IR), while the 
association between ZDHHC19-rs9864994 and Pheno-
AgeAccel was through IGF signalling (IGF2 and IGFBP-
1). For PMEPA1-rs157092, neopterin and quinolinic acid 
were potential mediators. Among gut microbial species, 
neopterin strongly mediated the association between 
Bifidobacterium and PhenoAgeAccel. Additionally, 
multiple kynurenine pathway metabolites were identi-
fied as potential mediators for Bacteroides vulgatus, 
while IGF-1/IGFBP-6, LA, phenylalanine and nicotina-
mide were potential mediators for Erysipelotrichaceae 
UCG-003.

Furthermore, from the mediation results of 3 gut 
microbial species in the associations between 7 predic-
tors (diet, adiposity, and genetic variants) and PhenoAg-
eAccel, only one significant linkage was identified with 
PACME < 0.05. Erysipelotrichaceae UCG-003 was found to 
mediate the association between fat mass and PhenoAg-
eAccel (Fig. 6B, Additional file 4: Table S8).
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Discussion
To our knowledge, this is the first integrative study of 
clinical, nutritional, lipidomic, gut microbiome and 
genetic factors affecting biological age acceleration in 
Asian women of reproductive age. Signatures of lipidom-
ics, gut microbiome and blood biomarkers in relation to 
PhenoAgeAccel were first reported. This study elucidates 
the physiological and molecular changes underlying bio-
logical aging and provides a comprehensive understand-
ing of multi-systemic dysregulation that occurs in aging. 
We identified ethnic differences in PhenoAgeAccel in 
our cohort, where Indian and Malay women had higher 
PhenoAgeAccel than Chinese women. This is consistent 
with the trends in life expectancies in the different ethnic 

groups in women in Singapore [43], and may be related 
to their socioeconomic status as women with higher edu-
cational attainment had lower PhenoAgeAccel. It may 
also be related to BMI as Indian and Malay women had 
higher BMI compared to Chinese women, and similar 
to other studies [44, 45], PhenoAgeAccel showed a very 
high correlation with BMI. The women in our study had a 
range of PhenoAgeAccel from -10 to > + 20 years. Dispar-
ities in the pace of biological aging at midlife may have 
implications for future morbidity and mortality which 
may be reversed by interventions to alter reversible asso-
ciated factors [4]. As the participants in this study (aged 
18–45  years) are much younger than those in the other 
two Asian studies that look at PhenoAge (aged 35–90 and 
30–70  years) [14, 15], this may contribute to the lower 

Fig. 6 Effects of mediators (blue squares) on the associations between predictors (green circles) and the outcome (PhenoAgeAccel). A Diet (heathy 
eating index score). B Adiposity (Fat mass, liver fat and visceral adipose tissue). C Gut microbial species (Erysipelotrichaceae UCG-003, Bacteroides 
vulgatus, and Bifidobacterium). D Genetic variants (ZDHHC19-rs9864994, SIRPA-rs112608975, and PMEPA1-rs157092). Age, ethnicity, educational 
attainment, parity and BMI were adjusted in analysis models. Each connection has a p-value of < 0.05 for average causal mediation effect (ACME), 
with a thicker line indicating an FDR of < 0.2
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correlation between PhenoAge and CA in this study 
compared to the other two studies.

Lifestyle factors have been reported to be associated 
with PhenoAgeAccel. Smoking accelerated biologi-
cal aging [46], but good sleep quality [17], and healthy 
diet and regular physical activity [16] reduced acceler-
ated aging. Alcohol consumption has been reported 
to be associated with epigenetic age acceleration [47]. 
As the women in the S-PRESTO cohort were recruited 
for attempting to conceive within the next 12  months, 
they were inclined to have an overall generally healthier 
lifestyle. This may be why we did not observe a strong 
association of PhenoAgeAccel with smoking (10% ever 
smoker) and alcohol consumption, physical activity, sleep 
duration and quality but just a strong inverse association 
with HEI score. This study found that multiple biomark-
ers related to insulin/IGF signalling, immune activation 
and inflammation, lipid metabolism, and nutritional 
metabolism mediated the association between HEI score 
and PhenoAgeAccel, highlighting the complex impact 
of diet on aging. Further, our cohort is relatively young 
compared to other studies e.g., the U.K. Biobank [17]. In 
lifestyle factors, diet is a strong factor consistently found 
in different studies to be associated with biological aging 
[48, 49]. In our study, depression and anxiety scores were 
not found to have a strong association with PhenoAg-
eAccel. Interestingly, the women who conceived within 
12 months after recruitment had slightly lower PhenoAg-
eAccel than those who failed to conceive. However, the 
association was not retained after accounting for BMI, 
suggesting that BMI may play a more significant role in 
fecundability [50]. The accumulation of visceral fat is 
known to be associated with increased inflammation and 
metabolic diseases [51], which is in line with our obser-
vation that fat mass, visceral adipose tissue and liver fat 
were positively associated with PhenoAgeAccel. Strong 
mediating effects of multiple biomarkers related to glu-
cose metabolism, insulin/IGF signalling, immune activa-
tion and inflammation, nutritional metabolism, and lipid 
metabolism were observed between adiposity and aging 
in this study.

Blood biomarkers serve as objective, quantifiable meas-
ures of physiological processes and pathological condi-
tions within the body. This study investigated a broad 
spectrum of blood biomarkers including glycaemic status, 
lipid profile, liver enzymes, vitamins, one-carbon metab-
olites, tryptophan pathway metabolites, amino acids, 
growth factors, and inflammatory protein biomarkers. 
Among them, neopterin, a marker for immune system 
activation, showed the most significant association with 
PhenoAgeAccel. The production of neopterin is linked 
to the breakdown of tryptophan, and both activities 
are initiated by interferon-gamma, a pro-inflammatory 

cytokine involved in immune functioning [52]. Increased 
degradation of tryptophan leads to the production of 
kynurenine pathway metabolites. We observed that tryp-
tophan showed an inverse association with PhenoAg-
eAccel whereas kynurenine pathway metabolites such as 
kynurenine, 3-hydroxykynurenine, 3-hydroxyanthranilic 
acid and quinolinic acid were positively associated with 
PhenoAgeAccel. These results suggest that biological 
aging is associated with immune activation leading to 
enhanced tryptophan degradation and neopterin pro-
duction. Among the one-carbon metabolites, choline 
was positively associated with age acceleration whereas 
betaine was associated with age deceleration. Betaine is 
an oxidative metabolite of choline and a methyl donor for 
converting homocysteine to methionine. It was reported 
that betaine suppressed pro-inflammatory signalling dur-
ing aging [53]. The other two methyl donors, folate and 
vitamin B12, only showed a strong inverse association 
with accelerated aging in univariate analysis. Vitamin 
B6 also showed an inverse association with age accel-
eration. Deficiency of these B-vitamins have been linked 
with cognitive decline and subsequent oxidative damage 
[54]. As retinol (vitamin A) is known as an anti-inflam-
mation vitamin because of its critical role in enhanc-
ing immune function [55], it logically demonstrated an 
inverse association with age acceleration. Surprisingly, 
nicotinamide, an NAD + (nicotinamide adenine dinu-
cleotide) precursor, showed a positive association with 
aging in our study. However, other studies have shown 
increased nicotinamide with aging [56], implicating dys-
regulated NAD + metabolism in aging. Amino acids play 
a crucial role in various physiological processes in the 
body. It was observed that glutamine was inversely asso-
ciated with accelerated aging as it has been reported to 
regulate the development of aging mediated by mTOR 
signaling and autophagy [57]. Histidine also exhibited 
an inverse association with accelerated aging, possibly 
because of its anti-glycating and free radical scavenging 
functions [58]. The opposite trends were observed in the 
association of age acceleration with leucine (negative), 
phenylalanine and tyrosine (positive) due to their differ-
ent functions. High levels of tyrosine and phenylalanine 
were associated with insulin resistance [59] whereas leu-
cine was an activator of the mTOR signalling pathway 
[60]. For protein biomarkers, GlycA was a stable inflam-
matory biomarker [61] which was positively associated 
with accelerated aging in this study. Higher ApoB level 
was associated with cardiovascular risk [62]. However, 
it only exhibited a positive association with age accel-
eration in a univariate analysis, but displayed an inverse 
association in a multivariate model, potentially attributed 
to collinearity with covariates. Low circulating IGF-1 has 
been associated with metabolic syndrome and increased 
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risk for cardiovascular disease and type 2 diabetes [63]. 
This is consistent with our observations that higher levels 
of growth factors (IGF-1 and IGF-2) and lower levels of 
their binding proteins (IGFBP-1, IGFBP-3 and IGFBP-6) 
were associated with decelerated biological aging.

Lipids play essential roles in regulating aging and lon-
gevity [64]. We did not find a strong association of the 
clinical serum lipid profile (total cholesterol, triglycer-
ide, HDL-cholesterol and LDL-cholesterol) with biologi-
cal aging after adjustment for covariates. However, we 
observed that high levels of saturated FAs and low lev-
els of PUFAs (i.e., LA and DHA) were associated with 
accelerated aging in plasma FAs measures from 1HNMR 
metabolomics. Furthermore, analysis of LC–MS/MS-
based plasma lipidomics data provided an in-depth 
understanding of how specific lipid species linked to 
biological aging by examining 689 lipid species across 36 
lipid classes. Out of 132 significant lipids, we found that 
lipid species with odd-chain FAs (i.e. 15:0, 17:0, 17:1 and 
19:0) in acylcarnitines, phospholipids and lysophospho-
lipids, and branched-chain FAs containing phospholipids 
were associated with slower biological aging. Odd-chain 
FAs are thought to be mainly derived from diet and 
microbiota. Decreased levels of branched-chain FAs have 
been associated with obesity [31] and the mechanism 
may be via alteration of gene expression in lipid synthe-
sis and inflammation [65]. Plasma odd-chain FAs were 
inversely associated with type 2 diabetes risk and could 
potentially serve as biomarkers for dairy fat intake [66]. 
In phosphatidylcholine (PC), alkenylphosphatidylcholine 
(PC(P)) and glycerolipids (diacylglycerol, triacylglycerol 
and alkyldiacylglycerol), the lipid species with saturated 
FAs (i.e. palmitic and stearic acids) were associated with 
faster biological aging whereas the lipids with PUFAs (i.e. 
LA and DHA) were associated with slower biological 
aging. Saturated FAs were associated with obesity-related 
inflammation [67], whereas PUFAs (LA and DHA) were 
linked to anti-inflammatory effects [68]. Regardless of 
degree of unsaturation, cholesterol ester lipids were asso-
ciated with slow biological aging, but phospholipids (i.e. 
PC(O), PE, PE(O), PE(P), PI and PS) were linked to accel-
erated aging. Esterification of cholesterol enables the safe 
and controlled storage and transportation of cholesterol, 
thereby helping to prevent the harmful effects of excess 
cholesterol in circulation [69]. Noteworthily, the perfor-
mance of PC and PC(P) lipids was different from that 
of other phospholipids. Most sphingolipids (SPLs) were 
associated with accelerated biological aging, with cera-
mides showing the strongest association. Studies have 
indicated that elevated ceramide levels may be linked to 
an increased risk of cardiovascular disease events and 
diabetes, possibly due to the activation of NADPH oxi-
dase and disruption of mitochondrial function [70]. 

These results highlighted the importance of investigat-
ing in-depth lipidomics in the context of aging research, 
extending beyond the standard clinical lipid profile.

Genetic factors are important contributors to biological 
aging [71]. GWAS of PhenoAgeAccel has been studied 
in participants of UK biobank aged 40–70  years and in 
participants of Taiwan biobank aged 30–70 years, respec-
tively [15, 18]. Only one common SNP (GCKR-rs1260326, 
P < 5.00E-08) was found in these two GWAS studies, but 
it was not significant in our study. We observed differ-
ences between the GWAS results of the UK biobank, Tai-
wan biobank and our S-PRESTO cohort, which could be 
due to different sample size, ethnicity ancestry, range of 
CA, the characteristics of cohorts. In our study, the par-
ticipants were Asian women who were younger (age from 
18–45  years old) and healthier than those in the other 
two studies. We did not observe any SNPs that passed 
genome-wide significance cutoff in our study, but some 
interesting findings still could be drawn from the top 
mapped genes and enrichment analysis. ZDHHC19 (Zinc 
Finger DHHC-Type Palmitoyltransferase 19) belongs to a 
family of enzymes that play a crucial role in the process 
of protein palmitoylation, which regulates growth signal-
ling (i.e., Wnt, AKT, and IGF-1/IGF1-R signalling) and 
immune function especially in partitioning immune sig-
nalling proteins to the membrane as well as to lipid rafts 
[72]. Interestingly, our results identified that two IGF 
signalling biomarkers mediated the association between 
ZDHHC19-rs9864994 and PhenoAgeAccel. SIRPA (Sig-
nal Regulatory Protein Alpha) is an immunoinhibitory 
receptor expressed by neutrophils, monocytes, mac-
rophages, and dendritic cells (DC). Blockade of SIRPA 
leads to DC activation, macrophage phagocytosis and 
increased immune cell migration playing crucial roles in 
controlling inflammation responses [73]. SIRPA has been 
reported as part of a novel mechanism for inflammation-
mediated insulin resistance in muscle [74]. Notably, this 
study identified that several biomarkers of immune acti-
vation, inflammation response, and insulin resistance 
mediated the association between SIRPA-rs112608975 
and PhenoAgeAccel. PMEPA1 (Prostate Transmembrane 
Protein, Androgen Induced 1) is induced by the TGF-β 
signalling, but meanwhile, it inhibits the phosphoryla-
tion of Smad2 and Smad3 to antagonize TGF-β signal-
ling, which contributes to aging-related pathologies such 
as fibrosis and chronic inflammation and plays important 
roles in tissue repair and immune regulation. Our results 
found that two biomarkers of immune and inflamma-
tory processes played a mediating role in the association 
between PMEPA1-rs157092 and PhenoAgeAccel. Enrich-
ment results of top 150 mapped genes also showed the 
association with age-related pathways such as regula-
tion of cardiac muscle cell contraction, apoptotic process 
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involved in development, circadian entrainment, mem-
ory, regulation of phosphatase activity and Ras signalling 
pathway.

The gut microbiome is associated with many age-asso-
ciated changes, including immune system dysregulation 
and susceptibility to diseases [75].  In the current study, 
a compelling association between the gut microbiome 
and PhenoAgeAccel in women was unveiled, even after 
adjusting for covariates. Notably, our analysis identi-
fied two specific microbial species, Erysipelotrichaceae 
UCG-003 and Bacteroides vulgatus, which showed a 
significantly inverse association with PhenoAgeAccel. 
This finding is consistent with a previous study that high-
lighted the enrichment of Erysipelotrichaceae UCG-003 
in the healthy aging cohort [76]. Moreover, several stud-
ies have consistently reported higher levels of Erysipel-
otrichaceae UCG-003 in the gut microbiome of healthy 
individuals when compared to patients afflicted with lung 
cancer [77] or colorectal cancer [78]. Intriguingly, our 
mediation analysis revealed that the association between 
Erysipelotrichaceae UCG-003 and PhenoAgeAccel was 
mediated by biomarkers related to IGF signalling, as well 
as nutritional and lipid metabolism. Erysipelotrichaceae 
UCG-003 was also found to mediate the association 
between fat mass and PhenoAgeAccel. Notably, Ery-
sipelotrichaceae UCG-003 has been reported as a 
mediator in the association between body fat and the 
Energy-Adjusted Dietary Inflammation Index in the 
Multiethnic Cohort–Adiposity Phenotype Study [79]. B. 
vulgatus, on the other hand, has recently emerged as a 
promising microbe with potential health benefits. Sup-
plementation with B. vulgatus Bv46 has demonstrated 
the capacity to ameliorate lipid metabolism in hyper-
lipidemic rats [80]. Consistent with recent findings in a 
study on cardiovascular disease risk and aging in the Chi-
nese population, B. vulgatus was found to be negatively 
associated with aging in multimorbidity cluster 1, which 
was characterized by a relatively healthy metabolic pro-
file [81]. Our study identified multiple kynurenine path-
way metabolites as potential mediators in the association 
between B. vulgatus and PhenoAgeAccel, highlighting 
the mediating role of immune responses and inflamma-
tory processes. Besides, one microbial species from Bifi-
dobacterium was found to be positively associated with 
PhenoAgeAccel, with this association mediated by neop-
terin, a biomarker of inflammation. This suggests that 
this particular Bifidobacterium species may be linked to 
pro-inflammatory processes. While Bifidobacterium spp. 
are renowned for their beneficial effects in maintaining 
human health, recent studies have raised concerns about 
the potential invasiveness of certain Bifidobacterium spe-
cies in immunocompromised hosts [82], which suggests 
the need for cautious investigation to better understand 

the potential impacts of these specific Bifidobacterium 
species on health outcomes, using advanced approaches 
such as metagenomics or culturomics. Collectively, these 
findings underscore the promising potential of Erysip-
elotrichaceae UCG-003 and B. vulgatus in promoting 
healthy aging and sustaining overall well-being.

An integrative network analysis of aging-related fac-
tors provided a comprehensive overview of the under-
lying connections between them. Adiposity, glycaemic 
traits, and plasma factors, including FAs, lipids, amino 
acids, metabolites, and protein biomarkers, exhibited 
very strong correlations among themselves. Interestingly, 
the very strong positive association of nicotinamide with 
plasma lipids from sphingolipids and phospholipids may 
help to explain its accelerated effect on aging.

This study has several unique strengths. It offered 
an all-encompassing perspective on the relationship 
between PhenoAgeAccel and multi-platform data within 
a single study in women. This enabled us to evalu-
ate aging-related factors from various angles to better 
understand the underlying mechanism. There are some 
limitations of this study. Sample size is relatively small 
for GWAS analysis in our study compared to two previ-
ously reported GWAS studies. Bias may exist in the self-
reported variables (i.e. educational attainment, smoking 
status and alcohol consumption). This is a cross-sectional 
study with all assessments conducted at one time-point 
only so there remains limited understanding on the 
causal links, which is required to develop potential inter-
ventions to slow the aging process. Longitudinal studies 
would be needed to investigate aging trajectories based 
on different hallmarks in future studies. The women in 
our study are relatively young, hence the effects of aging-
related factors may be blunted as compared to studies 
in older populations. However, we still have observed 
many significant associations with clinical, nutritional 
and lipidomics factors, suggesting that these factors play 
an important role in the variation of biological aging in 
Asian women of reproductive age.

Conclusions
We investigated the association of PhenoAgeAccel with a 
range of multi-omics and clinical characteristics to reveal 
aging-related factors and performed integrative network 
and mediation analyses to better understand their bio-
logical connections and how they may underlie the aging 
process. We found that clinical factors, blood biomark-
ers, and lipids were interconnected, along with genetic 
variants and the gut microbiome, contributing collec-
tively to biological aging. Moreover, blood biomarkers 
related to inflammation, immune response, and nutri-
tional and energy metabolism potentially mediated the 
associations of diet, adiposity, genetic variants, and gut 
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microbial species with biological aging. These findings 
provide valuable insights into the molecular and meta-
bolic mechanisms underlying biological aging. Potential 
interventions by targeting modifiable factors, including 
obesity, dietary choices, and specific nutrient intake, may 
help to mitigate accelerated biological aging, ultimately 
enhancing women’s health. This study provides an impor-
tant resource of aging research in Asian women and 
sheds light on the possibility of preventing the early onset 
of age-related diseases starting in young women.
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