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Skin aging has been associated with a higher dietary intake of carbohydrates, particularly glucose and galactose. In fact, the
carbohydrates are capable of damaging the skin’s vital components through nonenzymatic glycation, the covalent attachment of
sugar to a protein, and subsequent production of advanced glycation end products (AGEs). This review is focused on the role of
D-galactose in the development of skin aging and its relation to oxidative stress. The interest in this problem was dictated by
recent findings that used in vitro and in vivo models. The review highlights the recent advances in the underlying molecular
mechanisms of D-galactose-mediated cell senescence and cytotoxicity. We have also proposed the possible impact of
galactosemia on skin aging and its clinical relevance. The understanding of molecular mechanisms of skin aging mediated by D-
galactose can help dermatologists optimize methods for prevention and treatment of skin senescence and aging-related skin
diseases.

1. Introduction

Skin aging is a complex process that depends on various
extrinsic and intrinsic factors [1]. The most important intrin-
sic factors of aging include gender, ethnicity, and genetic var-
iations [2]. A number studies on twins have shown a
significant inherited component in skin aging [3–5]. Extrin-
sic factors can be divided into 3 main groups: (1) UV radia-
tion and air pollution; (2) some diseases (e.g., diabetes); and
(3) lifestyle choices, such as smoking, alcoholism and nutri-
tion [6–8]. Solar radiation is the most crucial extrinsic factor
capable of inducing premature skin aging and skin diseases in
exposed areas of the body, e.g., the face and neck [9, 10].
Smoking and alcoholism can cause skin aging in nonexposed
UV areas as well as accelerate aging caused by UV [11].

Among extrinsic factors, nutrition plays a vital role in the
development of aging and aging-associated conditions [12].
In fact, an unbalanced diet with the domination of refined

carbohydrates has been linked to the development of obesity
and obesity-associated metabolic syndrome [13–15], which
in turn is associated with diabetes and skin diseases [16],
while a balanced nutritional diet helps maintain healthy skin
and ensures its normal functioning [17–19]. The results of
several studies have demonstrated that skin aging is also
associated with a higher dietary intake of carbohydrates
[20–22]. It has been established that the primary construc-
tional molecules of the skin, elastin and collagen, can be dam-
aged by carbohydrates via nonenzymatic glycation, the
covalent attachment of sugar to a protein, and subsequent
production of AGEs [8, 23–26], and these processes are
closely linked to oxidative stress [27].

Glucose, fructose, and galactose are the essential simple
sugars found in our diet. They could be consumed individu-
ally or in combination with each other in a form of more
complex carbohydrates. The known mechanisms by which
carbohydrates cause oxidative stress are the activation of
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mitochondrial oxidative metabolism of glucose, which leads
to the generation of reactive oxygen species (ROS). In this
case, ROS is generated through mitochondrial respiratory
chain enzymes, xanthine oxidases, lipoxygenases, cyclooxy-
genases, nitric oxide synthases, and peroxidases [28–32].
The enhanced level of mitochondrial ROS leads to the activa-
tion of a number of biochemical pathways, such as the polyol
pathway [33], the formation of AGEs [34–36], the activation
of protein kinase C [37, 38], and the hexosamine pathway
[39, 40], which in turn generate ROS [32]. Fructose-
induced oxidative stress is also underlined by a similar
mechanism [41].

There have been a number of debates about the critical
role of high serum glucose levels as an “aging accelerator”
for the skin [42]. This hypothesis has been supported by
recent findings about diabetic and nondiabetic patients
demonstrating that elevated levels of glucose can cause
the fragmentation of the dermal connective tissue of the skin
[8, 21, 42]. However, less attention is given to galactose,
although there is data indicating that galactose (in particular,
D-galactose or D-gal) is a more powerful glycation agent
compared to glucose [43, 44] and is capable of inducing
oxidative stress [45, 46].

Galactose is a C-4 epimer of glucose that combines with
glucose to form the disaccharide lactose. There are two enan-
tiomers of galactose: D- and L-galactose. In nature, the main
form of galactose is D-gal. The major natural dietary source of
galactose is milk and dairy products [47, 48]. Free galactose is
also present in some fruits and vegetables, such as tomatoes,
brussels sprouts, bananas, and apples [49]. In addition, the
lactose hydrolysate syrup, as a sweetener, has been inten-
sively used in biscuits, confectionery, and some dairy desserts
containing high monosaccharide galactose content [48].

Galactose plays an important role in various physiologi-
cal processes. For instance, it is involved in galactosylation
of ceramide during myelin sheath synthesis of Schwann cells
(PNS process) and synthesis of heparin/heparan sulfates
[50]. It is known that galactose is formed endogenously in
the human cells. A 70 kg adult male could synthesize up to
2 grams of galactose per day [51, 52]. In general, the possible
reaction mechanism of endogenous galactose production is
the lysosomal hydrolysis of galactose-containing glycopro-
teins, glycolipids, and proteoglycans [51, 52]. The level of
galactose in the body can be elevated in two cases: (1) via
increased consumption of foods rich in galactose, and (2)
through metabolic disorders associated with genetic muta-
tions in the enzymes of the Leloir pathway [53].

It was revealed that D-gal is able to trigger aging-like
effects in experimental animals [54–57]. In fact, the use of
D-gal for animal aging models has been intensively utilized
for antiaging research worldwide since the early 1990s
[58–60]. Numerous studies have been conducted to assess
the aging mechanisms of the brain [61, 62] and heart [63]
based on a D-gal animal model. Other reports demonstrated
that D-gal could also be used for modeling liver [64] and kid-
ney [65] aging. Although there have been a number of studies
implicating D-gal-induced skin aging [66–86], the literature
on this topic has been scanty and there is a need for these
studies to be summarized and analyzed. In this regard, the

current review is focused on the changes that occur during
D-gal-induced skin aging. It also highlights the recent
advances on the underlying molecular mechanisms of D-
gal-mediated cell senescence and cytotoxicity.

2. Galactosemia: Etiology, Clinical
Manifestations, and Treatment

Galactosemia is an inborn genetic metabolic disorder. It
emerges as a result of the impaired processing of galactose,
which can be subclassified into a few types [87]. It was
revealed that the main pathway of galactose metabolism is
the Leloir pathway which has several phases (Figure 1) [88].

The first key step is phosphorylation of D-gal by galacto-
kinase (GALK1) to galactose-1-phosphate (Gal-1-P). Next,
Gal-1-P is converted to UDP-galactose via D-galactose-1-
phosphate uridylyltransferase (GALT) using UDP-glucose as
the uridine diphosphate source. UDP-galactose 4′-epimerase
(GALE) then converts the UDP-galactose to UDP-glucose.
UDP-glucose returns into the pathway so that further galac-
tose is converted into glucose-1-phosphate (G1P) and UDP-
galactose. Finally, phosphoglucomutase converts the glucose-
1-P into glucose-6-phosphate.

Classic galactosemia, also known as galactosemia type I,
is a severe form of galactosemia that occurs due to the defi-
ciency of GALT. Early manifestations of classic galactosemia
are evident in the first few days after birth and initiation of
breast-feeding. The most common symptoms are jaundice
(74%), vomiting (4%), hepatomegaly (43%), failure to thrive
(29%), poor feeding (23%), lethargy (16%), diarrhea (12%),
and sepsis (10%). Another symptom that usually appears
after two weeks as a result of galactitol deposition in the lens
is cataract [89]. Later manifestations of the disease include
growth delay, neurodevelopment impairments, liver and kid-
ney dysfunctions, and premature mortality [89]. The acute
symptoms of classic galactosemia can be resolved by an early
implementation of galactose/lactose-restricted diet; however,
the patients can still develop long-term complications such as
neuropsychiatric impairments and dysfunctions of the
ovaries [90].

Galactosemia type II was originally identified as a defi-
ciency of GALK, while type III results from GALE deficiency
[87]. The only consequence of GALK deficiency is the devel-
opment and early onset of juvenile bilateral cataract; how-
ever, specific mechanisms underlying this localized-to-
lenses effect remain unclear. Early diagnosis and treatment
of GALK with a galactose-restricted diet may prevent or
reverse the formation of cataracts [91].

GALE-deficient galactosemia is presented in three forms:
generalized, peripheral, and intermediate. Most patients with
GALE deficiency have poor activity of the enzyme in red
blood cells (RBCs) and circulating white blood cells but nor-
mal or near normal in all other tissues. In the generalized
form of the disease, GALE activity is profoundly decreased
in all tissues while in intermediate, its form is characterized
by deficient enzyme activity in RBCs and white blood cells
and less than 50% of normal levels in other cells. Individuals
with peripheral forms of GALE deficiency typically have
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normal growth and development, whereas patients who have
generalized and intermediate forms show symptoms similar
to classic galactosemia with different degrees of severity [90].

In addition to the 3 types of galactosemia described
above, there may be other forms of this metabolic disorder.
For example, the mild variant of classic galactosemia, also
known as Duarte galactosemia, is characterized by partial
GALT deficiency. This disease is more common than classi-
cal galactosemia (1 : 4000). Another common variant of
galactosemia is the Los Angeles variant of galactosemia with
AAC→GAC transition at nucleotide C, position 940 in exon
10, leading to an asparagine to aspartate substitution at resi-
due 314 of human GALT enzyme (p.N314D) [92]. It was
established that the frequency of p.N314D allele is approxi-
mately 11% in European populations and 8.3% for panethnic
frequency [92, 93]. Therefore, in this case, the reduction of
the GALT enzyme activity is more common and less diag-
nosed. Given the possibility of high galactose intake with a
modern diet coupled with the presence of common variants
of galactosemia, an analysis of the possible health effects of
elevated galactose levels is necessary.

Although skin abnormalities have not been identified as
clinical manifestations of galactosemia, irregular glycosyla-
tion of collagen was detected in bones of galactosemic
patients [94]. Moreover, increasing experimental evidence,
which we discuss in the subsequent sections, suggests that
high D-gal concentrations can induce dermal cytotoxicity
and aging-like skin changes. Thus, more studies are needed
to address skin senescence and senescence-associated skin
diseases in patients with galactosemia.

3. Dermal Toxicity of D-Galactose
Studied In Vivo

We identified 21 publications where D-galactose-induced
skin aging in rodents was studied [66–80, 82–86] (Table 1).

In 76% of these studies, the researchers mainly employed
mice (16 studies), and only 24% used rats (5 studies). The
most widely utilized mouse and rat strains were Kunming
mouse strain (9 publications) and Wistar rats (3 publica-
tions). Eleven publications (52%) used male animals, 5
(24%) female animals, and 2 (10%) both genders, and 3 pub-
lications (14%) did not report gender. D-gal doses ranged

from 50 to 1000mg/kg, where D-gal at a dosage of
1000mg/kg weight was the most often used in the experi-
ments (9 publications). The age of animals varied from 4-6
weeks up to 22 months. The period of exposure was in the
range of 30 days to 12 weeks.

These studies showed that significant changes in skin
morphology occurred in rodents as a result of D-gal treat-
ment. In particular, the data showed that the administration
of D-gal in mice and rats caused skin thinning and worsening
of fur quality [67, 68, 70, 71, 74, 76–79, 82–85]. Also, hair
color changes and unique skin appearance with wrinkles
and furrows were detected [80, 84] as well as the destruction
of hair follicles in the skin [69, 84]. Tian and colleagues
reported the apparent accumulation of subcutaneous fat
and fewer cell layers in the skin of Kunming mice treated
with D-gal [71]. Wang and coauthors showed that skin tissue
angiogenesis was reduced after D-gal administration [76].
The skin moisture level, a known skin aging biomarker,
was also decreased in the skin of D-gal-treated animals
[70, 74, 80]. In addition, it was reported that the molecular
biomarkers of skin aging such as p16 and p21 protein
expressions [83, 95] were increased, and conversely, the
level of sirtuin 1 (Sirt1) and cyclin D1 was reduced in the
skin of animals treated by D-gal [74]. However, there are
also contradictory results demonstrating that the adminis-
tration of D-gal at a dose of 125mg/kg/day, for 6 weeks,
did not change skin water content in male Wistar rats [79].

In majority of the abovementioned studies, special atten-
tion was given to the quality of collagen fibers and collagen
content [66–75, 78–80, 84, 86]. It was established that D-
gal treatment reduced the total skin collagen in both mice
and rats [66–75, 77–80, 84]: the type I collagen expression
was downregulated [68, 79], while the number of type III
collagen fibers was increased [68]. The data presented in
these studies indicate that significant collagen fiber shorten-
ing and disordering occur in D-gal-treated animals [68].
Also, the dermal collagen fibers were sparse, slender, or bro-
ken [79]. Disorganization of collagen was noted in a loosely
connected network in the skin of rats treated by D-gal [84].
As indicated by Ye et al., a loss of elastin was also observed
in the skin of D-gal-treated animals [70]. In addition, the
elastic fibers of the skin were reduced, thinned, and scattered
in SD rats [82].
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Figure 1: Metabolism of D-galactose.
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Table 1: Skin changes induced by D-galactose.

Strain Gender D-gal doses
Period of
exposure

Age Aging effects Ref.

Mice

1 C57BL/6J Female
50mg/kg daily

subcutaneous injection
8 weeks 5 months Skin HYP ↑ [66]

2 C57BL/6J Female
1000mg/kg daily

subcutaneous injection
8 weeks 6 weeks

Dermal thickness ↓
Type I collagen fibers ↓
Type III collagen ↓

[67]

3 C57BL/6J Male
1000mg/kg daily

subcutaneous injection
8 weeks 8 weeks

Dermal thickness, density ↓
p16 ↑
MDA ↑
SOD ↓
CAT ↓

GSH-Px ↓

[83]

4
Kunming
mice

Not
reported

1000mg/kg daily
subcutaneous injection

6 weeks
22

months

Collagen ↓
Dermal thickness ↓

Collagen fibers are shorter, less compact,
and more disordered
Type I collagen fibers ↓
Type III collagen fibers ↑

[68]

5
Kunming
mice

Male 400mg/kg intraperitoneally 30 days 8 weeks
Destruction of hair follicles in skin

Skin HYP ↓
[69]

6
Kunming
mice

Male and
female

1000mg/kg daily
subcutaneous injection

42 days 6 weeks

SOD ↓
MDA ↑

Skin HYP ↓
Elastin ↓

Skin moisture ↓
Dermal thickness ↓

Collagen ↓
HYP ↓

[70]

7
Kunming
mice

Male
150mg/kg daily
intraperitoneally

6 weeks Unknown
Dermal thickness ↓

HYP ↓
[71]

8
Kunming
mice

Female
1000mg/kg daily

subcutaneous injection
42 days 3 months

MDA ↑ and GSH-Px ↑
HYP ↓

[72]

9
Kunming
mice

Female
1000mg/kg daily

subcutaneous injection
30 days 8 weeks

CAT ↓
SOD ↓

GPH-Px ↓
HYP ↓
MDA ↑

[73]

10
Kunming
mice

Male
200mg/kg daily

subcutaneous injection
8 weeks 6 weeks

H2O2 ↑
MDA ↑
CAT ↓
GSH ↓

GSH-Px ↓
Dermal thickness ↓

Skin integrity and hair follicles were also
impaired
Collagen ↓

Skin collagen fiber content is reticular, more
loose, and irregular

[84]

11
Kunming
mice

Male
500mg/kg daily
intraperitoneally

8 weeks Unknown

Skin moisture ↓
HYP ↓

Dermal thickness ↓
Collagen ↓
SOD ↓
MDA ↑

[74]
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Dogs have also been used in tests for assessing D-gal-
induced toxicity [96–104]. The main focus of research on
dogs has been focused to assess the effects of galactose on
eye damage [97–104]. Several studies have revealed that a
30% galactose diet induces galactosemia and development
of diabetes-like microvascular lesions of the retina [97–101,
103]. It has also been shown that a diet containing 30% galac-
tose rapidly accelerates cataract formation in galactose-fed
dogs [102, 104]. Evidence shows that eye damage in
galactose-fed dogs causes osmotic shock and is linked to
aldose reductase [102]. There was only one study on a D-
gal-induced aging model in dogs carried out by Ji and coau-
thors [96]. They demonstrated that D-gal, at 50mg/kg daily
subcutaneous injections for 90 days, increased the levels of
MDA and suppression of SOD and GSH-Px in serum and
brain tissue. It was reported that histopathological features
were identified in the liver, kidney, heart, lung, spleen, and

brain of galactose beagles. Moreover, a decreased expression
level of proliferating cell nuclear antigen (PCNA) and
enhanced expression levels of p16 and p21 were revealed in
the D-gal-induced aging group compared with the young
control group [96]. In contrast to studies conducted on
rodents, assessment of the skin condition in dogs with exper-
imental galactosemia was not carried out.

Thus, based on the presented data, it is reasonable to con-
clude that D-galactose induces skin aging in mammals. How-
ever, most of the studies were focused on the evaluation of
antioxidant properties of new drugs or methods rather than
exploring toxic effects of D-gal. To date, we know very little
about effective dosages for skin aging induction since there
is heterogeneity and inconsistency found in the above-cited
publications. The proposed models have good experimental
potential; yet, more studies are needed for the optimization
of the laboratory animal skin aging models. The exact

Table 1: Continued.

Strain Gender D-gal doses
Period of
exposure

Age Aging effects Ref.

CAT ↑ and GSH-Px ↑
p16 ↑ and p21 ↑

Sirtuin1 ↓ and cyclin D1 ↓

12
Kunming
mice

Male
200mg/kg daily
intraperitoneally

30 days Unknown HYP ↓ [75]

13 Nude mice
Not

reported
1000mg/kg daily

subcutaneous injection
8 weeks 6 weeks

Skin elasticity ↓
Dermal thickness ↓

SOD ↓
MDA ↑
AGEs ↑

CD31 expression ↓.

[76]

14 Nude mice Male
1000mg/kg daily

subcutaneous injection
3 weeks 6 weeks

Collagen ↓
Dermal thickness ↓

[77]

15 Nude mice
Not

reported
1000mg/kg daily

subcutaneous injection
8 weeks 6 weeks

AGE ↑
SOD ↓
MDA ↑

Dermal thickness ↓
Collagen ↓

[78]

16 BALB/c Male
500mg/kg daily per oral

administration
6 weeks 12 weeks

Fibroblast count ↓
Collagen ↓

[86]

Rats

17 Wistar Male
125mg/kg daily

subcutaneous injection
6 weeks Unknown

Dermal thickness ↓
Skin moisture-no difference

HYP ↓
Collagen type I expression ↓

[79]

18 Wistar Female
150mg/kg daily
intraperitoneally

12 weeks
170-180
days

Skin moisture ↓
HYP ↓

[80]

19 Wistar Male
200mg/kg daily
intraperitoneally

6 weeks Unknown
Rats had brittle and less elastic hair

Thin, inelastic, and sagged skin is reported
[85]

20
Sprague-
Dawley

Male
1000mg/kg daily

subcutaneous injection
8 weeks 4-6 weeks Skin elasticity ↓ [81]

21
Sprague-
Dawley

Male and
female

100mg/kg daily
hypodermically injected

8 weeks Unknown
CAT ↓ and GSH-Px ↓

MDA ↑
Dermal thickness ↓.

[82]

HYP: skin hydroxyproline; SOD: skin superoxide dismutase; MDA: malondialdehyde; GSH-Px: glutathione peroxidase; CAT: catalase; GSH: glutathione S-
transferase.
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molecular mechanisms underlying D-gal-induced skin aging
still remain unclear and require further investigations. In this
regard, we discuss several pathways implicated in the D-gal-
mediated skin cell senescence and cytotoxicity in the section
that follows.

4. Molecular Mechanisms of D-gal-Induced
Skin Aging

There is a growing body of evidence suggesting that D-gal is
able to induce senescence of dermal fibroblasts in vitro [53].
For example, Elzi and coauthors showed that GALK1-
deficient fibroblasts had increased senescence, which was
associated with the accumulation of intracellular D-gal
[105]. D-gal administration (10mM of D-gal for 48h)
induced acceleration of senescence of GALK1-deficient fibro-
blasts while recovery of wild-type GALK1 expression led to
the reversing of this process [105]. Another study showed
that treatment of human dermal fibroblasts with D-gal
(10mg/mL) for two days resulted in 50% SA-β-gal-positive
staining of cells and this was linked to the reduction of cell
growth and G0/G1 phase arrest [106]. The notion that D-
gal is able to affect the cell cycle in human fibroblasts has also
been confirmed by Cui et al. [107]. The authors reported that
the proportion of the cells in the G0-G1 stage was increased
while the levels of G2-M cells and cell growth rate were
decreased in the fibroblasts treated with 8 g/L of D-gal com-
pared to the untreated cells. In addition, it has been estab-
lished that D-gal affects genome integrity [108]. In this
study, the incubation of porcine fibroblasts with D-gal
(50 g/L) for 96 hours caused deformation of cell and chroma-
tin shapes, induced chromatin condensation, and, in some
cases, caused nuclear fragmentations and folds.

The most feasible mechanisms of D-gal-induced senes-
cence are oxidative stress and suppression of the antioxidant
system [109]. It has been demonstrated that the production
of H2O2 significantly increased in mouse skin after D-gal
treatment [84]. In turn, increased oxidative stress leads to
lipid peroxidation, as evidenced by an increase in the concen-
tration of MDA in the skin [72–74, 76, 78, 82–84]. In
contrast, the activity of SOD was decreased in the skin after
D-gal treatment [70, 73, 76, 78, 83, 84]. Some contradictory
results have been reported about the activity of other ele-
ments of the antioxidant system. For instance, biochemical
analysis of the D-gal-treated skin showed that activities of
CAT, GSH-Px, and GSH were reduced in some studies
[73, 82–84]. On the contrary, it was demonstrated that
CAT [74] and GSH-Px activities were increased in D-gal-
treated animals [72, 74].

A recent study based on untargeted metabolomic
approach with mass spectrometry and dual liquid chroma-
tography tested 14 main pathways, including the multiple
redox, amino acid, and mitochondrial pathways, to under-
stand the pathophysiology of long-term outcomes in classic
galactosemia [110]. The findings of the study indicated that
cysteine, vitamins E/B3, amino acid metabolism, and path-
ways involving mitochondria (e.g., carnitine shuttle, porphy-
rin metabolism, and nicotinate (niacin) metabolism) were
impaired in plasma samples of the patients with classic galac-

tosemia. Authors have suggested that galactosemia was asso-
ciated with oxidative stress and/or perturbed redox signaling.
It was also shown that at a pathologically high concentration
(greater than 5.0mM), D-gal increases lipid peroxidation,
decreases total sulfhydryl content, and alters antioxidant
defenses in rat plasma and erythrocytes [45]. Moreover,
increased expression of biomarkers of the oxidative stress
and decreased antioxidant defense were induced by D-gal
in human fibroblasts in vitro [111, 112].

The important factors leading to oxidative stress are
mitochondrial oxidative impairment and nicotinamide ade-
nine dinucleotide phosphate oxidase (NADPH) oxidase acti-
vation resulting in overproduction of reactive oxygen species
(ROS) [65, 113–116]. It was reported that D-gal reduced the
efficiency of oxidative phosphorylation (OXPHOS) via
declined transmembrane potential, decreasing ATP produc-
tion and changing of respiratory function [65, 113, 114]. Upon
galactose exposure, human fibroblasts tended to reduce the
mitochondrial quantity and mitochondrial DNA (mtDNA)
copy number and enhance mtDNA damage [111, 117, 118].

D-gal-induced oxidative stress probably depends on sev-
eral factors. One of them may be the accumulation of AGEs
[66, 119]. This is highlighted by a significant increase in
AGE levels in the nude mouse skin treated by D-gal
(1000mg/kg) for 8 weeks [76]. In turn, AGEs can trigger cell
damage through 3 main mechanisms: (1) accumulation of
the AGEs in the extracellular matrix (ECM) (collagen and
elastic fibers) initiates a crosslinking process between AGEs
and ECM, which results in the reduction of connective tissue
elasticity; (2) glycated modifications of intracellular proteins
lead to an impaired cellular function; and (3) binding of
AGEs to the receptor for AGE (RAGE) causes activation of
inflammatory signaling pathways, NADPH oxidase activa-
tion, ROS generation, and apoptosis [120, 121]. Antibodies
against RAGE and RAGE inhibitors were capable of inhi-
biting the generation of ROS from NADPH oxidase and
suppressing the expression of proinflammatory cytokines
in vitro [122, 123].

It has been reported that the ubiquitin-proteasome sys-
tem (UPS) and autophagy are involved in the removal of
AGEs [124]. However, the abovementioned factors them-
selves can have negative influence on the protein degradation
systems in cells [125]. It was established that D-gal can dis-
turb ubiquitin-proteasome system [125] and thus enhance
the levels of glycated proteins in the cells. It should also be
noted that autophagic flux alterations were detected recently
in D-gal-treated skin fibroblasts [111, 117]. This can provide
an insight on the additional mechanism of the acceleration of
D-gal-induced cell senescence.

Oxidative DNA damage induced by D-gal may be cru-
cial for the development of skin aging. The role of both
nuclear and mtDNA damage in skin cells induced by exces-
sive ROS is well described in relation to the UV-induced
skin aging process [9, 126]. Similar DNA damage was
found in fibroblasts treated with D-gal [111, 117, 118]. It
was established that oxidative DNA damage activates the
downstream mitogen-activated protein kinases (MAPKs)
including extracellular signal-regulated kinase (ERK), p38,
and c-Jun NH2-terminal kinase (JNK) [127]. These kinases
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act as upstream activators of nuclear factor-κB (NF-κB) and
transcription factor activator protein-1 (AP-1). In their
active states, both transcription factors function as repres-
sors of collagen production and activators of matrix metal-
loproteinases (MMPs) in fibroblasts [128]. One of the
MMP that is activated by NF-κB and AP-1 is MMP-1. This
metalloprotease is responsible for the primary step of colla-
gen fiber fragmentation. Later on, two additional metallo-
proteases, MMP-3 and MMP-9, activated in response to
the NF-κB and AP-1, further degrade the collagen in the
skin [129, 130]. This was consistent with the data on the
enhanced expression of NF-κB and MMP-9 in fibroblasts
treated by D-gal as reported by Voets et al. [112]. In addi-
tion, NF-κB activation was detected in various tissues of
dogs after exposure to D-gal [96].

In dermal fibroblasts, the AP-1 transcription factor
(described above) also acts as a repressor of the transforming
growth factor beta (TGF-β) signaling pathway. This pathway
is one of the main activators of collagen expression and
expression of other ECM proteins in the skin [131]. There-
fore, the downregulation of the TGF-β signaling pathway in
response to ROS leads to the reduction of collagen expression
and an increased rate of collagen degradation. In summary,
activation of MMPs and repression TGF-β signaling have
a significant negative impact on collagen production and
skin aging. Moreover, it was indicated that D-gal reduced
TGF-β-induced myofibroblast differentiation and collagen
production [132].

ROS formation also induces low-grade inflammation,
known as inflamm-aging, and is considered another criti-
cal factor of skin aging [133]. According to a recently pro-
posed model, oxidative stress leads to accumulation of
oxidized lipids and damaged epidermal cells. This triggers
the complement system activation and inflammation,
which in turn induces macrophage infiltration into the
skin. Macrophages can release MMPs, but when overbur-
dened with oxidized lipids and other toxic compounds,
they tend to release ROS and proinflammatory cytokines
[134]. In this context, it should be mentioned that the
increased levels of expression of interleukin- (IL-) 1B and
tumor necrosis factor (TNF) in fibroblasts treated by D-
gal were detected [112].

Dermis vasculature is yet another important component
that plays a crucial role in the skin aging process. During this
process, the number and the size of vascular vessels signifi-
cantly reduce, aiding to overall vasculature reduction in the
dermis [135]. This reduction is suggested to be a result of vas-
cular endothelial growth factor (VEGF) signaling cascade
impairment [136]. However, the molecular mechanisms
describing the galactose effect on the VEGF signaling path-
way during the skin aging process are yet to be determined.
For instance, Chen and coauthors demonstrated that D-gal
induces senescence of human umbilical vein endothelial cells
(HUVECs) and represses angiogenesis and wound healing
in vivo [83]. On the other hand, treatment by D-gal did not
significantly change VEGF production in retinal cells
in vitro [137]. Some information exists for the diabetic,
hyperglycemic conditions. Hyperglycemia also induces the
generation of ROS, which impairs wound healing [138]. Dur-

ing wound healing, keratinocytes, fibroblasts, endothelial
cells, macrophages, and platelets produce various growth fac-
tors and cytokines, one of which is VEGF [139]. Therefore,
the impairment of VEGFmay reduce the overall reepitheliza-
tion process in the skin.

Taking together the information above, it is tempting to
speculate that ROS produced via D-galactose accumulation
may streamline through the same downstream effectors of
ROS, such as transcription factors NF-κB and AP-1, as well
as the impairment of VEGF signaling, and hence further
enhance the negative impact on collagen degradation and
skin aging.

The possible role of galactose in the accumulation of
metabolites in tissues, which can lead to cell damage, should
also be taken into account. One of the possible underlying
mechanisms of D-gal-induced senescence is osmotic shock
caused by the accumulation of galactitol [63]. D-gal is usually
metabolized by conversion to G1P via the Leloir pathway
[88]. Intake of high doses of D-gal may also lead to galactitol
accumulation via a reaction catalyzed by aldose reductase
[66]. It was reported that human skin fibroblasts accumu-
lated 20 times more galactitol than sorbitol when incubated
in the presence of an unusually high concentration of galac-
tose [140]. However, Kubo and colleagues suggested that
the significance of osmotic shock for D-gal toxicity was exag-
gerated and this mechanism is based on free radical produc-
tion [141]. They demonstrated that an abundance of
galactitol leads to activation of aldose reductase, consequent
exhaustion of the NADPH, and suppression of glutathione
reductase activity. Also, it can promote changes in the oxida-
tive status of the cells.

Furthermore, many studies demonstrated the possible
key role of Gal-1-P in the development of toxic effects caused
by an increased concentration of galactose in the blood [53].
Gal-1-P is the product of the first step of galactose metabo-
lism, where galactose is converted into Gal-1-P by GALK1
[50]. In case of metabolic dysfunction or a very high level
of galactose, it was established that Gal-1-P accumulates in
different tissues [142], including skin fibroblasts [143] of
galactosemic patients exposed to galactose. Recent studies
have shown that the treatment of neonate skin fibroblast cul-
tures with Gal-1-P significantly enhanced cellular levels of
NO and inducible nitric oxide (iNOS) more than galactose
treatment [144]. In addition, Gal-1-P downregulates expres-
sion of insulin-like growth factor 1 (IGF-1) [144]. Another
study showed that elevated levels of Gal-1-P disrupt the
phosphatidylinositol bisphosphate- (PI(P)2-) dependent sig-
naling pathway in GALT-deficient tissues by restriction of
the inositol phosphate turnover and reduction of the inositol
level in tissues [145, 146]. In this context, it should be noted
that inositol has antioxidant properties and reduces oxidative
stress [147].

In summary, galactose possesses a cytotoxic potential,
and it is able to cause senescence of skin cells in vitro. The
mechanisms underlying this process are not fully understood
yet, but the most likely candidate for these mechanisms is the
development of oxidative stress, which can also occur as an
outcome of other toxic mechanisms. The main mechanisms
of D-gal cytotoxicity are summarized in Figure 2.

7Oxidative Medicine and Cellular Longevity



5. Natural Antioxidants and Polyphenols in
Studies on D-gal-Induced Aging

Aging models based on the administration of D-gal have
been intensively utilized for validation of the antiaging effi-
cacy of natural antioxidant compounds over the last decades
[148]. In fact, the antioxidant properties of polyphenols have
been tested in a number of studies using a model of skin
aging based on the use of D-gal [149–152]. For instance, it
was established that the combined treatment using resvera-
trol and calorie restriction restores hair condition, skin
elasticity, and skin thickness in rats treated by D-gal [85].
In another study, apigenin (4,5,7-trihydroxyflavone), a fla-
vone subclass of flavonoid, was able to significantly repair
both collagen type I and type III density and thickness of
the skin of D-gal-treated mice [67]. Ye and coworkers
showed that extracts from Idesia polycarpa-defatted fruit res-
idue containing phenolic and flavonoid components could
improve the skin conditions of D-gal-treated mice (increase
SOD activity; maintain collagen, elastin, and moisture con-
tent; and decrease MDA content) [70]. Tian et al. reported
that persimmon-condensed tannin could dose-dependently
reverse mouse skin aging induced by D-gal [71]. The same
study established that another polyphenol, proanthocyanidin
from grape seeds, possesses an antiaging activity for the skin
but to a lesser extent than tannin [71].

Epigallocatechin gallate (EGCG), tea catechin, is one of
the well-studied polyphenols up to date, with proven anti-
inflammatory, antioxidant, and antiaging properties [153–
156]. Chen and coworkers scrutinized the antiaging potential
of EGCG on a D-gal-induced aging animal model [84]. The
results showed that the conditions of the skin of EGCG-
treated groups were improved such that the whole structure
of the skin was better compared to the control. The levels

of oxidative stress and the expression of EGFR proteins were
significantly higher than those in the control group. These
findings suggest that EGCG can effectively alter skin aging.

The antiaging effect of Inula britannica flower flavonoids
on D-gal-induced aging mice was demonstrated by Chen
et al. [74]. The results showed that Inula britannica could
effectively improve the antioxidant enzyme activity of the
aging mice, enhance the activities of SOD, CAT, and GSH-
Px of skin tissue, and decrease the MDA content. In addition,
it was also revealed that these flavonoids can help maintain
the skin collagen, HYP, dermal thickness, and moisture con-
tent. Moreover, Inula britannica was able to decrease the
number of cells arrested in the G0/G1 phase and increase
the expression of Sirt1 and cyclin D1 along with a decrease
in the expression of p16 and p21. These results indicate that
Inula britannica extracts can be used as a potential natural
antiskin aging agent.

In another study, Sukoyan et al. evaluated the effect of 2%
Cynara scolymus L. (extracts of artichoke plant) on inflam-
mation in a D-gal-induced skin aging animal model [80].
The data of the study showed that Cynara scolymus L.
extracts were able to restore skin relative weight and hexosa-
mine/collagen (HYP) ratio along with decreasing the activity
of NF-κB. Topical treatment also improved collagen metabo-
lism and attenuated the progression of inflammation in a D-
gal-induced skin aging model. In addition, Sulistyoningrum
and coauthors demonstrated that dermal fibroblast count,
density of dermal collagen, and plasma MDA were restored
by Muntingia calabura aqueous leaf extract (MCALE)
(35mg/kg) and vitamin C (28mg/kg) on a D-gal-induced
mouse model of skin aging [86].

Apart from polyphenols, other natural antioxidant com-
pounds have also been intensively studied with regard to
their use for D-gal-induced aging research. Li and coauthors

Consumption of high
concentration of D-galactose

Galactosemia

D-Galactose ↑

Oxidative stress (increased ROS and altered antioxidation defense system)

Galactose-1-P ↑

NO and iNOS ↑ Inositol ↓

Glycation of proteins
Crosslinking of

extracellular matrix
proteins 

Galactitol ↑

Osmotic
stress

NADPH ↓
Glutathione
reductase ↓ 

Binding
with

RAGE 

Impaired
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structure and

function ↑

DNA damaging ↑

Cell cycle abnormalities ↑ Protein degradation systems ↓SA-𝛽-gal ↑
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dismutase ↓
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Glutathione
peroxidase ↓
Glutathione
S-transferase ↓

AGEs

Figure 2: Schematic illustration of D-galactose cytotoxicity
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demonstrated that purified fractions of soluble polysaccha-
rides derived from Agaricus bisporus (400mg/kg) and vita-
min C (200mg/kg) had potential antiaging effects against
D-gal-induced skin aging [69]. Moreover, Jing et al. showed
that the acidic- and alkalic-extractable mycelium polysaccha-
rides (extracted from Agrocybe aegerita) increased the
amount of collagen in the skin in a D-gal-induced skin aging
animal model [75].

Zheng et al. investigated antioxidant activities of marine
pepsin-soluble collagen (PSC) derived from the skin of yel-
low goosefish (Lophius litulon) on oxidative stress in a D-
galactose-induced skin aging animal model. It was estab-
lished that PSC could decelerate the progress of wrinkle
development and skin elasticity reduction and inhibit oxida-
tive stress induced by D-gal [73]. The antiaging activity of
low molecular weight peptide (LMWP) extracted from
Paphia undulate was demonstrated by Chen et al. [82]. The
researchers established that LMWP was able to reduce oxida-
tive stress and enhance thickness and elasticity of the skin in
a D-gal-induced animal model.

In addition to natural compounds, synthetic molecules
have also been explored for their antiaging properties. Intra-
dermal microinjection of dimethylaminoethanol (DMAE),
an analog of the B vitamin choline and a precursor of acetyl-
choline, and compound amino acid (AA) caused an increase
in dermal thickness, total collagen content, and collagen type
I in D-gal-treated rats [79]. Another study demonstrated that
argireline, a synthetic peptide, which is patterned from the
N-terminal end of SNAP-25 protein, possesses a significant
antiwrinkle activity, and it can improve morphology of the
skin. Moreover, it can inhibit oxidative processes induced
by D-gal [68].

Alternatively, stem cell therapy has been also considered
a treatment of aging-associated diseases. For example, Zhang
et al. demonstrated that the transplantation of adipose-
derived stem cells (ADSCs) into the skin of D-gal-treated
mice significantly improved skin elasticity and dermal thick-
ness and accelerated angiogenesis [78]. Transplantation of
ADSC reduced MDA and activated SOD activity, and it
was associated with a decrease in mouse AGE levels post-
ADSC treatment. Similar results were reported by Wang
et al. [76]. In another study, Li and colleagues examined the
combined treatment of adipose-derived stem cells (ADSCs)
and fullerenol (as antioxidant) on skin aging induced by D-
gal. It was found out that fullerenol suppressed the retention
rate of transplanted ADSCs and enhanced dermal thickness
and collagen ratio in mice [77]. Recently, Chen et al. investi-
gated the effects of human embryonic stem cell-derived exo-
somes (ESC-Exos) on the aged mouse skin pressure ulcer
model based on the administration of D-gal [83]. It was
established that ESC-Exos promoted wound closure and
increased angiogenesis. The senescence of vascular endothe-
lial cells was significantly reduced after ESC-Exos exposure in
D-gal-treated mice [83].

Taking the abovementioned into consideration, it
could be concluded that natural compounds with antioxi-
dant properties demonstrated significant potential in anti-
aging research, particularly for a D-gal-induced skin
aging model.

6. Conclusions

This review discussed the evidence of D-gal-induced skin
aging based on a range of in vitro and in vivo studies. It was
shown that the toxic impact of galactose is manifested at high
concentrations in the body [53]. However, to date, organ-
specific systemic toxicity studies that have been conducted,
particularly with regard to the skin during galactosemia or
increased consumption of galactose, do not reflect the full
picture of galactose toxicity. Also, little is known about the
exact underlying pathogenic mechanisms. It can be assumed
that D-gal induces skin aging in two ways: the direct impact
of D-gal on skin cells and/or the indirect effect associated
with the accumulation of toxic metabolites in the skin. Our
understanding at this age leads us to suggest that cytotoxicity
of D-gal is based on activated oxidative stress, as confirmed
by the in vitro [65, 111–118, 144] and in vivo experiments
[70, 72–74, 76, 78, 82–85].

Although a significant body of evidence suggests that
high D-gal concentrations can induce skin aging, these are
largely circumstantial [66–80, 82–86]. To the best of our
knowledge, skin aging has not been identified in patients with
galactosemia [87, 157]. On the other hand, abnormal glyco-
sylation of collagen was detected in bones of galactosemic
patients [94]. Based on this evidence, one should potentially
expect to find abnormal glycosylated collagen in skin tissues
in patients diagnosed with galactosemia. To address this
point and validate our assumption, further research attempts
are required along with the search for alternative underlying
molecular mechanisms.
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