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Abstract The estrogen receptor (ER)-negative breast cancer subtype is aggressive with few treat-

ment options available. To identify specific prognostic factors for ER-negative breast cancer, this

study included 705,729 and 1034 breast invasive cancer patients from the Surveillance, Epidemiol-

ogy, and End Results (SEER) and The Cancer Genome Atlas (TCGA) databases, respectively. To

identify key differential kinase–substrate node and edge biomarkers between ER-negative and ER-

positive breast cancer patients, we adopted a network-based method using correlation coefficients

between molecular pairs in the kinase regulatory network. Integrated analysis of the clinical and

molecular data revealed the significant prognostic power of kinase–substrate node and edge features
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for both subtypes of breast cancer. Two promising kinase–substrate edge features, CSNK1A1–

NFATC3 and SRC–OCLN, were identified for more accurate prognostic prediction in ER-

negative breast cancer patients.
Introduction

Breast cancer is the most frequently diagnosed cancer and the
leading cause of cancer mortality among females worldwide

[1]. Each year, 25% of all cancer occurrences and 15% of can-
cer deaths among females are attributed to breast cancer [2].
Based on the presence or absence of estrogen receptor (ER),
this heterogeneous disease can be divided into two subtypes.

The ER-positive subtype is more common and can be treated
by ER modulators, but drug resistance and relapse happen fre-
quently in this subtype [3,4]. The ER-negative subtype is less

frequent but is more aggressive and associated with poor prog-
nosis. To date, ER-negative patients have limited effective
therapies, and chemotherapy is the mostly used treatment

options [5]. Retrospective studies revealed that hormone ther-
apies did not reduce the risk of ER-negative breast cancer [6].
Targeted therapies, such as various kinase inhibitors, offered

more hope for the treatment of ER-negative breast cancer with
the expression of HER2 (Human epidermal growth factor
receptor 2) [7]. A recent study reported that PTEN (Phos-
phatase and tensin homolog) loss in African American females

was significantly correlated with the occurrence of ER-negative
breast ductal cancer [8]. Inherited mutations in PALB2 (Part-
ner and localizer of BRCA2) and FANCM (Fanconi anemia

complementation group M) are also found to be connected
with the absence of ER [9]. These studies indicate the impor-
tance of exploring the genetic characteristics of breast cancer

for the development of targeted therapies for ER-negative
breast cancer. Several studies have identified differential gene
expression patterns in the ER-negative subtype but are limited
by relatively small-scale observational studies or particular

geographic regions [10–12]. The Cancer Genome Atlas
(TCGA) project has generated a substantial amount of data
from a large number of patient samples [13,14], and the clinical

utility of these genomic data has been assessed in several can-
cer types [15,16]. Studies based on large databases that seek to
identify the potential clinical utility of molecular profiles for

ER-negative breast cancer treatment are needed.
Previous studies have reported the important roles of

kinases in the development of various diseases, and numerous

kinases are involved in promoting cell proliferation and cancer
[17]. Kinases typically contain a serine, threonine or tyrosine
residue to catalyze their substrates [18]. Considering the shared
conservative secondary structure element, kinases are favour-

able spots for targeted drugs, such as imatinib and sorafenib
[19], which are effective kinase inhibitors for chronic myeloid
leukaemia treatment. Although kinases are involved in many

key signaling pathways in breast cancer through phosphorylat-
ing downstream substrates [12,20–22], the interactions between
kinases and substrates are also critical in biological pathways

and cell signaling related to other diseases [23–25]. In other
words, compared with single kinase or substrate molecule,
the kinase–substrate network or edge interactions constituted

by these molecules are considered to be more credible and per-
manent for characterizing complex diseases. To date, various
advances have been achieved in discovering network-based
biomarkers thanks to the vast accessibility of omics data

[26]. A recent study reported that the prediction of multiple
phenotypes has been improved based on the pathway modules
constructed from the biological network [27]. Another study

identified a significant association between a module enriched
with cell death genes and ovarian cancer survival based on
the co-expression network approach [28]. Molecular
network-based markers are generally represented as the corre-

lation coefficient between a pair of molecules, but false posi-
tives are highly likely to occur given numerous indirect
associations detected by this method [29]. To solve this prob-

lem and considering the important role of kinase network in
breast cancer, we mainly focused on the kinase–substrate inter-
action network in this study.

The global aim of this study was to identify differential
prognostic kinase–substrate network biomarkers between
ER-positive and ER-negative subtypes as potential drug targets

for the treatment of breast cancer patients. We first analyzed
the clinicopathological features and survival probabilities of
ER-positive and ER-negative subtypes from the Surveillance,
Epidemiology, and End Results (SEER) and TCGA databases

to identify clinical prognostic factors. In addition, we selected
key differential kinase–substrate node and edge features
between the two breast cancer subtypes and integrated these

selected features with clinical characteristics for prognostic pre-
diction based on TCGA data. Moreover, we explored the pos-
sibility of kinase–substrate biomarkers for prognostic

prediction in ER-positive and ER-negative breast invasive
carcinoma.
Results

Clinicopathological characteristics of ER-positive and ER-negative

patients

We included 705,729 SEER and 1034 TCGA breast cancer

patients in this study. More than 70% of patients were ER-
positive in both databases, whereas ER-negative cases
accounted for 21.3% and 22.7% of patients in SEER and

TCGA, respectively. As shown in Table 1, in SEER, ER-
negative patients were diagnosed at younger ages and later dis-
ease stages with a larger proportion of African American
patients compared with ER-positive patients (Chi-squared test;

P < 0.001). In addition, ER-negative patients had a larger
proportion of poorly differentiated tumors and larger tumor
sizes (Chi-squared test; P < 0.001). In TCGA, significant dif-

ferences also existed between the ER-negative and ER-positive
groups, in terms of age (Chi-squared test; P = 0.007), race
(Chi-squared test; P < 0.001), and lymph node status (Chi-

squared test; P < 0.001). No significant difference in tumor
stages was observed between the two subtypes, but a larger
proportion of stage II patients were found for the ER-
negative subtype compared with that for the ER-positive

group in TCGA (62.6% vs 54.5%), which was consistent with
that in SEER (Table 1).



Table 1 Clinicopathological characteristics of ER
±

and ER
�
breast cancer patients
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Clinical prognostic factors in ER-positive and ER-negative

subtypes

Patients with ER-negative breast cancer subtype exhibited a sig-
nificantly lower 5-year overall survival probability in both

SEER (Log-rank test; P < 0.001) and TCGA (Log-rank test;
P = 0.018) datasets (Figure 1). Taking tumor stages and age
groups into consideration, the ER-negative patients exhibited
lower or a tendency of lower 5-year survival rates than ER-

positive patients in all stages and age groups in both datasets,
except the ER-negative patients aged� 70 years inTCGAwhich
showed a tendency of a higher 5-year survival rate (Figures S1

and S2; Table S1). However, the 10-year survival rate of ER-
negative patients aged � 70 years in TCGA was considerably
reduced compared with the ER-positive patients (Figure S2).

In addition, the most significant survival difference between
patients with these two cancer subtypes was found for stage
III (P < 0.001 in both SEER and TCGA, Table S1). Not sur-

prisingly, ER-negative patients exhibited a significantly lower
10-year survival probability in the younger group of patients less
than 50 years old (SEER, P < 0.001; TCGA, P = 0.049, Fig-
ure S2). For patients with positive lymph node status, absence

of ER is an effective indicator of poor prognosis (SEER,
P < 0.001; TCGA, P = 0.007, Figure S3).

Univariate Cox proportional hazard analysis was con-

ducted on all the clinical factors to explore their effects on
overall survival (Table S2). ER-negative patients exhibited
worse survival probabilities in both the SEER and TCGA

datasets [SEER, P < 0.001, hazard ratio (HR) = 1.372,
95% confidence interval (CI) = 1.358–1.386; TCGA,
P = 0.021, HR = 1.642, 95% CI = 1.078–2.501]. Multivari-
ate Cox regression survival analysis adjusted for age, race,

AJCC stage, lymph node status, tumor grade, and tumor size
consistently exhibited a strong correlation of the ER-negative
subtype with a poor survival probability in SEER dataset

(P < 0.001, HR = 1.356, 95% CI = 1.337–1.376). The same
phenomenon also occurred in TCGA dataset (P = 0.002,
Figure 1 OS probability of ER-positive and ER-negative patients

A. The 5-year OS probability of ER-positive and ER-negative breast ca

5-year OS probability of ER-positive and ER-negative breast cancer p

receptor. OS, overall survival; SEER, the Surveillance, Epidemiology,
HR = 2.170, 95% CI = 1.330–3.541) after excluding other
covariates (Table S3).

Differential kinase–substrate features between two subtypes

The kinases included in this study comprised 470 genes anno-
tated in the UniProtKB/Swiss-Prot database [30]. Experimen-

tally validated substrates of these kinases from
PhosphositePlus [31] were also incorporated. Kinase–substrate
edge features were constructed based on the method described

previously [24]. The kinase–substrate node features were trans-
formed into kinase–substrate edge features according to the
correlation of each kinase–substrate pair (see Method). We

subsequently conducted feature selection of these node and
edge features between ER-positive and ER-negative subtypes.
By using 100 times of Monte Carlo cross validation, the
selected kinase–substrate node and edge features were inte-

grated with clinical characteristics for prognostic prediction
(Figure 2). The clinical characteristics reported here included
age, race, tumor stage, and lymph node status, all of which

exhibited significant differences between ER-positive and
ER-negative subtypes (Table 1).

By using the least absolute shrinkage and selection operator

(LASSO) [32], a tatol of 46 differential kinase–substrate node
and edge features between ER-positive and ER-negative sub-
types were identified from the molecular dataset (Figure 3A).
More than half of the selected features were upregulated in

the ER-negative subtype, while ESR1 andMAPK3 were highly
expressed in ER-positive subtype, which was consistent with
the previous report [13]. Five-fold cross validation was per-

formed during the process to tune the value of lambda in
LASSO, and the performance was evaluated by the area under
the curve (AUC), which was 0.908 (Figure S4, see Method).

Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way enrichment analysis was conducted on the selected node
and edge features, and most of them were highly enriched in

cell cycle and cancer-related pathways (Figure 3B). Moreover,
ncer patients in SEER database. Log-rank test, P < 0.001. B. The

atients in TCGA database. Log-rank test, P = 0.02. ER, estrogen

and End Results; TCGA, The Cancer Genome Atlas.



Figure 2 Workflow of the kinase–substrate biomarker detection process

Gene expression levels (Z-score transformed) are presented in a green-yellow color gradient with green and yellow for low and high

expression, respectively. Features in the node data matrix are transformed into edge data based on correlation between each pair of kinase

and substrate, generating the edge dataset in a blue-red color gradient with blue and red for low and high correlation, respectively. ‘‘K”

and ‘‘S” depict kinase and substrate, respectively, and numbers 1–3 indicate different kinases and substrates, e.g., ‘‘K1” means ‘‘Kinase1”

and ‘‘S1” means ‘‘Substrate1”. The yellow and green colored ‘‘K1” and ‘‘S2” indicate the differentially expressed kinase and substrate,

respectively. The red and blue lines delineate the positive and negative correlations, respectively, between the pair of kinase and substrate.

Node and edge features are subsequently selected using the LASSO regression algorithm, and 100 times of Monte Carlo cross validation

are performed to identify the prognostic value of these selected features by integrating clinical characteristics for prognostic prediction.

Clinical: clinical variables only; KinSub, kinase–substrate node and edge features only; Clinical + KinSub, clinical plus kinase–substrate

node and edge features.

Sun Y et al / Prognostic Edge Biomarkers for ER� Breast Cancer 529
by analyzing the associated drugs of these features, we found
that they could be highly enriched in existing drugs, such as

glutathione and genistein (Figure 3C).

Kinase–substrate node and edge features improve prognostic

prediction

To assess whether these kinase and substrate features can pro-
vide additional prognostic power compared with clinical vari-

ables, we built predictive models by integrating clinical
variables with expression values of the selected node and edge
features. Concordance index (C-index) was used to measure
the predictive power of node and edge features together with

clinical variables, and a C-index greater than 0.5 indicates pre-
diction accuracy other than random guess [33]. We applied 100
times of five-fold and two-fold cross validation for each model

and calculated 100 C-indexes for each group of predictive vari-
ables (Figure 4, Figure S5). Notably, models integrating clini-
cal variables with either node features (‘‘Clinical + Node”

model) or edge features (‘‘Clinical + Edge” model) signifi-
cantly increased the predictive accuracy compared with the
model based exclusively on clinical variables (‘‘Clinical”

model) (C-index 0.744 vs. 0.683, P = 3.46 � 10�5; C-index
0.708 vs. 0.683, P = 0.021; Figure 4B). The final model inte-
grating clinical variables with all the kinase–substrate node
and edge features (‘‘Clinical + KinSub” model) demonstrated
the highest prediction power (C-index 0.781 vs. 0.683, P = 5.

89 � 10�14; Figure 4B). Moreover, we retrieved the expression
of a 50-gene qPCR assay (PAM50) gene set from our dataset
and built a prognostic model by integrating clinical variables

with ‘‘PAM50” (‘‘Clinical + PAM50” model) using the same
method. PAM50 gene signatures are widely used intrinsic sub-
type markers in breast cancer with independent prognostic val-

ues [34], but surprisingly, the ‘‘Clinical + PAM50” model
performed no better than the ‘‘Clinical + KinSub” model in
our analysis (C-index 0.743 vs. 0.781, P value = 2.73 � 10�4;
Figure S6), implying the better prognostic potential of kinase–

substrate node and edge features in breast cancer.

Kinase–substrate biomarkers exhibit subtype-specific prognostic

power

To identify subtype-specific biomarkers for prognostic predic-
tion, we performed univariate survival analysis for each of the

46 molecular features in both ER-positive and ER-negative
subtypes (Table 2). Four node features SAT1 (P = 0.027,
HR = 0.539, 95% CI = 0.312–0.931), GMPS (P = 0.011,

HR = 1.895, 95% CI 1.158–3.101), PHKG2 (P = 0.005,
HR = 0.491, 95% CI = 0.297–0.811), CCNE1 (P = 0.016,
HR = 1.833, 95% CI = 1.122–2.995) and one edge feature



Figure 3 Features selected from LASSO regression

A. Heatmap demonstrating the Z-score transformed expression levels of the 21 differential node features and 25 differential edge features

between ER-positive and ER-negative subtypes. Blue and red represent low and high expression, respectively. Green and pink texts

indicate node and edge features, respectively. B. KEGG-enriched pathways of the 46 selected node and edge features. C. Drugs enriched

for the 46 selected node and edge features. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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BUB1–CDC20 (P = 0.013, HR = 1.867, 95% CI = 1.139–3.
063) demonstrated significantly prognostic power in ER-

positive subtype. Two edge features CSNK1A1–NFATC3
(P = 0.043, HR = 2.048, 95% CI = 1.021–4.107) and
SRC–OCLN (P = 0.048, HR = 2.04, 95% CI 1.006–4.134)

showed significantly prognostic power in the ER-negative
group. To exclude the influence of clinical covariates, a multi-
variate Cox model was constructed and the prognostic values

of these candidate biomarkers were validated (Table S4).
To further assess the relationship of these candidate

biomarkers with clinical outcome of ER-positive and ER-

negative patients, Kaplan–Meier curves were constructed
using Log-rank test to stratify the patients into high- and
low-risk groups according to the expression levels of node fea-
tures or correlation values of edge features (median split)

(Figure 5, Figure S7). Poor survival was observed in the
high-risk groups of ER-negative patients stratified by
CSNK1A1–NFATC3 (Figure 5C) and SRC–OCLN (Fig-

ure 5F). Moreover, Kaplan–Meier curves were also plotted
based on the expression of CSNK1A1, NFATC3, SRC, and
OCLN by median split (Figure 5A, B, D, and E), but the

expression of these kinases and substrates did not demonstrate
prognostic values in ER-negative patients, which supports the
significant power of the correlations between kinases and sub-
strates in clinical practice. Independent datasets from Gene

Expression Omnibus (GEO), including GSE42568 (HG-
U133A Plus2 platform) [35], GSE22055 (HG-U133A plat-
form) [36], and ten other datasets with available survival infor-

mation and ER statuses, were used to determine whether the
identified node and edge biomarkers could provide prognostic
information for ER-positive and ER-negative patients. We

observed that these potential biomarkers could also stratify
the survival of high- and low-risk groups in these independent
datasets, suggesting that the prognostic power of these

biomarkers is stable and reliable in practice (Figure 5G–J, Fig-
ure S7; Table S5).

We next compared the kinase–substrate biomarkers with

existing breast cancer prognostic biomarkers from previous
studies [12,37]. National Research Council (NRC) gene signa-
tures NRC-1 (33 genes), NRC-2 (46 genes), and NRC-3 (47
genes) were reported to predict disease-free survival of ER-

positive patients with high accuracy. NRC-7, NRC-8, and
NRC-9 gene sets (39, 25, and 20 genes, respectively) were prog-
nostic signatures for ER-negative subtype. We compared the

performance of our newly identified biomarkers with the pre-
viously reported signatures by C-indexes based on 100 times
of cross validation in the two subtypes, respectively (see

Method). For the ER-positive biomarkers, CCNE1 and the
combination of the five biomarkers demonstrated higher prog-
nostic effects than both NRC-1 and NRC-2 (Figure S8A).
For the ER-negative biomarkers, SRC–OCLN,

CSNK1A1–NFATC3, and their combination significantly



Figure 4 Random survival forest models trained from clinical variables and kinase–substrate node and edge features

A. 100 times of five-fold cross validation in the clinical, KinSub, and their combined datasets for C-index calculation. B. Comparison of C-

indexes of 100 times of cross validation results for Clinical, KinSub, Clinical plus KinSub node features (Clinical + Node), Cnical plus

KinSub edge features (Clinical + Edge), and Clinical + KinSub. n, the number of samples. Two-sided Wilcoxon rank-sum test was used

for significance test.
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outperformed NRC-7, NRC-8, NRC-9 and their combination,
as well as ‘‘S6 kinase” markers, which include genes encoding

kinases in the S6 kinase signaling pathway, such as RPS6KA3,
SMG-1, and RPS6KA1 [12] (Figure S8B). These results sug-
gested that the novel kinase–substrate biomarkers identified

in this study had better performance than existing biomarkers,
which were gene sets comprising dozens of genes.

To demonstrate the additional prognostic power of clinical

characteristics from the previous analysis, we also explored the
combinations of these node and edge biomarkers with clinical
factors. The C-index and P value from the Cox regression
model were presented for all possible combinations. We found

that the inclusion of age group, AJCC stage, and lymph node
status in ER-positive or ER-negative subtype could signifi-
cantly improve the prognostic power (Table S6). Kaplan–

Meier survival curves also demonstrated that combination of
clinical factors with these biomarkers achieved increased prog-
nostic power (Figure 5C and F, Figures S7A and S9).

To evaluate the potential for specific targeted drug develop-
ment for these node and edge biomarkers, we compared the
expression of the selected kinases and substrates in ER-

positive and ER-negative patients with that in normal individ-
uals in the TCGA database. The expression of most of the
selected kinases and substrates was increased in the breast can-
cer compared with that in normal samples (Figure S10).

Specifically, the expression level of SRC was also higher in



Table 2 Univariate survival analysis of 46 kinase–substrate node and edge biomarkers in breast cancer based on ER statuses
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the ER-negative group than that in the ER-positive subtype
(Figure S10). Considering the poor survival of high-risk
groups of ER-negative patients stratified by SRC–OCLN,

the edge biomarkers could serve as potential drug targets;
however, further studies are needed.
Discussion

This study analyzed 706,763 first primary invasive breast can-

cer patients with available ER status from two independent
databases (SEER and TCGA). This study was the first to inte-
grate clinical factors with kinase–substrate node and edge
biomarkers for prognostic prediction between ER-positive

and ER-negative breast cancer subtypes in large datasets. In
addition, we identified prominent kinase–substrate node and
edge biomarkers in both subtypes, and these signatures might

be potential biomarkers to distinguish ER-positive and ER-
negative breast cancer.

The data presented here confirmed that the ER-negative

subtype exhibited poorer survival with an increased occurrence
rate among younger ages and patients of African American
compared with ER-positive patients. This finding was consis-
tent with the phenomenon observed in the California dataset

[38–40]. In addition, we found that features including later dis-
ease stages and larger tumor sizes were associated with the ER-
negative subtype. These observations were reasonable given

the lower survival rate of ER-negative patients. Interestingly,
in both datasets, patients in the 50–69-year-old group exhibit
the largest proportion of ER-negative breast cancer occurrence

(Table 1), and the survival probability of this group was simi-
lar in SEER or even higher in TCGA compared with patients
less than 50 years old (Figure S2). This finding might be related

to hormone levels in the body. Carey et al. [38] reported the
increased prevalence of the more aggressive subtype in pre-
menopausal women compared with postmenopausal women
in the Carolina breast cancer cohort. Further studies are

needed to better characterize the influence of hormone level
on the occurrence of breast cancer subtypes.

We identified several key distinct kinase–substrate node and

edge features between ER-positive and ER-negative subtypes.
By analyzing the associated drugs of these features, we found
that they could be highly enriched in existing drugs, such as

glutathione and genistein. Glutathione is involved in numerous
biological processes, including but not limited to cell develop-
ment, differentiation, antioxidation, and immune response

modulation. Therefore, disorders in glutathione metabolism
could lead to the development and progression of numerous
human diseases, including cancer [41–43]. In fact, as a drug
the glutathione has been used in the treatment of lung cancer

and liver cancer [44–48], implying that it could potentially be
used in the treatment of ER-negative invasive breast cancer.

Integrated analysis of molecular biomarkers with clinical

prognostic factors in breast cancer patients demonstrated the
utility of the inclusion of kinase–substrate node and edge
biomarkers for prognostic prediction. Neither of the clinical

plus nodes (‘‘Clinical + Node” model) and clinical plus edges
(‘‘Clinical + Edge” model) exhibited increased prognostic
power compared with the integrated prediction model
(‘‘Clinical + KinSub”model), suggesting that both the expres-

sion of kinases or substrates (nodes) and the correlation
between kinases and their targeted substrates (edges) play
important roles in the regulation of networks in our body.
Moreover, the ‘‘Clinical + KinSub” model achieved better
performance than the model built by the widely used

‘‘PAM50” gene set. The result confirmed the importance of
kinase–substrate network in our body. In addition, the
kinase–substrate node and edge biomarkers identified in both

ER-positive and ER-negative subtypes outperformed the exist-
ing markers of breast cancer in prognosis. Considering the fea-
sibility and convenience of kinases to be drug targets, our

analysis provides a prominent kinase–substrate set for the drug
development, which will give more available intervention on
patients with ER-negative breast cancer in the future.

The improved prognostic value of the kinase–substrate

edge biomarkers validated the utility of our method for iden-
tifying the correlation between genes instead of DEGs as
functional drivers. These edge markers are generally missed

by traditional methods [24,49]. The disruption of the correla-
tions between kinases and substrates can potentially improve
the clinical outcome of breast cancer patients, which enlarges

the scope of drug target development. The results from 12
independent GEO datasets also confirmed the effectiveness
of these biomarkers (Figure 5, Figure S7; Table S5). Besides,

in the two different subtypes, node features contributed more
to the prognostic probability of ER-positive patients, whereas
ER-negative subtype mostly relied on the edge biomarkers
(Table 2). This phenomenon may underpin different regula-

tion networks in different types of diseases. Previous studies
also reported different results. Specifically, edge biomarkers
were considered to be more reliable for subtyping in one

study [24], whereas Speers et al. [12] demonstrated that
kinases alone were effective in ER-negative breast cancer sub-
typing. Given the different cohorts and analyzing methods

used in these studies, a more comprehensive dataset with
broader networks in addition to kinase–substrate networks
is needed in the future to testify the usefulness of these two

types of biomarkers.
Particularly, two kinase–substrate pairs, CSNK1A1–

NFATC3 and SRC–OCLN, demonstrated strong correlations
with clinical outcome in the ER-negative subtype. NFATC3

is one member of the NFAT (nuclear factor of activated T
cells) transcription factor gene family, which play important
roles in T cell activation [50]. The activation of calcineurin-

NFAT pathway was observed in triple-negative breast cancer
and substantially contributed to the tumorigenesis and metas-
tasis of mammary tumor cell lines [51–53]. In our study, the

high correlation between CSNK1A1 and NFATC3 is associ-
ated with poor survival in the ER-negative group, which sug-
gests that pharmacological inhibition of NFATC3 by
targeting CSNK1A1 could be of therapeutic interest for breast

cancer patients. The tight junction structure is one of the inevi-
table barrier for cancer cells to enable metastasis, whereas
OCLN (Occludin) is one of the early identified tight junction

proteins [54–56]. Slight association between reduced OCLN
expression and poor overall survival was observed in a cohort
with 10-year follow-up of breast cancer patients, and studies

conducted on human cell lines demonstrated that OCLN phos-
phorylation by SRC attenuates its assembly at the tight junc-
tions [56–59]. Given that the high correlation group between

SRC and OCLN had worse survival performance in ER-
negative subtype, the association between SRC and OCLN
represents a potential ‘‘driver” of cell proliferation in ER-
negative breast cancer.
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In conclusion, our study depicts a model for the identifica-
tion of promising molecular biomarkers with utility in clinical
prognosis. This population-based research suggests distinct

clinicopathological characteristics between ER-positive and
ER-negative breast cancer patients. Prognostic clinical factors
and kinase–substrate node and edge features were identified

based on the comparison of these two subtypes. Compared
with using the clinical variables only ("Clinical" model), incor-
porating kinase–substrate node and edge features greatly

improves the predictive accuracy, indicating the advantages
of kinases and substrates as well as their regulation in clinical
diagnosis. Furthermore, our analyses also provide promising
kinase–substrate node and edge biomarkers for clinically rele-

vant refinement of prognostic assessment in the ER-positive
and ER-negative subtypes, and these biomarkers also serve
as candidate drug targets for the treatment of breast invasive

cancer in the future. In addition, this work can be applied to
the analyses of network biomarkers [24,49,60–63] and dynamic
network biomarkers [25,64–66] for disease diagnosis and dis-

ease prediction, respectively.
Method

Clinical database

The SEER 1973 to 2012 database (http://seer.cancer.gov/
about/overview.html) represented approximately 28% of the
US population. We analyzed breast cancer survival in all

women diagnosed with first primary breast cancer with ER sta-
tus (available from 1990). Characteristics, including age at
diagnosis, race, AJCC stage, lymph node status, tumor grade,

and tumor size, were examined for each patient. Survival infor-
mation included vital status, cause of death, and survival time.
All characteristics studied and information regarding ER sta-
tus were based on standard coding rules of SEER records.

After excluding patients without survival information, the final
study cohort of SEER was reduced to 705,729 from an initial
dataset of 705,740.

Clinical data of breast invasive carcinoma from TCGA were
used for this study (http://gdac.broadinstitute.org/runs/std-
data__2016_01_28/data/BRCA/20160128). The clinicopatho-

logical information for each patient included age at diagnosis,
race, AJCC stage, and lymph node status. ER status was deter-
mined according to the current clinical guideline jointly issued

by the American Society of Clinical Oncology (ASCO) and
the College of American Pathology [67]. After excluding male
Figure 5 Prognostic values of two edge biomarkers in ER-negative pa

A.Kaplan–Meier curves of high and low expression groups stratified by

rank test, P = 0.111. B. Kaplan–Meier curves of high and low expre

patients in TCGA. Log-rank test, P = 0.418. C. Kaplan–Meier cur

NFATC3 for ER-negative breast cancer patients in TCGA. Log-rank te

groups stratified by SRC for ER-negative breast cancer patients in TCG

low expression groups stratified by OCLN for ER-negative breast canc

curves of high and low correlation groups stratified by SRC�OCLN

P = 0.043. G. Kaplan–Meier curves of high and low correlation group

rank test, P = 0.01. H. Kaplan–Meier curves of high and low correlatio

rank test, P = 0.036. I. Kaplan–Meier curves of high and low corre

dataset. Log-rank test, P = 0.022. J. Kaplan–Meier curves of high and

dataset. Log-rank test, P = 0.033. DFS, disease-free survival.
patients and cases lacking information on ER status, the final
study cohort was reduced to 1034 froman initial dataset of 1097.

Gene expression dataset

Analysis of kinase–substrate features was performed on gene
expression data (RNAseqV2) of TCGA Breast Invasive Carci-

noma (BRCA) (http://gdac.broadinstitute.org/runs/stddata__
2016_01_28/data/BRCA/20160128). Upper quartile normal-
ized RNA-seq by Expectation-Maximization (RSEM) data

were log2 transformed, and the data were then Z-score centred
on the gene level [68].

Gene expression data were matched with clinical data using

a TCGA barcode for each patient, excluding cases lacking clin-
ical records or expression information, which resulted in a
cohort of 1017 breast invasive cancer patients. In total, 470
of 521 known human kinases and 552 experimentally validated

substrates of these kinases were identified in the expression
dataset and characterized as node features [30].

All the GEO datasets were obtained from the GEO website

(GEO: GSE42568, GSE22055, GSE10893, GSE2034,
GSE21653, GSE22133, GSE22219, GSE48408, GSE4922,
GSE53031, GSE6532, and GSE7390), and are publicly accessi-

ble at https://www.ncbi.nlm.nih.gov/geo.

Kinase–substrate edge construction

Kinase–substrate node features were transformed into kinase–

substrate edge features based on the correlation of each
kinase–substrate pair, performed according to the method pre-
viously described [24]. The transformation is described below.

kinase;u

substrate;v

xu;j;k

xv;j;k

� �
�> edge< u� v>k

xu;j;k �lu;k

ru;k

:
xv;j;k �lv;k

rv;k

� �

where xu;j;k represents the original value of uth kinase in jth

sample from kth class, xv;j;k represents the original value of

vth substrate in jth sample from kth class, and k was set to 1

or 2 to represent the ER-positive or ER-negative subtype. In

addition, lu;k ¼ 1
nk

Pnk
j¼1ðxu;j;k � lu;kÞ and lv;k ¼ 1

nkPnk
j¼1ðxv;j;k � lv;kÞ are sample means of kinase u and substrate

v, and ru;k ¼
ffiffiffiffi
1
nk

q Pnk
j¼1ðxu;j;k � lu;kÞ2 and rv;k ¼

ffiffiffiffi
1
nk

q Pnk
j¼1

ðxv;j;k � lv;kÞ2 are the corresponding uncorrected sample stan-

dard deviation. After edge transformation, the final expression

dataset consisted of 1022 kinase–substrate node features and
2606 edge features.
tients

CSNK1A1 for ER-negative breast cancer patients in TCGA. Log-

ssion groups stratified by NFATC3 for ER-negative breast cancer

ves of high and low correlation groups stratified by CSNK1A1–

st, P= 0.039. D. Kaplan–Meier curves of high and low expression

A. Log-rank test, P = 0.476. E. Kaplan–Meier curves of high and

er patients in TCGA. Log-rank test, P = 0.378. F. Kaplan–Meier

for ER-negative breast cancer patients in TCGA. Log-rank test,

s stratified by CSNK1A1–NFATC3 in the GSE42568 dataset. Log-

n groups stratified by SRC–OCLN in the GSE42568 dataset. Log-

lation groups stratified by CSNK1A1–NFATC3 in the GSE25055

low correlation groups stratified by SRC–OCLN in the GSE25055
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Feature selection and performance comparison

We first selected the node and edge features using the Student’s
t-test with a P value cut-off of 0.05 between ER-positive and
ER-negative subtypes, which reduced the dataset to 2275 fea-

tures. We used these expression data as the explanatory vari-
ables and two subtypes as the response variables to build a
binary classifier (family = ‘‘binomial”) for feature selection
by five-fold cross validation. For each of the five iterations,

80% of the data were used for training by LASSO using the
R package ‘‘glmnet” [69], and the prediction was conducted
on the remaining 20% of the data. The prediction results from

the five-fold cross validation were combined, and the AUC was
calculated by the R package ‘‘ROCR”. Ultimately, we trained
the entire dataset with LASSO, and all the 46 features with non-

zero coefficients were retained for subsequent analysis.
Clinical data, including ER status, age, AJCC stage, and

lymph node status, were combined with molecular data that

included the 46 selected features for model training by random
survival forest (RSF) using the R package ‘‘ran-
domForestSRC” [70]. For each dataset, we used two criteria
to randomly split the samples into two parts. One method used

80% as the training set and the remaining 20% as test set. The
other method divided the entire set in half: 50% served as the
training set and 50% served as the test set. The model built

based on the training set was then applied to the test set for
prediction, and the C-index was calculated using the R pack-
age ‘‘survcomp”. For each dataset, the procedure was iterated

100 times; thus, 100 C-indexes were obtained. Wilcoxon rank-
sum test was then used to compare the results from different
datasets. Furthermore, each of the 46 node and edge features
was evaluated for prognostic values in ER-positive and ER-

negative subtypes using univariate Cox regression. For fea-
tures demonstrating significant prognostic power, multivariate
survival analysis was also conducted to exclude the influence of

covariates.
For the performance comparison of the identified kinase–

substrate biomarkers in ER-positive and ER-negative subtypes

with existing biomarkers, we built RSF models for each bio-
marker and their combinations by five-fold cross validation.
By iterating 100 times of the procedure, we compared the C-

indexes between kinase–substrate biomarkers and existing
biomarkers by Wilcoxon rank-sum test.

Functional analysis

We performed KEGG pathway and drug association enrich-
ment analysis for the 46 kinase–substrate features using Web-
Gestalt (http://www.webgestalt.org/). Hypergeometric test was

used for enrichment evaluation analysis, and the Benjamini &
Hochberg method was used for P value adjustment. P values
less than 0.05 were considered significant.

Statistical analysis

R version 3.2.2 (http://www.R-project.org/) was used to per-

form all the statistical analyses in this work. The relationships
of ER-positive and ER-negative groups with clinicopathologi-
cal characteristics were analyzed using the Chi-square (v2) test.
Survival curves were generated using the Kaplan–Meier

method, and the Log-rank test was applied to calculate differ-
ences between the curves. HRs and their 95% CI were esti-
mated for each multivariate and univariate survival analyses
using Cox proportional hazards models. All tests conducted

were two-sided, and significant differences were noted by P
values less than 0.05.
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