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Influence of the migration of 
radioactive contaminants in soil, 
resident occupancy, and variability 
in contamination on isodose lines 
for typical Northern European 
houses
Yvonne Hinrichsen  1, Robert Finck2, Johan Martinsson2, Christopher Rääf2 & 
Kasper Grann Andersson1

In the remedial phase following an accidental radioactive release, it is important that soil 
decontamination measures are carried out on the areas that contribute most to the radiation dose. In 
this study, the newly developed concept of isodose lines was applied to the area around typical Swedish 
dwellings to identify these areas. The influence of the most common building materials in Sweden, 
wood and brick, and the importance of the positions of doors and windows on the isodose lines were 
demonstrated for specific positions inside the houses, as well as for the entire house, assuming the 
residents exhibit typical resident occupancy. Decontamination of the areas within certain isodose 
lines was shown to result in a greater dose reduction than decontaminating the same area of soil 
within a certain distance of the house. Furthermore, the impact of vertical migration of the radioactive 
contaminants in the soil on the isodose lines was studied, showing that the area enclosed by isodose 
lines decreases over time as the contaminants migrate deeper into the soil. The resulting isodose lines 
and their change over time are dominated by the downward movement of the contamination in the 
upper layer of soil. The impact of the variability in contamination on the final isodose lines and their 
dependence on building materials are demonstrated.

The external radiation exposure is an important contribution to the radiation exposure of the population after 
the release of gamma-ray-emitting radionuclides into the air and their deposition on the ground and on other 
structures1. In inhabited environments, this radiation exposure can be reduced by building structures, depending 
on the geometry of the buildings, the deposition distribution on the different surfaces, and resident occupancy. 
The removal of a thin layer of soil on unpaved areas can reduce the contamination by as much as 90%, provided 
the depth is optimized according to the vertical distribution of the contaminants2. The cost of employing skilled 
personnel, as well as equipment and consumables for such measures can be very high, and the construction of 
complex waste repositories may also be necessary3. It is therefore important to concentrate decontamination 
activities on the areas that have the greatest impact on the radiation exposure of the population, taking into 
account the reduction in exposure provided by various buildings.

The isodose concept was recently developed for this purpose4. When considering the dose contribution result-
ing from radionuclides deposited on the ground, this concept illustrates the extent to which the surrounding areas 
contribute to the external radiation exposure at different representative observation points inside a building, and 
can thus be used to optimize topsoil removal following a radioactive release. The aim of this study was to apply 
the isodose concept to two typical Swedish residential houses, constructed different materials, and to determine 

1Technical University of Denmark, Center for Nuclear Technologies, Roskilde, 4000, Denmark. 2Lund University, 
Department of Translational Medicine, Medical Radiation Physics, Malmö, 205 02, Sweden. Correspondence and 
requests for materials should be addressed to Y.H. (email: yvhi@dtu.dk)

Received: 3 January 2019

Accepted: 15 May 2019

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-019-44392-z
http://orcid.org/0000-0002-1363-2002
mailto:yvhi@dtu.dk


2Scientific RepoRts |          (2019) 9:7876  | https://doi.org/10.1038/s41598-019-44392-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

isodose lines at various locations in the houses, as well as for the entire the houses by applying data on typical 
resident occupancy. The impact of vertical migration of the contaminants in the soil and variability in the con-
taminants on the isodose lines was also studied.

Results
Monte Carlo computed isodose lines around typical Swedish houses. The isodose concept as 
described in Equation 1 in the Method section was applied to a case in which decontamination would lead to 
different reductions in the absorbed dose, depending on which of the eleven different observation points is con-
sidered. Homogeneous 137Cs contamination was assumed on the ground surrounding the wooden and the brick 
houses, as well as 2.5 cm and 5 cm below ground level. The results are presented graphically as isodose lines in 
Figs 1, 2 and 3 for the wooden house and in Figs 4, 5 and 6 for the brick house.

It can be seen from the Figures above that the shape of the areas encompassed by the isodose lines for a given 
observation point are relatively similar for all depths of the contamination, and for both the wooden and brick 
houses. The shapes of the isodose lines reflect the different materials, as well as the positions of doors and win-
dows as they shield less than the walls. The zones for deposited contamination below ground level are smaller as 

Figure 1. Isodose lines around the wooden house at the eleven observation points defined above (red dots) 
resulting from homogeneous 137Cs contamination at ground level. The shading indicates the fraction of dose 
contribution to the observation point including the areas that are surrounded by the respective one. When the 
outside line for the isodose line of a certain relative dose reduction reaches the limit of the calculation grid, its 
shape may differ for a larger calculation grid.
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fewer gamma photons from remote areas reach the observation point, as they lose energy through interactions 
with the soil. To obtain a better estimate of the size of the area that would have to be decontaminated to achieve 
a certain relative dose reduction for contamination at different depths, values of the primary dose factor were 
calculated for an infinite contaminated surface, and are presented in Table 1. The primary dose factor is directly 
related to the dose to the residents when no decontamination measures are implemented, and is expressed in 
pGy per γmm−2, representing the dose (pGy) that would result from a homogeneous plane source at ground 
level, and at 2.5 cm and 5 cm below ground level, for a source with a strength of one gamma photon per unit 
area (γmm−2). When determining isodose lines, it represents the total dose at the observation point i, Di,∞, in 
Equation 1 described in the Method section. It should be borne in mind that the isodose lines illustrate relative 
dose reduction and not the actual dose reduction.

The values of the primary dose factors at the different observation points vary by up to a factor of five. 
Furthermore, the primary dose factors for contamination at ground level are about 5–6 times higher than the 
respective factors for contamination 2.5 cm below ground level, and those about 2 times higher than the cor-
responding factors for contamination 5 cm below ground level. Moreover, the primary dose factors inside the 
wooden house are about twice those in the brick house.

Figure 2. Isodose lines around the wooden house at the eleven observation points defined above (red dots) 
resulting from homogeneous 137Cs contamination 2.5 cm below ground level. The shading indicates the fraction 
of dose contribution to the observation point including the areas that are surrounded by the respective one. 
When the outside line for the isodose line of a certain relative dose reduction reaches the limit of the calculation 
grid, its shape may differ for a larger calculation grid.
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Isodose lines according to resident occupancy. The occupancy factors, pi, as described in Equation 2 
in the Method section were applied to determine isodose lines that are more representative of the dose to which 
a resident is exposed inside the house. The occupancy factors were chosen based the data published in the 
European EXPOLIS project5–7), in which thousands of people in seven European cities (Athens, Basel, Grenoble, 
Helsinki, Milan, Oxford, and Prague), were studied with respect to their time budgets, and the hours they spent 
in various microenvironments. From these data it was found that people spend about 14 h indoors at home, and 
about 1 of these 14 h preparing food in the kitchen. Further surveys show that people spend about 1 h eating8 (i.e. 
in the dining room), about 8 h sleeping9 (i.e. in the bedroom), and about 0.5 h in the bathroom10, leaving about 
3.5 h which it is assumed is spent in the living room. The resulting isodose lines taking into account the occupancy 
factors determined by the named occupancy times are presented graphically in Fig. 7.

The isodose lines in Fig. 7 show the combination of the influence of the time spend in one room (e.g. bed-
room) and continuous influence of building materials (e.g. door and window in the kitchen). It can be seen that 
the isodose lines for a wooden house are gentler than those for a brick house, as timber provides less shielding, 
and therefore has less impact on the isodose lines. Furthermore, the corresponding zones for the brick house 
are larger than those for the wooden house. The size of the zone 2.5 cm below ground level is only half of that at 

Figure 3. Isodose lines around the wooden house at the eleven observation points defined above (red dots) 
resulting from homogeneous 137Cs contamination 5 cm below ground level. The shading indicates the fraction 
of dose contribution to the observation point including the areas that are surrounded by the respective one. 
When the outside line for the isodose line of a certain relative dose reduction reaches the limit of the calculation 
grid, its shape may differ for a larger calculation grid.
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ground level. However, at a depth of 5 cm the zones appear to increase slightly, as the contribution from areas far 
away becomes insignificant.

Impact of vertical migration of contaminants in the soil on the isodose lines. As contaminants 
migrate downwards in the ground over time, the impact of the depth of the contamination on the isodose lines 
is of interest. The most extreme combinations of the values of the effective dispersion coefficient Ds and the 
convective velocity vs (Equation 3 in the Method section) determined for 137Cs by Almgren and Isaksson11 for 
sampling sites in western Sweden (Ds = 0.06 cm2 a−1, vs = 0.17 cm a−1 and Ds = 2.63 cm2 a−1 and vs = 0.00 cm a−1) 
were chosen. The contaminant distributions were calculated for the first 5 cm of soil for times of 0.1 a, 1 a, and 5 a 
after deposition and multiplied by the air kerma free-in-air values interpolated from the calculations at ground 
level, and depths of 2.5 cm and 5 cm. The results are presented graphically as isodose lines for the wooden house 
in Fig. 8 and for the brick house in Fig. 9.

From Figs 8 and 9 it can be seen that the differences in the isodose lines for the wooden and brick houses 
are similar to those observed in the Fig. 7. It can also be seen that for these parameter combinations the isodose 
lines are similar on the short timescale of 0.1 a. Over longer timescales the respective zones become smaller 

Figure 4. Isodose lines around the brick house at the eleven observation points defined above (red dots) 
resulting from homogeneous 137Cs contamination at ground level. The shading indicates the fraction of dose 
contribution to the observation point including the areas that are surrounded by the respective one. When the 
outside line for the isodose line of a certain relative dose reduction reaches the limit of the calculation grid, its 
shape may differ for a larger calculation grid.
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as the contaminants migrate deeper into the soil. This effect is stronger for the parameter combination of 
Ds = 2.63 cm2 a−1 and vs = 0.00 cm a−1 than for Ds = 0.06 cm2 a−1, vs = 0.17 cm a−1. Moreover, it can be seen that the 
upper layer of soil dominates as it contributes more to the air kerma free-in-air than the lower soil layer of soil, as 
indicated by the primary dose factors presented in Table 1.

In the comparison of the wooden and the brick house similar differences can be seen as described before. The 
parameter combination shows that the isodose lines are similar for a short timescale like 0.1 a. Over longer times-
cales the respective zones become smaller as the contaminants migrate to deeper soil level. This effect is stronger 
for the parameter combination Ds = 2.63 cm2 a−1 and vs = 0.00 cm a−1 than for Ds = 0.06 cm2 a−1, vs = 0.17 cm a−1. 
Moreover, the dominance of the top soil layer can be seen as it contributes more to the air kerma free-in-air than 
the lower soil level as shown for the primary dose factor presented in Table 1.

Impact of contamination variability on the isodose lines. The model for contamination variability 
is based on measurements of 137Cs fallout in settlements in Russia and Belarus following the Chernobyl nuclear 
power plant accident12, where dose rate levels represented by 137Cs peak gamma signals ranging from 0 till 5 kcps 
were measured 0.1 m above a 9 m × 9 m open, untouched grass surface. A random number generator picking 

Figure 5. Isodose lines around the brick house at the eleven observation points defined above (red dots) 
resulting from homogeneous 137Cs contamination 2.5 cm below ground level. The shading indicates the fraction 
of dose contribution to the observation point including the areas that are surrounded by the respective one. 
When the outside line for the isodose line of a certain relative dose reduction reaches the limit of the calculation 
grid, its shape may differ for a larger calculation grid.
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values from 0 till 5 was applied to the 1 m × 1 m grid that was used for the Monte Carlo calculations described in 
the Method section with the restriction that the values in all neighboring fields on a horizontal or vertical line are 
allowed to differ by at most ±1, and on a diagonal line by at most ±1.4. These values were applied as dimension-
less scaling factors by multiplication of the Monte Carlo calculated air kerma free-in-air values for the respective 
fields that were determined for contamination at ground level (as this dominates the radiation dose to residents), 
for the wooden and the brick house. The primary dose factors were determined by subtracting the one for homo-
geneous contamination by the sum of the air kerma free-in-air values determined without the scaling factor, then 
multiplied by the average of the randomly generated multiplication factors and finally the sum of determined air 
kerma free-in-air values with multiplication factor was added. This was done for three different contamination 
variability scenarios obtained with the random number generator (Fig. 10). The resulting isodose lines are pre-
sented graphically in for the wooden house in Fig. 11 and for the brick house in Fig. 12.

Comparing the isodose lines for the three contamination variability scenarios with those determined for 
homogeneous contamination (First line in Fig. 7) shows that the original shape is still visible. However, as the 
shielding of the wooden house is lower, the effect of contamination variability on the isodose lines is greater than 
in the case of the brick house. This is supported by the values of the Pearson correlation coefficient, being 0.96, 

Figure 6. Isodose lines around the brick house at the eleven observation points defined above (red dots) 
resulting from homogeneous 137Cs contamination 5 cm below ground level. The shading indicates the fraction 
of dose contribution to the observation point including the areas that are surrounded by the respective one. 
When the outside line for the isodose line of a certain relative dose reduction reaches the limit of the calculation 
grid, its shape may differ for a larger calculation grid.
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0.93, and 0.95 for the wooden house and 0.96, 0.94, and 0.95 for the brick house, for the three different contami-
nation variability scenarios.

To investigate the benefit of decontamination according to isodose lines that were determined for homogene-
ous contamination, in case of contamination variability, the dose factors were calculated after decontamination of 
an area up to 2 m from the houses (116 m2), as well as the respective dose factor after decontamination of 116 m2 
according to the previously determined isodose lines. The values obtained are given in Table 2 for both types of 
houses. Relative dose reductions were calculated for both decontamination scenarios by dividing the dose factors 
decontamination by the respective primary dose factor. The relative dose reduction after optimized was compared 
to the relative dose reduction after normal decontamination by a ratio. The primary dose factors, the relative dose 
reduction, and the ratio comparing the relative dose reductions for optimized decontamination according to iso-
dose lines and for normal decontamination within 2 m from the houses are also included in Table 2.

The values in Table 2 show that the relative dose reduction following optimized decontamination is on average 
51 ± 8% higher than that after normal decontamination for a fixed area of 116 m2 to the same distance around the 
house being decontaminated. This leads to the conclusion that in an authentic fallout scenario where the contami-
nation varies, the decontamination of areas determined with isodose lines for homogeneous contamination is still 
a better option than decontaminating within a certain distance surrounding a building.

Discussion
This study demonstrates the influence of the two most common building materials in Sweden, wood and brick, on 
the shape of the isodose lines, as well as the influence of the positions of doors and windows on the isodose lines. 
Including factors describing typical resident occupancy in the various rooms of the houses shows the mixture of 
the influence of the time spent in a specific room of the house and the continuous influence of building materials 

Observation 
point

Wooden house Brick house

Contamination depth Contamination depth

0 cm 2.5 cm 5 cm 0 cm 2.5 cm 5 cm

1 216 42.4 23.5 94.0 16.8 10.1

2 99.0 17.2 9.87 54.0 8.60 5.16

3 201 40.9 21.4 85.0 15.2 8.54

4 93.1 15.1 9.07 54.9 8.45 5.03

5 84.1 12.3 6.04 34.6 5.55 3.04

6 108 20.4 12.5 66.5 11.0 6.73

7 156 26.7 15.4 112 19.1 10.1

8 132 21.9 12.1 80.5 11.6 6.05

9 246 51.6 27.0 134 26.1 13.9

10 183 29.3 16.1 131 22.3 11.6

11 208 34.2 18.6 110 18.3 9.76

Table 1. Primary dose factors before decontamination (pGy per γmm−2) for the eleven observation points 
inside the wooden house and the brick house resulting from contamination at ground level, and 2.5 cm and 5 cm 
below ground level.

Primary 
dose factor

After normal 
decontamination

After optimized 
decontamination

Ratio of the relative 
dose reductions

Dose 
factor

Relative dose 
reduction

Dose 
factor

Relative dose 
reduction

Wooden house:

  Homogeneous contamination 209 177 15.5% 165 21.2% 1.37

  Variability scenario 1 217 184 6 15.3% 167 23.0% 1.50

  Variability scenario 2 202 178 12.1% 168 17.1% 1.42

  Variability scenario 3 213 178 16.3% 165 22.8% 1.39

Brick house:

  Homogeneous contamination 102 90 12.3% 84 18.4% 1.47

  Variability scenario 1 106 93 12.5% 85 20.3% 1.62

  Variability scenario 2 100 90 9.6% 85 15.2% 1.55

  Variability scenario 3 103 90 12.1% 84 18.4% 1.50

Table 2. Primary dose factors before decontamination (pGy per γmm−2) for homogeneous 137Cs contamination 
and three variability scenarios at ground level, using typical resident occupancy factors in the wooden and the 
brick house, together with the dose factors obtained after normal decontaminating an area of 116 m2 directly 
around the houses, or optimized decontamination of the same area but according to the isodose lines presented 
in the first line of Fig. 7, including relative dose reductions, and ratio of the relative dose reductions.
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as well as positions of doors and windows. In addition, including a model for the vertical migration of contam-
inants in soil revealed the effects of different source depths in the soil on the decrease rate of the zones that are 
encompassed by the isodose lines, as well as the dominance of the contamination in the upper layer of the soil on 
the final isodose lines. Finally, the impact of variability in the contamination on the final result was demonstrated, 
and its dependence on building materials. It was shown that optimized decontamination according to isodose 
lines determined for homogeneous contamination is also a better choice than normal decontamination within a 
certain radius of the house.

In conclusion, it has now been demonstrated that the isodose concept presented in a previous study is useful 
for the comparison of the effects of decontaminating different surface areas, for houses constructed with different 
types of building materials. Downward migration of contaminants in the soil, resident occupancy, and variability 
in contamination were also included in the model. Further studies are required to further develop this method 
into a practical and useful tool for the optimization of countermeasures in cases of radioactive fallout in popu-
lated environments.

Figure 7. Isodose lines around the wooden house (left) and the brick house (right) using typical resident 
occupancy factors resulting from homogeneous 137Cs contamination at ground level (top), 2.5 cm below 
(middle), and 5 cm below ground level (bottom). The shading indicates the fraction of dose contribution to 
the observation point including the areas that are surrounded by the respective one. When the outside line for 
a certain dose reduction reaches the limit of the calculation grid, its shape might differ for a larger calculation 
grid.
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Methods
The isodose concept. The concept of the isodose was recently introduced by Hinrichsen et al.4, where the 
isodose, IDi,k, is defined by the outer boundary of one or more zones in space that contribute, for the most part, a 
given fraction k to the total dose Di,∞ at the observation point i. If ρ →r( )D i,  is a continuous function of the dose 
contribution density with the maximum ρD,i,mac < ∞, the isodose can be chosen from the range 0 < IDi,k < ρD,i,max 
and the fraction ki resulting from the zone or zones determined by the isodose is given by:
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The concept can also be applied to more than one observation point4 by introducing so-called occupancy 
factors, pi, for the various observation points into Equation 1 leading to:

Figure 8. Isodose lines around the wooden house using typical resident occupancy factors resulting from 
homogeneous 137Cs contamination for a vertical distribution, 0.1 years (top), 1 year (middle), and 5 years 
after deposition (bottom), based on the two most extreme parameter combinations determined for western 
Sweden11. The shading indicates the fraction of dose contribution at the observation point including the areas 
that are surrounded by the respective one. When the outside line for a certain dose reduction reaches the limit 
of the calculation grid, its shape might differ for a larger calculation grid.
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Vertical migration of contaminants in soil. The vertical transport of radioactive contaminants in soil 
can be described as a function of time and vertical soil depth by a convection–dispersion model, as suggested by 
Schuller et al.13, Bunzl et al.14, and Kirchner et al.15:

Figure 9. Isodose lines around the brick house using typical resident occupancy factors resulting from 
homogeneous 137Cs contamination for a vertical distribution, 0.1 years (top), 1 year (middle), and 5 years 
after deposition (bottom), based on the two most extreme parameter combinations determined for western 
Sweden11. The shading indicates the fraction of dose contribution at the observation point including the areas 
that are surrounded by the respective one. When the outside line for a certain dose reduction reaches the limit 
of the calculation grid, its shape might differ for a larger calculation grid.
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where C0 is the initial contaminant concentration (Bq cm−3), T1/2 is the physical half-life (a), Ds is the effective 
dispersion coefficient (cm2 a−1), and vs is the convective velocity (cm a−1).

Description of the calculations. As the applicability of the Monte Carlo transport code MCNP616 in deter-
mining the reduction in exposure due to shielding inside a building has been experimentally verified in a previous 
study on a modular building17, it was applied in this study. This is also valid for employed nuclear cross-section 
data set ENDF/B-VII.018, that enables the code to account for photon creation and loss through interaction with 
matter. The most relevant processes in this respect are bremsstrahlung, fluorescence, Compton scattering, photon 
capture, pair production and p-annihilation. The complex 3-dimensional models are defined through a combi-
natorial geometry technique.

Two typical Swedish houses were considered, constructed with the most common building materials in 
Sweden, namely wood and brick. The definition of the geometries of the houses, which had similar designs, 
are based on the construction drawings and descriptions of actual Swedish houses made available by the Urban 
Planning Department of the Municipality of Hässleholm (Stadsbyggnadskontoret, Hässleholms kommun) 
(Fig. 13). The houses cover an area of 10 m × 15 m, and the building materials and dimensions are given in Table 3. 
The protection of wooden frames was assumed to be negligible and thus they are not included in the calculations. 
The windows and exterior doors comprise an area of 25.3 m2 of the total vertical area.

The regions in space were constructed by logical combinations (union, intersection, difference) of elementary 
geometric bodies and surfaces. Data from a material compendium19 were used to assign atomic compositions 
and densities to the materials, as summarized in Table 4. These were used as the input for the different building 
structures and environmental regions.

Figure 10. Three different variations in 137Cs contamination obtained using a random number generator.
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A radioactive source energy of 0.662 MeV was assumed in the calculations as this is the energy of the 
gamma-rays emitted by 137Cs, which is the radionuclide of greatest concern in connection with the Chernobyl and 
Fukushima nuclear power plant accidents. Source regions were defined as 1 m × 1 m plane squares in a 1 m × 1 m 
grid up to a lateral distance of 10 m from the sides of the houses, at ground level, and 2.5 cm and 5 cm below 
ground level. Separate Monte Carlo computations were performed to obtain reference values for an infinite hori-
zontal plane source at ground level, and 2.5 cm and 5 cm below ground level.

The detector regions were defined as air-filled spheres with a diameter of 30 cm, positioned 1 m above ground 
level, at the observation points defined in different parts of the house (Fig. 14). Observation point #1 represents a 
bedroom, #2 the bathroom, #3 a second bedroom (for example, for a child or guests), #4 a dressing room, #5 the 
corridor, #6 a restroom, #7 the hall, #8 a study, #9 the kitchen, #10 the living room, and #11 the dining room. The 
number and energies of the gamma ‘particles’ passing through these detector were determined with the Monte 
Carlo code. The fluence was transformed into air kerma free-in-air using conversion coefficients20.

The Monte Carlo method obtains results by averaging over the scoring of all ‘particles’ drawn by the source. 
Thus, the result is accompanied by a statistical uncertainty. To reach an acceptable standard deviation of below 5% 

Figure 11. Isodose lines around the wooden house using typical resident occupancy factors for three different 
variability scenarios of 137Cs contamination, according to Fig. 10. The shading indicates the fraction of dose 
contribution to the observation point including the areas that are surrounded by the respective one. When the 
outside line for a certain dose reduction reaches the limit of the calculation grid, its shape might differ for a 
larger calculation grid.

Wooden house Brick house

External walls 2.2 cm wood, 4 cm air, 0.9 cm gypsum, 26 cm mineral 
wool, 2.8 cm air, 1.1 cm wood, 1.3 cm gypsum

12 cm brick, 4 cm air, 0.9 cm gypsum, 23 cm 
mineral wool, 1.3 cm gypsum

Inner walls 12 cm or 17 cm gypsum

Roof 5.4 cm concrete, 2.7 cm wood 5.4 cm concrete, 3.5 cm wood

Ceiling 1.3 cm gypsum, 2.8 cm air, 40 cm mineral wool

Windows and doors 0.8 cm glass

Table 3. Construction materials and dimensions for typical Swedish wooden and brick houses.
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within acceptable computation times MCNP6 offers various variation reduction techniques. One of them is the 
generation of ‘weight windows’ in connection with the cells, which are defined regions in space in MCNP6. Those 
weight windows make use of the weight of one MCNP particle, which gives the number of how many physical 
particles or photons like in this study it represents. Those can be the result of an emission from the source or an 
interaction of a particle with matter. Weight windows define the upper and lower limits of weights for particles 
entering the respective cell. The lower limits are defined by the user and the upper are calculated by a multiple of 
the lower limit for each cell. In case of a particle entering a cell with a lower weight than the lower weight limit of 
the cell, a “Russian roulette” technique is applied with the result that the particle’ s weight is either increased to a 
value within the limits of the respective weight window, or the particle is terminated. In case of a particle entering 
a cell with a higher weight than the upper weight limit of the cell, it is divided so that the resulting weights of the 

Figure 12. Isodose lines around the brick house using typical resident occupancy factors for three different 
variability scenarios of 137Cs contamination, according to Fig. 10. The shading indicates the fraction of dose 
contribution to the observation point including the areas that are surrounded by the respective one. When the 
outside line for a certain dose reduction reaches the limit of the calculation grid, its shape might differ for a 
larger calculation grid.

Material Atomic composition Density (kg/l)

Air 0.02% C; 78.44% N; 21.07% O; 0.47% Ar 0.001205

Brick 66.34% O; 0.37% Al; 32.32% Si; 0.71% Ca; 0.25% Fe 1.8

Concrete 8.47% H; 60.41% O; 1.25% Na; 2.48% Al; 24.19% Si; 2.72% Ca; 0.47% Fe 2.25

Glass 60.39% O; 8.81% Na; 25.18% Si; 5.62% Ca 2.4

Gypsum 33.33% H; 50.00% O; 8.33% S; 8.33% Ca 2.32

Mineral wool 42.50% O; 1.70% Na; 5.40% Mg; 10.60% Al; 18.20% Si; 1.90% K; 14.30% Ca; 0.50% Mn; 4.90% Fe 0.1666667

Soil 31.69% H; 50.16% O; 4.00% Al; 14.16% Si 1.52

Wood 46.24% H; 32.34% C; 0.28% N; 20.88% O; 0.06% Mg; 0.12% S; 0.04% K; 0.04% Ca 0.64

Table 4. Material specifications in terms of atomic compositions (rounded) and densities used in the Monte 
Carlo calculations based on the data published in a material compendium19.
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particles are within the limits of the weight window. In case of a particle entering a cell with a weight within the 
weight limits of the cell, no further actions take place. To determine the limits of the weight windows MCNP6 
includes a Weight Window Generator as a tool for estimation of importance of cell in space with respect to source 
and detector position. The definition of the importance of a cell is the ratio of the total score because of particles 
and their progeny entering the cell per total weight entering the cell. Thus, by applying the cell-based generator 
the average importance of the cells can be estimated.

Data Availability
The datasets generated during and analyzed during the current study are available from the corresponding author 
on reasonable request.
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