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Abstract: The steady-state electrical conduction current for single and multilayer polyimide (PI)
nanocomposite films was observed at the low and high electric field for different temperatures.
Experimental data were fitted to conduction models to investigate the dominant conduction mecha-
nism in these films. In most films, space charge limited current (SCLC) and Poole–Frenkel current
displayed dominant conduction. At a high electric field, the ohmic conduction was replaced by
current–voltage dependency. Higher conduction current was observed for nanocomposite films at
a lower temperature, but it declined at a higher temperature. PI nanocomposite multilayer films
showed a huge reduction in the conduction current at higher electric fields and temperatures. The
conclusions derived in this study would provide the empirical basis and early breakdown phe-
nomenon explanation when performing dielectric strength and partial discharge measurements of
PI-based nanocomposite insulation systems of electric motors.

Keywords: polymer nanocomposites; space charge limited current (SCLC); Poole–Frenkel; conduc-
tion current; multilayer insulation

1. Introduction

Polyimide (PI) films are a widely used insulating material for engineering industries.
These thin films are mainly used in electronic devices, multilayer surface coatings on
metals, coatings on intermetallic compounds, temperature protection blankets in space
crafts and magnetic wire enamelling for electric motor insulation [1,2]. PI thin films are also
used for sensor coatings and composite electrodes for batteries [3–8]. PI nanocomposite
films have also been studied and reported in different well-reputed research articles [9–12];
however, among these well-documented research articles, most of the focus is on the
electrical breakdown strength related to the charge trapping and de-trapping mechanism
and mechanical breakdown strength [13–18]. Despite this, very few studies are reported in
relation to the early breakdown phenomenon in these films.

Over the last decade, nanodielectric insulating materials have received a lot of atten-
tion in the global market [19–22]. Several published studies proclaim that polymers and
their derived nanocomposite insulating materials can enhance the dielectric properties
for electrical applications [23–29]. In another study, fluorine-coated PI films have shown
promising improvements in results by applying a thin layer of conductive surface coat-
ing on the top and bottom of these films [30,31]. These huge improvements in dielectric
properties are conditioned on a better dispersion and interface region of nanoparticles,
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which is not easy to achieve, because these tiny particles can easily agglomerate. Other
conditions necessary to obtain better results from these polymer-based nanocomposite
materials are the structure of the composite and the size and type of nanoparticles being
carefully selected and dispersed. Initially, it seemed as though nanoparticles were highly
effective at improving the polymer’s properties; this would later be proven wrong after dis-
cerning the correct chemistry and mechanism of polymer-based nanocomposites. However,
nanoparticles can enhance the polymer’s properties if important parameters, as mentioned
above, are considered. The potential for these advancements has motivated us to improve
the dispersion of nanoparticles and dielectric properties by synthesizing the multilayer
structure. Therefore, we further explored those mechanisms in this research field using
experimental and simulation work.

Conduction Current Theory
The sum of all conduction currents gives us a complete polarization current, which

can be given as Equation (1) [32–34] where ii is the instant current, ia denotes the dipoles’
relaxation current and ic is the impurities conductivity current.

ip = ii + ia + ic (1)

We can use Equation (2) to describe the conduction phenomenon. The time needed to
obtain the steady-state current relies on the material’s nature, the applied electric field and
the temperature. Normally, at higher temperatures and electric fields, the steady state is
achieved earlier.

σt = ∑ ni.qi.µi (2)

where ni is the concentration of charge carriers, qi are the fundamental charges and µi
represents the respective charge carrier’s mobility. Under the electric field, the charge
carrier moves either in the direction of the field or the opposite direction, depending
on the dominant carrier polarity. For higher temperatures, the charge carriers and the
charge mobility increase because the molecular motion increases with temperature. So, the
following Arrhenius law from Equation (3) can describe the relationship between charge
density, mobility and specific temperature T:

n . q ∼ exp(
−EA
kT

) (3)

where EA is the thermal activation energy and k is the Boltzmann constant. According to
this law, the conductivity increases with the increase in temperature. The field strength can
also affect the density and mobility of the carriers, though it is generally believed that it is
true only for electrons. The measurement of conductivity as a function of field strength
provides a way to distinguish between mechanisms controlled primarily electronically and
secondly by ions or dipoles [34,35]. The electrical conductivity increases with the increase
in temperature and electric field, but, at the same time, it can be limited by the presence of
intrinsic space charges because intrinsic charges can be understood as traps for the moving
charges [36,37]. If homocharges are injected at the interface between the dielectric and the
metal electrode, the local field is lowered, determining an increase in injection phenomena.
Mott and Gurney have proved that the maximum current density J that corresponds to
the space charge saturation (filled traps) inside the material, in a perfect dielectric without
intrinsic carriers and without electron holes, will be given by Equation (4) [38].

J =
9
8

εµ
V2

d3 (4)
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This equation is valid only if the internal field completely cancels the electric field at
the interface between the dielectric and the metal due to space charges. If the interfacial
field is present, then the maximum current density J will be from Equation (5),

J =
9
8

εµV2
[
(d + x0)3/2 − x0

3/2
]−2

, (5)

where x0 is the number of free electrons at the anode. For the case of a perfect dielectric,
if the external field is low, the current density has an ohmic behavior, as presented in
Equation (6).

J = σ
V
d

= qn0µ
V
d

(6)

If we compare the previous case with that of perfect insulation, the current density
will be reduced with a specific factor θ, which corresponds to the fraction of carriers that
are injected and trapped in the dielectric, as shown in Equation (7).

J =
9
8

εµθ
V2

d3 (7)

In the case of trapped charges, the depth level of the trapped charges also needs to
be considered [39,40]. If the sample contains only one level of charge traps, the transition
between the ohmic conduction and the space charge limited conduction is possible under
the influence of a high field, due to part of the injected charges being trapped. However,
when all the charge traps are filled, for a specific electric field (given by the trap filled region
applied voltage VTFR), a sudden increase in current will be observed because the current
will tend to approach the current density of material without traps. The two phenomena
may be repeated if the material has several trap levels. The value of the VTFR voltage is
given by Equation (8),

VTFR =
qd2nt

2ε
, (8)

where nt represents the density of the traps found in the material. The polarization current
for the samples increases as the electric field increases because the charge injection and
the charge mobility depend on the electric field. The presence of a space charge inside the
bulk of the samples can act as traps for the moving charges and limit the charge transport
phenomena. Two phenomena can be used to describe the conduction for dielectric materials:
the Poole–Frenkel effect and the space charge limited current (SCLC) [37,41]. Suppose
that the applied electric field is low and the charge injection is neglected. In that case, as
Coelho explains, the variation in the current density (J) concerning the electric field (E)
corresponds to an ohmic behavior [34,42,43]. As the applied electric field increases, the type
of conduction changes after a certain threshold voltage. The initial ohmic conduction is
changed to space charge conduction, which depends on the trapped charges’ depth. When
all the charge traps are filled, a sudden increase in current should be observed for a specific
electric field, and the current will tend to reach the current density of material without
traps [44]. The schematic diagram of conduction current J vs. E is presented in Figure 1.
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Figure 1. Conduction current density vs. voltage.

2. Experimental Section
2.1. Sample Synthesis Procedure

The polymer chain can be obtained by reacting two monomers. In our case, we ob-
tained Polyamic Acid (PAA) by reacting two monomers—diamine (ODA) and Pyromellitic
dianhydride (PMDA)—in dipolar aprotic solvents, such as N-methyl pyrrolidone (NMP)
or N, N-dimethylacetamide (DMAC), which later transformed into the final PI films by
applying thermal imidization to PAA solution from 60 ◦C to 300 ◦C. The thermal and
mechanical properties of PI can be altered by adopting several available monomers. Dur-
ing the reaction process, the percentage of ODA and PMDA can alter PAA’s molecular
weight [43,45]. For PAA with a high molecular weight, it is important to dry the absorbed
moisture from PMDA at 100 ◦C. First of all, ODA was put into the beaker and blended with
DMAC for 30 min. The electromechanical system was used to stir the solution, then PMDA
was blended into the mixture in two portions (first 90%, then the remaining 10%). It was
mixed further for 8 to 10 h to obtain the final product of the PAA solution for PI films [45].

The PAA/SiO2 nanocomposite solution synthesis process is shown in Figure 2. The
surface of SiO2 was modified by using the KH-550 coupling agent to produce the chemical
linkage between organic PI and inorganic SiO2 nanoparticles. After modification, SiO2
nanoparticles were dried and blended with DMAC under ultrasonic waves for 30 min,
then ODA was added and blended further for 60 min. Then, PMDA was mixed in two
parts (90% and 10%) and blended for 6–8 h to get a yellow-colored nanocomposite-based
PAA solution.
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2.2. Spin Coating Technique to Cast PI Films

The spin coating technique was used to stake the PAA solution onto substrates [12].
Typically, a PAA solution is poured on the vacuum chunk substrate and rotated at high
speeds of up to 6000 rpm. The control of the spinning speed helps to distribute the PAA
solution to the entire surface homogenously. Two to three steps of speed rise can be used to
allow the PAA solution to gradually cover more than 80% of the substrate before continuing
on to the final speed. For multilayer PI/SiO2 films, two spinning speed levels were applied.
After calibration, we applied 20 s at a speed of 500 rpm to obtain the first PI layer of 60 µm
thickness, and then soft baked it for 30 min at 80 ◦C. Once the first layer was half cured on
the silicon wafer, the nanoparticles-mixed PAA solution was then poured on the half-cured
first layer and we placed the silicon wafer on the spin coating machine; a spin speed of
1000 rpm at 30 s was applied to obtain the second PI/SiO2 layer of 20–30 µm thickness [45].

2.3. PI Films Fluorination

An F2/N2 gas phase mixture with 12.5% F2 by volume at 0.1 MPa pressure and 40 ◦C
temperature was used for 45 min in a laboratory-made stainless steel vessel to modify the
surface on both sides of PI films. The thickness of the PI was 125 µm and the thickness
of the fluorination coating was 0.5 to 1 µm [30,46,47]. Measured samples have deposition
electrodes of 5 cm diameter on both sides.

2.4. Composition of Multilayer Films and SEM

Polyimide nanocomposites are thin nanofilms with complex chemical synthesis pro-
cesses to achieve samples 100 microns or thicker. JEOL JSM 6460 and FEI inspect S50
SEM(JEOL, Tokyo, Japan) at CTM-IES of UM are used to scan PI and multilayer PI/SiO2
samples. Scattered secondary electrons are used in SEM for surface topography and com-
position of samples. In SEM, the sample is coated with a conductive material or pasted on
conductive metals such as gold and aluminum. SEM can also provide surface roughness
information of samples. The surface area, ranging from 1 cm to 5 µm, can be imaged in
a SEM scanning mode with amplification from 20× to 30,000× and a spatial resolution
of 50 to 100 nm. The surface topography of the PI/SiO2 single and multilayer films is
shown in Figure 3. The SEM images in Figure 3a,c show nanoparticle dispersion for single-
layer PI/SiO2 films while the right column, as shown in Figure 3b,d shows the multilayer
PI/SiO2 structure. White regions in these figures correspond to the nanofiller inclusions
and darker ones to the polyimide matrix. We observed a better nanoparticles dispersion
in PI/SiO2 multilayer films, as shown in the right column SEM images of Figure 3b,d,
compared with PI/SiO2 single-layer film with few nanoparticle agglomeration spots with
the size of 550 nm, as shown in Figure 3a.

2.5. Measurements

The PI films with guard ring electrodes were fixed in a temperature-controlled chamber
to measure the conduction current, as shown in Figure 4. The electric field (up to 50 kV/mm)
was applied by a low residual ripple voltage power supply with a maximum limit of 35 kV
High Voltage DC supply (Fug HCP140-35000). The quasi-steady-state polarization current,
known as conduction current, was obtained after the transient regime of the absorption
during 3000–5000 s, as shown in Figure 5. When we applied an electric field to the thin
sample of PI films, there was slight current conduction through the samples. This current
conduction can be due to various reasons [34,44] such as:

(1) the orientation of dipoles;
(2) displacement of the positive and negative charges;
(3) shifting of mobile positive and negative carriers (Maxwell-Wagner-Sillars polariza-

tion); and
(4) space charge injection from electrodes and its accumulation in the bulk of the sample.
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3. Results

For the studied conduction current of samples (films), the J vs. E graphs are plotted in
Figure 6a–c. By analyzing these, we can observe an increase in conduction current in the
case of fillers added in the polyimide matrix at low temperature, but we observe a conduc-
tion current decrease for nanocomposite samples at high temperature. All the films expose
the same trend of conduction current profile at low electric fields (<16 kV/mm), in which
the conductivity of single-layer PI/SiO2 and fluorinated samples (FPI) is higher than the
pure PI and multilayer PI-PI/SiO2 films at low electric fields [47–49]. Higher conductivity
can help to release trap charges [48,50,51]. As shown in Figure 6, we observed that the
films have at least two to three types of conduction from the slope of the current density
J, relying on the applied electric field and temperatures. An ohmic current is confirmed
by a slope close to 1, corresponding to a linear change in the J vs. E plot. Generally, the
ohmic current relates to the participation of the intrinsic charges in conduction. The charge
injection is increased from electrodes at the higher electric field, and the ohmic conduction
becomes current–voltage dependent.

In this particular case, the dependence between the current density and the electric
field confirmed by slopes higher than 1 is found. This behavior could be associated with
the different conduction phenomena happening in the samples. It is interesting to observe
that the single-layer PI/SiO2 samples’ current densities are the highest, whatever the
electric field and temperature, while multilayer PI-PI/SiO2 samples show, in most of
the cases, the lowest current densities—except 150 ◦C. This could demonstrate that the
nanoparticles favor the charge flow when agglomerated and reduce charge flow when
dispersing homogenously. After plotting the results in a log/log scale, as shown in Figure 6,
we observed an ohmic current in most of the samples with slope ≤ 1 at low field, showing
in the region AB. The applied threshold electric field of the order of 9 to 15 kV/mm,
depending on the temperature, shows a nonlinearity in the conduction current rise with
the slope > 1, indicating a nonohmic conduction mechanism.
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The results shown in Figure 6 were further analyzed to find the dominant injection or
conduction mechanism in all samples, such as space charge limited current (SCLC) and
Poole–Frenkel conduction. The Schottky injection can occur due to electrons’ activation
energy at the electrode/dielectric interface caused by lowering the energy barrier at the
interface. The Poole–Frenkel emission belongs to the conduction due to the electron’s
traps in the bulk of insulation. These trapped electrons can gain some activation energy
to be de-trapped and participate in the conduction. Another conduction that can increase
the nonlinearity (Slope ≥ 2) in J-E plots is due to the SCLC, which can be influenced by
the traps. Therefore, these models can apply to the experimental results to explain the
conduction mechanism. The results were analyzed using different representations of the
conduction current density J concerning the applied electric field E. We divided the results
into three regions (marked as AB, BC and CD) having different slopes, which implies that
the J–E relation is of the type J ∝ En, where n is the curve slope. The ohmic regions at 50 ◦C,
100 ◦C and 150 ◦C are shown with the AB region in Figure 6.

In Figure 6c, but for FPI and PI/SiO2 films at 150 ◦C, the current density J is propor-
tional to the square of the electric field in the first slope of region AB, which can be the
characteristic of an SCLC regime, where the current density–electric field dependence is
given by Equation (9) and plotted in Figure 7.

J = (9/8)εrεoµ
(

V2/d3
)

(9)

where µ is the carrier mobility, V is the applied voltage, d is the sample thickness, εr is the
relative permittivity of the material and ε0 is the vacuum permittivity. The slope of the J vs.
E2/d line should be 1 to confirm the SCLC conduction. Slope <1 in Figure 7 is in area AB,
in which the dominant conduction mechanism is ohmic. Thus, it could not be the SCLC
mechanism. Slope 1 in Figure 7 represents the trap-free SCLC, whereas slope >1 represents
the trap-filled SCLC. Figure 7 shows that only for FPI and PI/SiO2 at 150 ◦C (a better fit for
FPI rather than PI/SiO2) the slope equals 1, which confirms the SCLC in this region [34].
Thus, it appears that the SCLC mechanism is not the dominant mechanism demonstrated
by our samples in the studied conditions.

To conclude, it seems that SCLC would only be present at 150 ◦C for FPI and PI/SiO2
specimens. The second slope for PI, FPI, PI/SiO2 and PI-PI/SiO2 films obtained at the high
electric field has a higher value, which seems to correspond either to the trap-filled region
or other conduction mechanisms. The second slope of PI film at 50 ◦C and the second slope
of PI and FPI films at temperatures above 150 ◦C is higher than 2, which could correspond
to other conduction mechanisms. The SCLC regime cannot explain the samples that have a
slope region BC higher than 2. The chemical and physical composition of samples related
to the glass transition may affect the conduction in these regions.

Thus, the conduction in these regions is mainly controlled by another mechanism.
Other conduction mechanisms, such as Schottky and Poole–Frenkel, have to be considered
as well. The Poole–Frenkel effect is a bulk conduction mechanism where the barrier be-
tween localized states is lowered due to the high electric field’s influence. The conductivity
is given by Equation (10) [51].

σ = σo exp(
βPF
√

E
kT

) (10)

βPF = (q3/πεoεr)
0.5

(11)

where σ0 is the material’s intrinsic conductivity, βPF is the Poole–Frenkel constant defined in
Equation (11), k is the Boltzmann constant and T is the absolute temperature. If this mechanism
is dominant, the ln (J/E) plot versus E1/2 must be a straight line with a slope close to βPF/(kT).

The βPF coefficients are first calculated from the slope, then the dielectric constants
are estimated from these coefficients using Equation (11). If these dielectric constants
agree with the values cited in the literature, it could be said that the samples follow the
corresponding conduction mechanism. Representations in ln (J/E) versus E1/2 coordinates
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are presented in Figure 8. These representations are not linear for FPI, PI/SiO2 and PI-
PI/SiO2 films at 50 ◦C, and their dielectric constant is in the range of 6 to 15, which is
higher than the measured one.
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The slopes of these representations are also not linear for PI, FPI and PI/SiO2 films at
150 ◦C, and their dielectric constant is in the range of 0.8 to 2.2, which is lower than the
measured one as shown in Table 1. Therefore, Poole–Frenkel conduction seems not to be
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the case for these films; however, these representations can be seen to be linear for PI at
50 ◦C and linear for FPI, PI/SiO2 and PI-PI/SiO2 at 100 ◦C, and their values are close to the
calculated βPF/(kT) values. It is also linear for multilayer PI-PI/SiO2 nanocomposite films
at 150 ◦C, and their calculated dielectric constant from the model is close to the measured
one, which could confirm Poole–Frenkel conduction in these films.

Table 1. Comparison of slope value and calculated βPF/kT value at various temperatures.

Samples εr
(Measured) Slope BPF/kT εr

(Calculated)
Temperature

(◦C)

PI 3.9 1 × 10−3 1.4 × 10−3 2.3

50
FPI 3.6 0.4 × 10−4 1.4 × 10−3 6.1

PI/SiO2 3.95 0.8 × 10−3 1.4 × 10−3 9.2

PI-PI/SiO2 3.98 0.6 × 10−3 1.4 × 10−3 15.1

PI 4 1.5 × 10−3 1.2 × 10−3 2.4

100
FPI 3.6 1.1 × 10−3 1.2 × 10−3 4.6

PI/SiO2 3.65 1 × 10−3 1.2 × 10−3 5.5

PI-PI/SiO2 3.63 1 × 10−3 1.2 × 10−3 5.5

PI 3.8 2 × 10−3 1.1 × 10−3 1

150
FPI 3.6 2.3 × 10−3 1.1 × 10−3 0.8

PI/SiO2 3.5 1.4 × 10−3 1.1 × 10−3 2.2

PI-PI/SiO2 3.58 1 × 10−3 1.1 × 10−3 4.3

4. Conclusions

Here, we summarize the possible conduction phenomena for all of the studied materi-
als at different temperatures and the electric field ranges. At least one possible conduction
of each class related to charge injection or bulk conduction should be present to describe the
steady-state conduction current. Nonetheless, for some samples such as FPI and PI-PI/SiO2,
two different conduction mechanisms from the same bulk conduction class seem to be
present at a high temperature of 150 ◦C. SCLC relates to the mobility of holes and electrons,
while other conductions relate to ion donors and acceptor sites present in bulk, which
need thermal or electrical energy to participate in the conduction by giving their space to
neighboring electrons or holes, depending on their trap energy level. We estimate these
conduction phenomena by analyzing the slope of the current density over a certain range
of electric field, not just a point. Thus, it seems difficult to consider that this conduction is
happening exactly in this electric field. The study of conduction mechanisms in polymeric
materials is not easy, and this is even more true when it concerns composite materials. It
appears from this study that dominant conduction mechanisms are strongly dependent on
the electric field and the measurement temperature, whatever the type of studied material.
Nevertheless, in the materials of this study based on polyimides, we can say that two
volume conduction mechanisms seem to be predominant at high temperatures.
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