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Abstract

Paratuberculosis, or Johne’s disease, is a chronic, granulomatous, gastrointestinal

tract disease of cattle and other ruminants caused by the bacteriumMycobacterium

avium, subspecies paratuberculosis (MAP). Control of Johne’s disease is based on

programs of testing and culling animals positive for infection with MAP while

concurrently modifying management to reduce the likelihood of infection. The

current study is motivated by the hypothesis that genetic variation in host

susceptibility to MAP infection can be dissected and quantifiable associations with

genetic markers identified. For this purpose, a case-control, genome-wide

association study was conducted using US Holstein cattle phenotyped for MAP

infection using a serum ELISA and/or fecal culture test. Cases included cows

positive for either serum ELISA, fecal culture or both. Controls consisted of animals

negative for the serum ELISA test or both serum ELISA and fecal culture when both

were available. Controls were matched by herd and proximal birth date with cases.

A total of 856 cows (451 cases and 405 controls) were used in initial discovery

analyses, and an additional 263 cows (159 cases and 104 controls) from the same

herds were used as a validation data set. Data were analyzed in a single marker

analysis controlling for relatedness of individuals (GRAMMAR-GC) and also in a

Bayesian analysis in which multiple marker effects were estimated simultaneously

(GenSel). For the latter, effects of non-overlapping 1 Mb marker windows across
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the genome were estimated. Results from the two discovery analyses were

generally concordant; however, discovery results were generally not well supported

in analysis of the validation data set. A combined analysis of discovery and

validation data sets provided strongest support for SNPs and 1 Mb windows on

chromosomes 1, 2, 6, 7, 17 and 29.

Introduction

Paratuberculosis, or Johne’s disease, is a chronic, granulomatous, gastrointestinal

tract disease of cattle and other ruminants caused by the bacterium

Mycobacterium avium subspecies paratuberculosis (MAP). The clinical signs of

disease in cattle are pipestream diarrhea, weight loss, edema due to hypoprotei-

nemia caused by protein-losing enteropathy [1]. Calves less than 6 months of age

are generally considered to be at the greatest risk of becoming infected with MAP

[2], but clinical signs of infection usually do not appear until second or third

lactation [3]. Even if not showing clinical signs of disease, MAP test-positive cows

produce less milk and are culled earlier in their productive life [2].

The disease occurs worldwide in dairy cattle and other ruminants. Control

programs for paratuberculosis have been established in some nations including

Australia [4], Norway [5], Iceland [6], Japan [7], the Netherlands [8] and the

United States [9]. The reported herd-based prevalence of MAP infection varies

between European countries and is greater than 60% in some regions according to

a recent review [10]. Recent estimates suggest that 68% of US dairy herds [11] and

7.9% of US beef herds have infected animals [12]. After accounting for assay

sensitivity, true prevelance at a herd level has been estimated to exceed 90% [13].

The economic impact of paratuberculosis on the US dairy industry has been

estimated to be from US $200 million to $1.5 billion annually [14, 15]. An

additional concern is the potential zoonotic role of MAP in Crohn’s disease in

humans, which at the current time remains uncertain [16].

There currently is no cure for Johne’s disease, and vaccination is problematic.

Routine testing combined with culling currently provide the best opportunity for

controlling the disease. Knowledge concerning genetics of susceptibility to MAP

infection can contribute to disease control programs by facilitating genetic

selection for a less susceptible population to reduce incidence of infection in the

future. The opportunity for genetic improvement in susceptibility to infection is

evidenced by estimates of heritability of MAP infection in dairy cattle ranging

from 0.03 to 0.28 [17, 18, 19, 20, 21, 22, 23] and differences among dairy sires in

prevalence of MAP infection of their daughters [19, 24, 25].

Genetic factors affect susceptibility to common diseases, and genome wide

association studies (GWAS) provide a tool for identifying these genetic factors

[26, 27, 28]. The objectives of this study were to identify genomic regions
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associated with susceptibility to MAP infection in Holstein cattle and develop

tools for genomic selection for lesser susceptibility to MAP infection.

Materials and Methods

The University of Wisconsin-Madison College of Agricultural and Life Sciences

Animal Care and Use Committee approved this research.

Animal resources

Two resource populations of approximately 5,000 Holstein cows each were used

to identify genomic regions associated with susceptibility to infection by MAP.

Population 1 consisted primarily of twelve paternal half-sib families of daughters

of sires heavily used within the US Holstein population. Collection of these

samples has been described previously (Gonda et al. 2006). Samples were obtained

mainly during 2001 to 2003 from 300 herds from across the US with Wisconsin

and California herds together accounting for approximately 48% of the total

samples. Population 2 consisted of cows from six commercial Holstein herds in

Wisconsin that were cooperators in a Johne’s disease control project. Blood

samples for disease testing and DNA extraction were obtained from all cows in

these herds over a period of 15 months in 2006-7 [29].

Phenotype for MAP infection in Population 1 was based on both fecal culture

of MAP and evidence of antibody titer to MAP as based on a serum ELISA test.

Fecal culture for MAP was measured over 12 weeks using a radiometric BACTEC

method [30]. Regarding ELISA testing, samples from Population 1 had been

originally tested using the IDEXX ELISA, but were re-tested using a more recently

developed ELISA (JTC-ELISA) with higher sensitivity (Shin et al., 2008).

Phenotypes for Population 2 were based on ELISA results, also with the higher

sensitivity test. Optical density values of the serum from project animals and from

positive and negative controls were converted to sample to positive ratios (S/P).

Based on the value of S/P ratio, results of ELISA tests were categorized as negative

(0 to 0.09), suspect (0.10 to 0.24), low positive (0.25 to 0.39), positive (0.40 to

0.99), and strong positive (§1.00) as suggested by [31]. Animals categorized as

strong-positive, positive or low-positive were all considered to be ELISA-positive.

The sensitivity and specificity of this test has been estimated to be approximately

30% and.99%, respectively relative to fecal culture [32]. Cases were defined as

animals positive to either ELISA or fecal culture testing, and controls were those

negative for ELISA and negative for the fecal culture test (if available), matched

for both herd and nearest birth date.

Genotyping, Quality Control and Imputation

Samples from both populations were genotyped with the Illumina Bovine SNP50

BeadChip for discovery analysis and Illumina BovineLD BeadChip for validation

analysis. A combined total of 856 of 890 samples (451 cases and 405 controls)
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from Populations 1 and 2 were successfully genotyped by either Illumina, Inc.

(San Diego, CA), GeneSeek Inc. (Lincoln, NE) or the University of Wisconsin

Biotechnology Center (UWBC). These samples are referred to herein as the

discovery data. The initial genotyping by Illumina and GeneSeek [33] employed

version 1 of the SNP50 BeadChip, while subsequent genotyping employed version

2. Initially, only cases were genotyped for use in a case-reference analysis

(Kirkpatrick et al., 2010). The genotyping of case and control samples with two

different versions of the 50 K bead chip created a potentially problematic scenario

from the standpoint that discrepancies in genotyping between chip versions

would potentially lead to false positive results. Twenty-two samples were

genotyped using both versions of the chip permitting identification of a subset of

SNPs that were discrepantly genotyped (,95% concordance) between the two

chip versions; these were omitted from subsequent analyses (12,504 of the 51,552

SNPs in common between chips). Additionally, animals with fewer than 90%

successfully scored genotypes and SNPs that were successfully scored for fewer

than 95% of the samples in either of the two resource populations were removed

prior to statistical analyses. Quality control (QC) was implemented on SNPs using

PLINK [34]. SNPs with unknown genomic location, not in Hardy-Weinberg

equilibrium (p,1026) or with minor allele frequencies below 0.02 were also not

included in statistical analyses. After exclusion for these various reasons, a total of

33,484 SNPs remained.

For validation analyses, 103 samples from Populations 1 and 2 (negative for

MAP infection based on ELISA test results and fecal culture test results if

available) were genotyped by DNA Landmarks, Inc. (Québec, Canada), using the

BovineLD BeadChip. These samples plus 160 samples from Population 1 and 2

(positive for MAP infection based on either ELISA or fecal culture) previously

genotyped with the SNP50 BeadChip and masked for all but the 6,844 SNPs in

common between the 50 K and LD BeadChips constituted the validation data set.

Data sets from SNP50 BeadChips and BovineLD BeadChip were merged for

imputation purposes. Imputation of genotypes for missing or untyped markers

was performed using BEAGLE version 3.3 [35]. Imputation was conducted using

all BEAGLE default options.

Genome-wide Association Analyses

Association analysis under an additive model was performed using the

GRAMMAR-GC approach (Genome-wide association using Mixed Model and

Regression) as implemented within the GenABEL package [36] for R [37]. First, a

polygenic analysis was conducted using a genomic kinship matrix based on SNP

genotypes to account for relationship between individuals [38]. Residuals from

the polygenic analysis were then used as dependent, quantitative variables in single

marker, linear regression analyses with significance of marker effects determined

as previously described [39]. A false discovery rate approach was used to identify

the most significant SNP using a threshold of 0.5 meaning a 50% or greater

probability that the identified association was not a false positive [40].

GWAS of Susceptibility to Paratuberculosis in Holstein Cattle

PLOS ONE | DOI:10.1371/journal.pone.0111704 December 4, 2014 4 / 14



A second GWAS analysis was implemented with a Bayes C model averaging

approach using the GenSel program [41] The Bayes C method is derived from the

Bayes B approach [42]. Bayes C uses a common variance for SNP effects that is

reliably estimated from the SNP data and is less sensitive to the priors than is Bayes

B [43]. The phenotypic distribution for MAP infection was discrete, and

consequently the data were analyzed using a categorical threshold analysis in

GenSel. Individual SNP effects were estimated from a mixture model with the value

of p set at 0.999, meaning that one out of a thousand SNPs were included in the

model in any particular iteration of the Bayesian analysis and given a non-zero effect

estimate. This high p value has been shown to give faster convergence in the model

averaging procedures [44], and focuses the results on the most significant SNPs

while including every SNP in some small proportion of the models. A total of 41,000

iterations in a Monte Carlo Markov Chain (MCMC) with a burn-in of 1000

iterations were run for the analyses. Results from this analysis included posterior

distributions for the effects of each of the 33,484 markers, adjusted for the portfolio

of all the other fitted marker effects in the model in each iteration of the chain.

Effects of an underlying (ungenotyped) causative locus may be divided between

multiple SNP loci in the Bayesian analysis. To more effectively identify genomic

regions harboring quantitative trait loci (QTL), association of groups of

consecutive SNPs in 1 Mb windows were analyzed using the windowsBV option

in GenSel. Windows were defined as spanning consecutive, non-overlapping 1 Mb

regions across the genome. Genetic variance for a window as a proportion of total

genetic variance across the genome was used to identify the most informative

regions. Posterior probability of inclusion (PPI), which is the proportion of

samples of the Markov chain in which a given SNP window was included in the

model with a non-zero effect was calculated and those exceeding an arbitrary

threshold of PPI.0.20 are reported. For both GenABLE and GenSel analyses, the

analysis was applied to the 50 K discovery data, the validation data imputed to

50 K and combined discovery and validation data sets.

Cross-validation Analysis

The accuracy of genomic predictions was evaluated by pooling estimates using a

5-fold cross-validation strategy. Genotyped animals were divided randomly

(within cases and controls) into five exclusive groups. In each training analysis,

four of the five groups were combined to comprise a training data set to estimate

marker effects using Bayes C analysis. Results from this analysis were then used to

predict genomic values of individuals from the omitted group (testing set) using

the GenSel program. Additionally, a sixth analysis was performed in which the

discovery data comprised the training data set and the validation data comprised

the testing data set.

Prediction efficacy was evaluated by Receiver Operating Characteristic (ROC)

analysis [45] using the ROCR package [46] in R. A pair of observations with

different observed responses (case vs. control) was concordant if the observation

with the lower ordered response value had a lower predicted score than the
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observation with the higher ordered response value. All possible pairs within each

testing group were evaluated in this manner. This analysis was repeated for all five

of the cross-validation training and testing combinations as well as the discovery

and validation training and testing sets. To provide a context for results of these

analyses, a simulation was performed in which 1,000 records were generated

corresponding to a normally distributed liability for MAP infection with h250.10.

A threshold was applied to achieve frequencies of cases corresponding to 10%.

Probability of correct classification based on the known, simulated genetic effects

was then calculated in the same manner as above for the real data with the

simulation repeated 1,000 times.

Results

Regarding diagnostic evaluations, examination of a multi-dimensional scaling

plot (Figure S1) for the combined discovery and validation data revealed no

evidence of population substructure (ie. no discrete clusters). Examination of a

quantile-quantile plot for results from the GRAMMAR-GC analysis of combined

discovery and validation data was consistent with little departure from the null

hypothesis of no association of infection test result with SNP for most SNPs and

relatively few SNPs having significant effects (Figure S2).

Markers significantly associated with MAP infection phenotype (p,561025 or

false discovery rate ,0.5) are presented in Table 1 ordered by significance from

the analysis of combined discovery and validation data sets. Single marker

GRAMMAR-GC analysis of the discovery data identified two SNPs with

significance at p,561025 on chromosomes 15 and 7 (Table 1). Neither of these

SNP associations were successfully replicated in analysis of the validation data set

(p.0.10 and effect estimate of opposite sign). When discovery and validation data

were combined and analyzed in a joint analysis, a total of five SNPs had false

discovery rates less than 0.5 with nominal p-values ranging from 2.8461025 to

6.0661025. Locations of these SNPs were on chromosomes 2, 6, 7, 17 and 29 (

Figure 1, Table 1).

Markers accounting for the greatest proportion of genetic variation in MAP

infection phenotype in the Bayes C analysis are presented in Table 2 ordered by

the percent of variance explained in the analysis of combined discovery and

validation data sets. Bayes C analysis of the discovery data identified three 1 Mb

windows which were included in the model in more than 20% of the iterations

(PPI.0.20) with locations on chromosomes 7, 8 and 15 (Figure 2). The windows

on chromosomes 7 and 15 correspond to the location of most significant SNPs

from the GRAMMAR-GC analysis of the discovery data. As with the GRAMMAR-

GC analysis, addition of the validation did not build support for the chromosome

15 window, and the decrease in support for the chromosome 8 window was even

greater. Bayes C analysis of the combined discovery and validation data with

GenSel identified 1 Mb windows on chromosomes 1, 2, 6, 7, 17 and 29 that

exceeded a PPI of 0.20 (Table 2, Figure 2). For five of the seven most significant

GWAS of Susceptibility to Paratuberculosis in Holstein Cattle
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windows there was correspondence between window location and locations of

individually significant loci from the GRAMMAR-GC analysis (Table 1). The two

exceptions were windows at 1–2 Mb on BTA2 and 128–129 Mb on BTA1 without

SNPs among the most significant listed in Table 1. Conversely, a significant SNP

at 102.4 Mb on BTA7 was without a corresponding significant window from the

Bayes C analysis. In both cases the missing SNP or window fell just below the

threshold applied for inclusion in Tables 1 and 2, so correspondence between

results of the two analytical methods was high.

Table 1. SNP associations from GRAMMAR-GC analysis.

Discovery Validation Combined

SNP BTA bp alleles MAF
nominal
p-value FDR1

effect ¡

SE
nominal p-
value

effect ¡

SE
nominal p-
value FDR1

effect ¡

SE

ARS-BFGL-
NGS-7756

7 70,988,849 G/A 0.47 3.5361025 0.59 0.088¡

0.022
0.14 20.056¡

0.038
2.3261025 0.78 0.078¡

0.019

ARS-BFGL-
NGS-36375

2 15,709,188 A/G 0.28 2.1661022 1.03 0.054¡

0.024
3.0861026 0.194¡

0.041
2.8461025 0.48 0.086¡

0.021

ARS-BFGL-
NGS-43717

17 9,392,845 A/G 0.36 9.7961024 0.89 0.070¡

0.022
0.02 0.093¡

0.039
4.8661025 0.35 0.076¡

0.019

ARS-BFGL-
NGS-2069

6 526,736 G/A 0.23 1.3961024 1.16 0.085¡

0.023
0.08 0.061¡

0.035
5.3561025 0.37 0.078¡

0.019

Hapma-
p38264-BTA-
96587

7 102,398,65-
4

C/A 0.46 5.3161024 0.89 0.074¡

0.022
0.04 0.077¡

0.038
5.7861025 0.39 0.075¡

0.019

ARS-BFGL-
NGS-12309

29 32,671,085 G/A 0.45 2.8561024 0.96 20.077¡

0.022
0.04 0.078¡

0.038
6.0661025 0.34 20.074¡

0.019

ARS-BFGL-
NGS-110386

15 66,653,797 G/A 0.22 1.6261025 0.54 0.110¡

0.027
0.59 20.024¡

0.045
4.1861024 0.87 0.079¡

0.023

1False discovery rate.

doi:10.1371/journal.pone.0111704.t001

Figure 1. Manhattan plot for single marker (GRAMMAR-GC/GenABLE) analysis of combined discovery and validation data sets. Each dot
represents the results from the test of association for a single SNP. Minus log10 of the p-value is indicated on the y-axis and map location of the SNP is
indicated on the x-axis.

doi:10.1371/journal.pone.0111704.g001
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The ROC curve (Figure 3) of the cross-validation analysis yielded a low

probability of correct classification of cases and controls based on genomic

prediction. Probabilities ranged from 0.50 to 0.61 with an average of 0.55.

Probability of correct classification was marginally higher for the discovery data

prediction applied to the validation data, with a value of 0.60. By contrast, the

probability of correct classification within case-control pairs using the known,

simulated genetic values was 0.67, averaging across 1,000 simulations.

Discussion

Previous GWAS studies have identified multiple SNPs and genomic locations

associated with susceptibility to infection by MAP in Holsteins

Table 2. Most significant 1 Mb windows from Bayes C analysis of discovery and combined discovery and validation data.

Discovery Combined Discovery and Validation

BTA Starting location (bp)
Number of SNPs in
1 Mb window

Percent of total SNP
variance p.01

Percent of total SNP
variance p.01

6 202,769 10 1.26 0.12 29.50 0.92

7 70,299,314 9 4.63 0.29 5.44 0.54

2 1,039,834 21 0.37 0.06 3.71 0.47

2 15,001,586 19 0.05 0.02 2.36 0.29

29 32,033,056 16 0.52 0.06 2.14 0.24

17 9,027,765 18 0.32 0.05 1.98 0.24

1 128,031,876 19 0.48 0.07 1.44 0.26

15 66,042,287 14 2.93 0.25 0.58 0.08

8 113,012,644 8 2.87 0.22 0.04 0.01

1Proportion of iterations in which the window accounted for a proportion of genetic variation greater than zero.

doi:10.1371/journal.pone.0111704.t002

Figure 2. Manhattan plot for 1 Mb window (Bayes C/GenSel) analysis of combined discovery and validation data sets. Each dot represents the
percent of genetic variance explained by multiple SNPs within a 1 Mb window. Percent of variance is indicated on the y-axis and map location of the SNP is
indicated on the x-axis.

doi:10.1371/journal.pone.0111704.g002
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[24, 33, 47, 48, 49, 50] and Jerseys [51]; however, correspondence between the

most significant marker loci has been low across studies. Differences in results

may reflect differences in case definition, e.g. positive to antibody ELISA

[24, 49, 50] versus fecal culture positive [47] versus tissue culture positive [47] or a

combination of these [33, 47]. Differences in statistical methodolgies between

studies may also have contributed to variation in results. Results from the current

study continue that pattern, as no association implicated a region in common

with results of previous studies with the exception of a previous analysis of the

same data set [33]. In the previous analysis of this data, cases used in the current

study were genotyped and allele frequencies compared with allele frequencies

derived from sires and maternal grandsires used within the corresponding herds.

This case-reference design, akin to a case-parental control analysis [52], identified

a significant association on BTA15 (ARS-BFGL-NGS-101744 at 69.1 Mb) within

approximately 2.5 Mb of the current result (ARS-BFGL-NGS-110386 at 66.7 Mb).

The low correspondence between results from this study and others in

independent Holstein populations suggests that it is unlikely that loci with large

effect on MAP susceptibility exist within the Holstein population or are of such a

low frequency that their detection will be difficult within the context of a GWAS

analysis. It also suggests the need to combine results from across these studies in a

meta-analysis to gain power to identify loci of moderate to small effect. In

comparing published results across studies there is an inherent limitation in that

only the most significant results are compared. A meta-analysis would provide the

Figure 3. Receiver Operating Characteristics (ROC) curve for five-fold cross-validation and for application of results from discovery data to
validation data. Models were developed using a Bayes C analysis implemented in GenSel. Each curve represents one model, with the black line in the
figure on the left representing the average of the five-fold cross-validations. Area under the ROC curve is equivalent to the probability that the classifier will
rank a randomly chosen positive instance higher than a randomly chosen negative instance. A diagonal line from the lower left to upper right corner would
represent a model with no predictive ability.

doi:10.1371/journal.pone.0111704.g003
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opportunity to identify loci with consistent association across studies albeit at

lesser significance within any individual study.

Results from the cross-validation analysis suggest low accuracy for the genomic

prediction, but this conclusion must be tempered by the recognition that the

comparison here is genomic prediction versus a realization of a single event, i.e.

did an individual animal manifest evidence of MAP infection? Given the low

heritability of MAP susceptibility phenotypes (,10%), low accuracy of prediction

for a single event is to be expected. Even with the simulation study in which

genetic values were known with complete accuracy, probability of correct

classification was 0.67. This is directly attributable to the low heritability for the

trait, and the value of 0.67 realized in the simulation provides an upper bound for

correct classification in this scenario. A more meaningful scenario would be a

comparison of the genomic predictions of sires with their average progeny

susceptibility based on large numbers (hundreds) of offspring.

Johne’s disease in cattle shares similar manifestations to Crohn’s disease in

humans, thus it is interesting to compare results of the current study with results

from GWAS of Crohn’s disease in humans. Individual studies and subsequent

meta-analyses have identified 131 unique risk loci for Crohn’s disease based on

the tabulation found at ‘‘A Catalog of Published Genome-Wide Association

Studies’’ (http://www.genome.gov/gwastudies/). Comparing the corresponding

bovine genomic locations of these Crohn’s risk loci with results of the current

study suggest two potential overlaps, both on BTA7. SNP ARS-BFGL-NGS-7756

at 71 Mb on BTA7 is approximately 2 Mb from interleukin 12B (IL12B), a

subunit of cytokines (interleukins 12 and 23) that activate transcription activator

STAT4 and stimulate production of interferon gamma. IL12B has been associated

with Crohn’s disease in three independent GWAS [53, 54, 55] as well as

subsequent candidate gene studies [56, 57, 58]. SNP Hapmap38264-BTA-96587 at

102.4 Mb on BTA7 is 1.6 Mb from solute carrier organic anion transporter

family, member 6A1 (SLCO6A1), implicated in a single GWAS of individuals of

Ashkenazi Jewish descent [59]. SLCO6A1 was the sole gene in the genomic region

identified in that study, though the potential role for this gene in Crohn’s disease

is unclear. The reported gonad-specific expression of this gene would not

seemingly fit with Crohn’s disease etiology [60]. While the co-location of the

SNPs from this study and these two candidate loci is marginal, both extending

over a distance greater than 1 Mb, these loci may merit consideration as

positional candidates given that loci exhibiting high linkage disequilibrium can be

separated by distances on this order. As previously reported for the US Holstein

population, loci with moderate linkage disequilibrium (0.4,r2,0.6) were

separated by a median distance of ,1 Mb [61].

An examination of the genomic regions identified in this study suggests

potential positional candidate genes in several cases. The 70–71 Mb region of

BTA7 was described above as being at a moderate distance (2 Mb) from a gene

(IL12B) known to be associated with Crohn’s disease in humans. However,

additional potential candidate genes are in closer proximity to this region,

specifically T-cell immunoglobulin and mucin domain containing 4 (TIMD4) and

GWAS of Susceptibility to Paratuberculosis in Holstein Cattle
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IL2-inducible T-cell kinase (ITK). TIMD4 is implicated in regulation of T-cell

proliferation [62] and ITK encodes an intracellular tyrosine kinase and is thought

to affect both T-cell proliferation and differentiation [63, 64]. The gene for

complement component 5 (C5) is located approximately 0.7 Mb proximal to the

most significant SNP on BTA8 from the GRAMMAR-GC analysis (Table 1). C5 is

a strong candidate based on its roles in inflammation and cell killing processes

[65]. Finally, the most significant SNP on BTA15 is located approximately 100 kb

distal of the gene for the CD44 molecule which is a cell surface protein that is

critical for leukocyte migration across the intestinal epitheium [66].

Supporting Information

Figure S1. Multi-dimensional scaling plot for the combined discovery and

validation data sets. Case and control samples are indicated as two different

colors. PC1 and PC2 are the first two principal components obtained from

genomic kinship matrix. Distance between points represents the genetic distance

between animals.

doi:10.1371/journal.pone.0111704.s001 (TIF)

Figure S2. Quantile-quantile plot for results from the GRAMMAR-GC analysis

of the combined discovery and validation data. The Y-axis represents observed

P-values and the X-axis represents expected P-values under a null hypothesis

(diagonal) of no association.

doi:10.1371/journal.pone.0111704.s002 (TIF)

Dataset S1. Genotype data for discovery and validation samples. There are

38,434 genotypes per individual; missing genotypes have been imputed.

doi:10.1371/journal.pone.0111704.s003 (ZIP)
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