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Abstract: Background: Mitochondrial dysfunction has been identified as a pathophysiological
hallmark of disease onset and progression in patients with Parkinsonian disorders. Besides the
overall emergence of gene therapies in treating these patients, this highly relevant molecular concept
has not yet been defined as a target for gene therapeutic approaches. Methods: This narrative review
will discuss the experimental evidence suggesting mitochondrial dysfunction as a viable treatment
target in patients with monogenic and idiopathic Parkinson’s disease. In addition, we will focus on
general treatment strategies and crucial challenges which need to be overcome. Results: Our current
understanding of mitochondrial biology in parkinsonian disorders opens up the avenue for viable
treatment strategies in Parkinsonian disorders. Insights can be obtained from primary mitochondrial
diseases. However, substantial knowledge gaps and unique challenges of mitochondria-targeted
gene therapies need to be addressed to provide innovative treatments in the future. Conclusions:
Mitochondria-targeted gene therapies are a potential strategy to improve an important primary
disease mechanism in Parkinsonian disorders. However, further studies are needed to address the
unique design challenges for mitochondria-targeted gene therapies.
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1. Introduction
1.1. Mitochondrial Dysfunction in Idiopathic and Monogenic Parkinson’s Disease

Parkinson’s disease (PD) is the second most common neurodegenerative disorder and
affects millions worldwide [1]. Besides rapid progress in the elucidation of underlying dis-
ease mechanisms, no disease-modifying treatments are available today [2]. The underlying
molecular mechanisms are complex and involve a plethora of interconnected pathways [3].
However, most likely due to their central role in cellular homeostasis, mitochondrial dys-
function has been identified to play a dominant role in PD onset and progression [4]. These
insights were derived from environmental and genetic studies of mitochondrial dysfunc-
tion in PD, and overwhelming evidence has been gathered to support the hypothesis of
mitochondrial dysfunction as a main driver of the disease. Several genes causing mono-
genic PD are either directly (PRKN, PINK1, and DJ-1) or indirectly (GBA, LRRK2, among
others) linked to mitochondrial dyshomeostasis [5]. The deepened understanding of the
monogenic forms of PD has already expanded our knowledge of disease mechanisms in
idiopathic PD. Many shared pathways and pathophysiological overlap suggest mutual
disease mechanisms [6]. Therefore, targeting mitochondrial dysfunction seems to be a
tempting approach to develop innovative disease-modifying therapies [7].

In contrast, as a generic term, “mitochondrial dysfunction” oversimplifies the multi-
faceted nature of mitochondrial biology in health and disease. PD-associated mitochondrial
dysfunction presents with a variety of molecular events, including impaired mitochondrial
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biogenesis, increased release of reactive oxygen species (ROS), defective mitophagy and
trafficking, electron transport chains (ETC) dysfunction, variations in mitochondrial dy-
namics, calcium (Ca2+) imbalance, neuroinflammation, and possible indirect influences
on mitochondrial homeostasis from presumably unrelated pathways (e.g., α-synuclein
deposition) [8]. The centrality of mitochondria in cellular functioning and the convergence
of mammalian metabolism on mitochondria suggest that potential therapies must address
a complex web of interconnected pathways [9]. Besides the complexity of mitochondrial
dysfunction, all pathways, as mentioned above, share the common end route of impaired
cellular bioenergetics (by altered oxidative phosphorylation, OXPHOS) This can result in
an increase of ROS, which finally leads to cell death. Interestingly, primary mitochondrial
disorders occasionally present with parkinsonism, e.g., in patients harboring mutations
in the nuclear POLG gene [10]. Research has shown that PD patients have an increased
somatic mitochondrial DNA (mtDNA) mutation load [11]. These findings have led to
the discovery of mtDNA alterations as a pathophysiological driver of mitochondrial dys-
function in PD. Therefore, studies of mitochondrial disorders may help gain deepened
insights into mitochondrial biology and pinpoint potential drug targets to enhance distinct
aspects of mitochondrial biology [12]. Many dysregulated pathways in primary mitochon-
drial disorders are shared with PD: These pathways include OXPHOS deficiency, mtDNA
maintenance defects, mitochondrial translation defects, and mitochondrial quality control
defects, among others [13]. The discovery of genetic abnormalities in primary mitochon-
drial disorders may foster the identification of viable drug targets in PD. Even though this
approach will need additional experimental validation, it may provide promising impulses
for future studies.

1.2. The Scope of This Review

This narrative review highlights the importance of mitochondrial dysfunction as a
molecular disease cause in monogenic and idiopathic PD. We will focus on gene therapeutic
targets and challenges necessary to overcome to translate molecular findings into potential
clinical applications. We will highlight different treatment strategies and evaluate their
translational potential. In conclusion, we will define crucial knowledge gaps and molecular
aspects where additional experimental validation is needed.

1.3. Current Gene Therapeutic Approaches in Parkinson’s Disease

The term “gene therapy” describes the delivery of a specific transgene to treat a given
disease. The transgene either corrects or replaces a defective gene or supports cells in the
diseased environment. Gene therapy vectors may be viral (commonly adeno-associated
viruses (AAVs) and lentiviruses) or non-viral (typically naked DNA or in combination with
cationic complexes or polymers) and can widely differ in their respective administration
routes [14].

The term “gene therapy” is filled with immense hopes and will provide treatment
options for so far untreatable diseases. However, the first gene therapies have only recently
received formal approval for merely a few but constantly growing numbers of conditions.
For PD, gene therapies are not yet available, but certain concepts currently undergo
preclinical and clinical evaluation [15]. PD-related gene therapy in humans currently
pursues three main directions:

1. Enhancement of dopamine synthesis by overexpression of relevant synthesis-related
enzymes (tyrosinhydroxylase [TH], aromatic L-amino acid decarboxylase [AADC],
GTP cyclohydrolase I [GCH1], or a combination thereof) [16].

2. The overexpression of neurotrophic factors (e.g., glial cell line-derived neu-rotrophic
factor [GDNF] or neurturin [NTN]) [17].

3. The overexpression of glutamate decarboxylase [GAD] in the STN to decrease the
synthesis of glutamate therein and to modulate basal ganglia loops in the human
brain [18].
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For these three approaches, the transgene has to be injected stereotactically in pre-
defined neuroanatomical regions. The treatment is considered to be safe but appears to
provide only limited clinical benefits for PD patients until now [19]. However, none of
these approaches so far targets underlying pathophysiological traits of PD, and the applica-
bility of neurotrophic factors to achieve relevant disease modification needs to be critically
evaluated. Current experimental gene therapeutic strategies are highlighted in Figure 1.
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Figure 1. Experimental gene therapeutic approaches for the treatment of PD. In (A), neuroanatomical target regions and
their functional interconnections are schematically depicted. So far, mainly two target sites have been evaluated: the
striatum and the subthalamic nucleus (STN). Different treatment strategies and injection sites are highlighted by syringes.
The red circled numbers refer to the numbered list of currently employed gene therapeutic strategies: 1. enhancement
of dopamine production, 2. delivery of neurotrophic factors, and 3. overexpression of GAD to modulate basal ganglia
loops. The SNc has not yet been evaluated as an injection site, mainly based on its limited accessibility by stereotactic
surgery. In (B), we schematically highlighted the currently considered strategies for enhancing dopamine synthesis. The
so-far investigated dopamine metabolism-related enzymes and their respective role in dopamine synthesis are highlighted
in purple. AADC: L-amino acid decarboxylase. BH4: Tetrahydrobiopterin. GCH1: GTP cyclohydrolase I. GPe: external
globus pallidus. GPi: internal globus pallidus. GTP: guanosine triphosphate. NH2TP: dihydroneopterin triphosphate. PD:
Parkinson’s disease. eqBH2: quinoid dihydrobiopterin. SNc: substantia nigra pars compacta. STN: subthalamic nucleus.
TH: tyrosine hydroxylase.

1.4. A Primer on Mitochondrial Biology

Mitochondria are dynamic organelles and form a highly responsive network within ev-
ery cell of the body [20]. Their primary role is to provide cellular energy via OXPHOS [21].
Mitochondria have two phospholipid membranes compartmentalizing distinct physiologi-
cal functions of this organelle. The spatial and functional compartmentalization creates
additional pharmacodynamic challenges for targeted drug delivery [22]. The outer mito-
chondrial membrane (OMM) is used to separate the organelle from the cytosol. The inner
mitochondrial membrane (IMM) contains the necessary components for ATP synthesis via
OXPHOS and separates the intermembrane space from the mitochondrial matrix. Here,
the complexes I to IV of the ETC are used to create an electrochemical gradient (across the
IMM). This gradient is used by the ATP synthase, also known as complex V, to generate
ATP. As a result of OXPHOS, significant amounts of ROS are produced following this
process [23].
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In humans, more than 1500 genes encode the mitochondrial proteome [24]. The vast
majority of these genes are encoded in the nuclear genome (nDNA), and their protein prod-
ucts are imported into the mitochondria following translation [25]. However, mitochondria
also have their own genetic material (mtDNA, between 5 to 10 copies per mitochondrion)
with only 13 proteins of the mitochondrial proteome being encoded in the mtDNA. In
total, 37 genes are encoded in mtDNA, also including two mitochondria-specific ribosomal
RNAs (rRNAs) and 22 transfer RNAs (tRNAs). These essential polypeptides are required
for OXPHOS and are synthesized by mitochondrial ribosomes in the mitochondrial ma-
trix [25]. Unlike the nDNA, multiple copies of the mitochondrial genome are present in
one cell, mainly depending on the intracellular energy requirements. The number of copies
of mtDNA depends on the cell type and tissue ranging between 1000 to 10,000 copies per
cell [26].

Many of the imported (nDNA-encoded) proteins are critical for mtDNA-related func-
tions such as transcription, maintenance, and translation [27]. At least 80 of these imported
proteins shape the mitochondrial ribosomes specialized in mtDNA-encoded polypeptide
synthesis. Because of their interdependence, coordinated regulation of nDNA and mtDNA
gene expression is crucial to ensure cellular homeostasis and the satisfaction of tissue-
specific energy needs [28]. There are essential differences between the nDNA and the
mtDNA genetic codes, e.g., the triplet UGA codes for tryptophan in mtDNA and act as
a stop codon in nDNA. In general, mtDNA is highly susceptible to mutations, and there
are often two (or more) populations of mtDNA present in one cell, a phenomenon called
heteroplasmy [25]. These mtDNA mutations and their degree of heteroplasmy can either
be inherited by maternal transmission or can occur spontaneously due to somatic muta-
tions [29]. In contrast to nDNA, mtDNA replication is highly error-prone, and mitochondria
only have limited DNA repair mechanisms [30].

As mtDNA is randomly separated during cell division and mitotic separation, the
percentage of different mtDNA populations in cells and tissues might substantially differ in
daughter cells [31]. In addition, somatic mutations naturally occur over time, and mutated
mtDNA genomes can build up, particularly in postmitotic tissues like the brain [32].
The respective proportion of mutated DNA in a given tissue determines the phenotypic
expression of mitochondrial dysfunction. For example, to alter OXPHOS, a minimum
amount of mutated mtDNA must be present in a particular tissue. However, the relevant
thresholds for a given cell population to suffer from mitochondrial dysfunction are widely
unknown [33]. Most likely, high energy-demanding tissues (such as the neurons of the
CNS) require lower thresholds of mutated mtDNA to result in bioenergetic depletion.
Depletion of mtDNA can also cause disrupted mtDNA protein synthesis and thus lead
to insufficient energy production in the affected cells [34]. Furthermore, nDNA variation
could be mainly responsible for these mtDNA changes, given the importance of nDNA-
encoded genes in mtDNA-related processes [35]. Depending on the degree of heteroplasmy
and the localization of specific mtDNA mutations, any change can lead to mitochondrial
dysfunction and subsequent cell death [36].

1.5. Parkinson’s Disease as a “Mitochondrial DNA Maintenance Disorder”
1.5.1. Mitochondrial DNA Changes in Aging and Neurodegeneration

mtDNA substantially differs from nDNA. mtDNA is organized in circles and does
not undergo any condensation (i.e., caused by the absence of histones). It is, therefore,
less protected against any mutagenic agents, such as ROS, which naturally occurs close
to the mitochondrial genome [13]. It is also more vulnerable to any enzymatic disruption
or spontaneous hydrolytic processes [37]. Besides, mitochondria are not capable of the
same level of quality for DNA repair and undergo more error-prone DNA replication
steps [30]. These circumstances lead to approximately ten times higher mutation rates in
the direct comparison of mtDNA to nDNA [27]. In general, pathological modifications of
the mitochondrial genome can be divided into three main groups:

1. mtDNA point mutations (either inherited or somatic mutations),
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2. mtDNA deletions, and
3. an overall reduction of mtDNA copy numbers [38].

Both, point mutations and mtDNA deletions are subject to clonal expansion. As
mitochondria replicate independently from the cell cycle and distribute randomly to the
daughter cells after mitosis, the degree of heteroplasmy can widely differ within a given
tissue [39]. If a certain heteroplasmy threshold is exceeded, mitochondrial homeostasis
can be impaired, subsequently leading to impairments similar to those seen in primary
mitochondrial disease and ultimately to cell death [40] (see Figure 2). There is strong
experimental evidence that genetic variations in mtDNA increase with age, which also
translates to our pathophysiological understanding of the development of neurodegenera-
tive diseases [41]. It has also been shown that the mtDNA mutation rate accelerates with
higher age which is especially relevant to postmitotic neurons [42].
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1.5.2. Inherited and Somatic mtDNA Point Mutations and Their Role
in the Pathophysiology of Parkinson’s Disease

Inherited mtDNA point mutations are of negligible relevance for the vast majority
of PD cases. However, Shoffner et al. (1993) described a point mutation (m.1555A>C.,
MT-RNR1) within the 12S-rRNA gene in a pedigree of maternally transmitted hearing
loss and levodopa-responsive parkinsonism [43]. In another pedigree, the heteroplasmic
mtDNA point mutation m.1095A>C in the MT-RNR1 gene has been identified as a potential
cause of PD [44]. The latter is especially intriguing as it impairs the complex I function of
the ETC, a pathophysiological hallmark often observed in PD [44]. These findings were
supported by the later identification of additional mtDNA missense mutations present
in nearly all mtDNA-encoded subunits of complex I [45]. Collectively, inherited mtDNA
variants, referred to as mtDNA haplogroups, are associated with a lower or higher risk of
developing PD [46–48]. Many of these reports need additional experimental validation. In
summary, there is no direct evidence to suggest that inherited mtDNA point mutations
are a primary cause of PD [49]. One study examined the combined mutational burden of
somatic mtDNA point mutations in all genes encoding complex I subunits in postmortem
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PD brain tissue [37]. The authors concluded that there was no significant difference in the
overall number of mtDNA point mutations in PD patients and controls.

In contrast, this work revealed relatively low levels of somatic mtDNA point mutations
within the MT-ND5 gene exclusively observed in idiopathic PD patients. However, the
heteroplasmy thresholds were generally less than 1%, where no functional consequences
would be expected [37]. The conflicting experimental data so far also points toward poten-
tial challenges for developing mitochondria-targeted gene therapies: Somatic mutations
(deletions and/or point mutations) occur randomly by means of heteroplasmy and local-
ization within the mitochondrial genome [32]. As the pathophysiological role of inherited
mtDNA mutations is still under debate, the arbitrary occurrence of somatic mtDNA muta-
tions complicates the design of mitochondrial genome editing techniques for this purpose.
In addition, it is unclear how to define functionally relevant cumulative thresholds based
on the simultaneous presence of different kinds and respective frequencies of somatic
mtDNA mutations.

1.5.3. The Role of Mitochondrial DNA Deletions and Copy Number Variations in PD

The most frequent deletion in human mtDNA encompasses ca. 5 kbp. This deletion
includes most of the complexes of the ETC, leading to an overall bioenergetic deficit [43].
While it is not entirely understood how mtDNA deletions occur, several hypotheses were
suggested: In most cases, mtDNA deletions occur randomly and appear to undergo clonal
expansion. Another theory suggests that critical pathways for mtDNA replication and
quality control are impaired in neurodegenerative disorders [40]. The maintenance of
mtDNA requires a variety of nDNA-encoded gene products. The proteins involved in
mtDNA replication have been termed replisome [50]. The mtDNA replisome consists of the
mtDNA polymerase γ (a complex of POLG and POLG2 gene products), the mitochondrial
transcription factor (TFAM), the DNA helicase twinkle (TWNK), and the mitochondrial
single-stranded binding protein (mtSSB) [50]. Remarkably, variants in POLG, TWNK, and
TFAM are not only known as a monogenic cause of primary mitochondrial disorders
(occasionally presenting with parkinsonism) but can also increase the risk for PD [51].
Based on the known function of the mitochondrial replisome, mutations in these three
genes can result in mtDNA deletions and decreased mtDNA copy numbers [49]. All
three genes show high expression levels in neuroanatomical key structures involved in
PD disease development such as the substantia nigra (SN) [51]. Postmortem studies also
revealed lower levels of mtDNA transcription factor TFAM in the SN of PD patients [52]. In
this study, TFAM and TFB2M levels correlated with decreased expression levels of complex
I. Noteworthy, decreased mtDNA copy numbers showed a cell-specific distribution in
PD [53]. In contrast to dopaminergic neurons of the SN, cholinergic neurons isolated
from PD brains were associated with a higher mtDNA copy number [54]. It is also worth
mentioning that many of the known monogenic PD genes (e.g., PRKN or LRRK2) have
been linked to altered mtDNA maintenance [55–57]. However, future studies are needed
to fully understand the interconnectedness of mtDNA maintenance and their impact on
monogenic and idiopathic PD.

Even though mtDNA alterations have been observed in physiological aging, the
increased amount of mtDNA rearrangements and deletions in PD patients suggest a certain
disease specificity [58]. Accordingly, SN-related mtDNA deletions and copy number
variations are more common in PD than in patients with other neurodegenerative diseases
(e.g., Alzheimer’s disease, AD) [41]. PD patients are thus more likely to accumulate
mtDNA mutations, particularly in dopaminergic neurons. Therefore, regulation of mtDNA
deletions and copy number variations seems to be a potential mechanism to protect SN
neurons from cell death or apoptosis.

Additional experimental evidence originates from animal models. A conditional
TFAM knock-out mouse (MitoPark mouse) is characterized by respiratory chain deficien-
cies and low neuronal cell counts including progressive loss of dopaminergic neurons
in the SN [59–61]. In another mouse model, mutant TWNK has been expressed in CNS
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neurons, leading to an increase of age-related mtDNA deletions and dopaminergic neu-
rodegeneration [62]. These mice suffer from levodopa-responsive motor impairment and
show phenotypic features of premature aging. This data stresses that the integrity of the
nuclear and the mitochondrial genome is critical for the survival of dopaminergic neurons.

The deepened understanding of mtDNA defects in PD may offer the opportunity for
targeted therapies: mtDNA deletions in individual SN neurons can activate compensatory
mechanisms mainly by triggering mitochondrial biogenesis [63,64]. These mechanisms
increase the number of mtDNA copies, the formation of cristae networks, and dopamine
synthesis. The compensatory response could be impaired or dysregulated by nDNA
variants in the genes mentioned above and may impact PD onset and progression [35].
By employing compensatory mechanisms, individual neurons can overcome the harmful
effects of mtDNA mutations below a certain threshold [64]. The increase of mtDNA
copy numbers with a corresponding rise in wild-type mtDNA might therefore prevent
respiratory chain defects in people with a high mtDNA deletion burden. Therefore, the
enhancement of mitochondrial biogenesis could be specifically targeted by gene therapy to
combat the unspecific accumulation of mtDNA mutations in PD patients [65].

2. Main Body
2.1. Defining Neuroanatomical Treatment Targets

The treatment of mitochondrial dysfunction in PD comes with unique challenges
and opportunities. To date, it is unclear which brain regions are especially vulnerable to
mitochondrial dysfunction. Most post-mortem studies focus on the SN as a target region of
PD pathophysiology [66]. The neurodegeneration of the dopaminergic neurons in the SN
has been postulated as a histopathological hallmark of PD [67]. Besides, the co-occurrence
of impaired dopamine metabolism, the emergence of oxidative stress, and mitochondrial
dysfunction have been proposed as a vicious cycle, self-amplifying the molecular roots of
neurodegenerative processes in this disorder [68,69]. However, mitochondrial dysfunction
is not restricted to dopaminergic neurons but also affects other neuronal and non-neuronal
cell populations. This idea is additionally supported by our current understanding of
PD as a network disease, affecting widespread areas of the human brain [70]. Whether
spatially non-specific drug delivery to the CNS or targeted intraparenchymal drug delivery
in predefined neuroanatomical regions (e.g., the basal ganglia) will be the most promising
approach in the future, is still under debate [15]. However, the concept of spatial drug
delivery does not only concern distinct neuroanatomically defined regions [71]. There
is a close metabolic interconnectedness between glial cells and neurons, and mitochon-
drial dysfunction most likely extends to several CNS cellular subpopulations [72]. The
spatial complexity is not the only challenge concerning drug delivery. Different treatment
strategies are discussed in the following. Based on the complex intracellular compartmen-
talization of mammalian cells, it is vital to consider whether gene therapeutic approaches
target the nucleus or the mitochondrial matrix. These different levels of spatial complexity
substantially aggravate anyhow preexisting challenges for CNS-based drug delivery (e.g.,
overcoming the blood-brain barrier (BBB)) [73].

In general, two common approaches for drug delivery are available: direct and
indirect CNS delivery [74]. Direct CNS drug delivery describes the administration route
via intraparenchymal application (e.g., by stereotactically placed catheters, similar to the
procedure for electrode implantation for deep brain stimulation) [74]. This term also
extends to intrathecal, intracerebroventricular, and subpial administration. In contrast,
indirect CNS drug delivery describes the administration via an intravenous infusion [75].
An additional supportive method is the transient opening of the BBB by focused ultrasound
which has, however, not yet been clinically evaluated [76]. The concept of cellular tropism
(by means of tissue-/cell type-specificity) can be achieved by employing different Adeno-
associated virus (AAV) serotypes and respective transgene designs (e.g., by using cell-
specific promoters) [77]. If the development of targeted liposomes can achieve identical
(pre-)clinical efficacy to AAV-based methods, will be the subject of future studies [78].
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AAVs are great candidates for gene therapy because of their low risk of insertional
mutation and long-term persistence within cells [79]. Currently, AAV-based approaches
are the central concept for gene therapy in preclinical and human use. AAVs are non-
pathogenic in humans but may induce immunological host responses, potentially hindering
their long-term use in a given patient. AAV-based vectors can be fine-tuned by specific
capsid and promotor designs. Research has shown that distinct virus strains show a
relatively specific tissue tropism [79].

The payload of gene therapies can be specifically designed to meet molecular needs:
This can be achieved by the overexpression of genes by gene replacement (e.g., for loss-
of-function mutations), the silencing of genes by small hairpin RNA (shRNA), or small
interfering RNA (siRNA) (e.g., for gain-of-function mutations), site-directed genome edit-
ing (in general suitable for a variety of mutation types), and the modulation of gene
expression by microRNAs (miRNAs) or modified genome editing technologies [17,80].
However, most of these approaches have not made their way into clinical use. In addition,
for safe and effective gene therapy, specific gene regulatory elements can be chosen to
achieve cell-specificity (e.g., by cell-specific promoter sequences) [79]. When choosing a tar-
get or disorder to pursue gene therapy, it is crucial to consider the possibility of successfully
delivering an AAV vector into the CNS.

2.2. Treatment Strategies

The development of gene therapies for neurological disorders is a highly dynamic
field of research, and the last years have shown impressive advances. However, gene
therapeutic approaches targeting mitochondrial dysfunction in neurodegenerative dis-
eases are currently sparse, even in pre-clinical phases. This may be due to the significant
challenges mitochondrial gene therapy encounters in vivo, many caused by the complex
mitochondrial biology [81]. In general, the combination of different gene therapies would
likely be the most efficient treatment strategy, mainly due to the interwovenness of the
nuclear and mitochondrial genome, unique characteristics of mtDNA, such as high mtDNA
copy numbers, heteroplasmy, and the mtDNA-specific genetic code. These limitations
must be addressed before mitochondrial gene therapy can be used effectively in the context
of PD. In this review, we will describe specific challenges for mitochondrial gene therapy
and will focus on four potential therapeutic strategies:

1. gene replacement/correction of monogenic PD genes,
2. gene replacement of nuclear-encoded mitochondrial genes,
3. allotopic expression of mtDNA-encoded genes, and
4. mtDNA genome editing.

2.2.1. Gene Therapies of Monogenic Parkinson’s Disease Genes to Treat
Mitochondrial Dysfunction

The discovery of monogenic PD genes has led to in-depth insights into relevant disease
mechanisms, broadening our molecular understanding of idiopathic PD [82]. Previously,
mitochondrial dysfunction has already been implicated in idiopathic PD cases based on
environmental studies [83]. The discovery of the PRKN and PINK1 genes has grounded
the concept of mitochondrial dysfunction on a genetic basis [4].

Mutations in both genes are inherited in an autosomal recessive fashion. Truncated
or missense variants of the PRKN or PINK1 gene have been shown to result in a loss-of-
function or complete inactivation of their respective gene products. Later studies have
demonstrated that PRKN and PINK1 work together in a shared pathway and are mainly
responsible for mitochondrial quality control by removing dysfunctional mitochondria (a
process called mitophagy) [84]. Dysfunctional Parkin or PINK1 leads to impaired clearance
of damaged mitochondria [85,86]. Intracellularly, damaged mitochondria can present with
any aspects of mitochondrial dysfunction, including OXPHOS deficiency and impaired
mtDNA maintenance [43]. Another monogenic PD gene that has been directly linked to
mitochondrial dysfunction is DJ-1 [87,88].
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Even though the precise function of DJ-1 remains unclear, it is thought of as an ox-
idative stress sensor and works synergistically together with PRKN and PINK1. PRKN,
PINK1, and DJ-1 are the most prominent examples of monogenic PD genes directly leading
to mitochondrial dysfunction [89,90]. However, most of the other identified monogenic
PD genes (e.g., SNCA or LRRK2) have also been experimentally associated with mito-
chondrial dysfunction [91–94]. Whether mitochondrial dysfunction is a cause or conse-
quence of neurodegenerative processes in other monogenic PD forms will need additional
experimental validation.

Nonetheless, overexpression or silencing (depending on the relevant mutation type)
of other monogenic PD genes can present viable treatment targets for improving mitochon-
drial dysfunction in monogenic PD [4]. Many of these treatment strategies may also extend
to idiopathic PD. We kindly refer the reader to the review by Bloem et al. [1].

Previous studies have shown that PRKN overexpression can protect against cellular in-
sults directed against mitochondria [95–98]. For example, the overexpression of wild-type
PRKN in transgenic mice models reduced 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-induced (a known inhibitor of complex I) mitochondrial damage and prevented
dopaminergic neurodegeneration [99]. The intranigral AAV-based delivery of wild-type
PRKN prevented motor impairments and dopaminergic cell loss in a chronic MPTP
minipump mouse model [100]. In Drosophila flies, the knockout of the PINK1 homolog can
lead to male sterility and progressive muscle wasting [101]. Here, defects in mitochondrial
structure and increased sensitivity to oxidative stress can be observed. The Drosophila
PINK1-KO phenotype can be rescued by overexpression of human PINK1 [95]. The overex-
pression of PRKN has been shown to rescue mutated PINK1 phenotypes, most likely by
Miro-mediated phosphorylation and subsequent proteasomal degradation of dysfunctional
mitochondria [102,103]. Furthermore, overexpression of PINK1 has also been shown to
rescue the α-synuclein-induced phenotype in Drosophila [104,105]. Additional evidence
can be derived from siRNA experiments. Here, PINK1-silencing caused neuronal toxicity,
which has been aggravated by MPTP administration in mice [106]. The wild-type but not
the mutated form of PINK1 protected neurons against MPTP-mediated cell death. The
AAV-mediated expression of PRKN or DJ-1 can protect mitochondria of dopaminergic
neurons, even when PINK1 is absent [106]. An overview of monogenic PD genes and their
respective link to mitochondrial dysfunction is highlighted in Table 1.

Table 1. Established causative genes of monogenic PD and their respective association with mitochondrial dysfunction.

Gene Name Mode of
Inheritance

Parkinson’s Disease
Phenotype

Mitochondrial Involvement in
Disease

Pathophysiology–Key
Mechanisms

References

ATP13A2
(PARK9) AR Atypical PD,

Kufor-Rakeb syndrome

Impaired mitochondrial
clearance,

mitochondrial dysfunction
due to zinc dyshomeostasis

Ramirez et al., 2006
Grunewald et al., 2012

Park et al., 2014

DJ-1
(PARK7) AR Early-onset PD Reduced anti-oxidative stress

mechanisms

Bonifati et al., 2003
Takahashi-Niki et al.,

2004

FBXO7
(PARK15) AR Atypical PD

Aggravated protein aggregation
in mitochondria, impaired

mitophagy

Shojaee et al., 2008
Zhou et al., 2018



Genes 2021, 12, 1840 10 of 19

Table 1. Cont.

Gene Name Mode of
Inheritance

Parkinson’s Disease
Phenotype

Mitochondrial Involvement in
Disease

Pathophysiology–Key
Mechanisms

References

GBA AD

resembling IPD with
more rapid cognitive and

motor progression,
dementia with Lewy

bodies

Impaired mitophagy

Sidransky et al., 2009
Barkhuizen et al., 2016

Zhao et al., 2016
Gegg et al., 2016

Moren et al., 2019

LRRK2
(PARK8) AD resembling IPD

Disturbance in mitochondrial
ATP and ROS production,
impaired mitochondrial

dynamics and mitophagy,
mitochondrial DNA damage

Zimprich et al., 2004
Mancini et al., 2020

PINK1
(PARK6) AR Early-onset PD Defective mitochondrial

quality control
Valente et al., 2004

Ge et al., 2020

PLA2G6
(PARK14) AR

Atypical PD,
NBIA type 2B,

Infantile neuroaxonal
dystrophy 1

Maintenance of mitochondrial
function,

impaired mitophagy

Paisan-Ruiz et al., 2009
Chiu et al., 2017
Chiu et al., 2019

PRKN
(PARK2) AR Early-onset PD Defective mitochondrial

quality control
Kitada et al., 1998

Ge et al., 2020

SNCA
(PARK1) AD

May be atypical
(higher frequency of

cognitive/
psychiatric symptoms)

Mitochondrial toxicity,
fragmented mitochondria

Polymeropoulos et al.,
1997

Singleton et al., 2003
Chartier-Harlin

et al., 2004

VPS35
(PARK17) AD resembling IPD Regulation of mitochondrial

dynamics and homeostasis

Vilarino-Guell et al., 2011
Zimprich et al., 2011

Cutillo et al., 2020

AD: autosomal dominant. AR: autosomal recessive. IPD: idiopathic Parkinson’s disease. NBIA: neurodegeneration with brain iron
accumulation. PD: Parkinson’s disease. The table has been adapted and modified from Prasuhn et al. [8].

2.2.2. Gene Repair and Enhancement of Nuclear-Encoded Mitochondrial Genes

AAV-mediated gene therapies have been tested in different models of primary mito-
chondrial diseases [107]. Insights derived from primary mitochondrial disorders elucidated
potential gene therapy targets to treat mitochondrial dysfunction in PD. These strategies
extend to the repair or enhancement of non-classical monogenic PD genes. In this context,
we have already discussed “mtDNA maintenance disorders”, which can clinically present
with parkinsonian features, and stressed the role of increased somatic mtDNA mutations
in the onset and progression of PD [10]. Gene therapy-based replacement (if there is
a disease-causing mutation in patients present) or enhancements (by overexpression of
genes even in the absence of a disease-causing mutation therein) of the mtDNA replisome
may be helpful to improve mtDNA maintenance. Based on previous studies, the most
promising genes for this approach are POLG, POLG2, TWNK, and TFAM [51]. Experimental
evidence can be derived from the transfection of TFAM. Here, PD-derived nigral cybrid cell
lines (cell lines that incorporate the nuclear genome from one cell with the mitochondrial
genome from another cell) can restore mitochondrial bioenergetics by overexpression of
TFAM [108]. However, it is unlikely that all PD patients show a marked increase in mtDNA
damage at a given time. If nDNA mutations in the given genes are present in a patient,
different gene therapies treatment strategies (e.g., gene editing by CRISPR/Cas9, Clustered
Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9) could also
be experimentally evaluated [80].
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Many potential target genes can be identified from primary mitochondrial disorders
caused by nDNA-encoded genes [107]. The large number of nDNA defects leading to
primary mitochondrial diseases helps to understand the many-faceted nature of mitochon-
drial dysfunction [5]. Even though about 300 nDNA genes have been suggested to be
associated with primary mitochondrial disorders, their gene products only account for a
distinct subset of the overall mitochondrial proteome [107]. However, it is necessary to pri-
oritize treatment targets, and the nDNA mutations causing primary mitochondrial diseases
represent a reasonable starting point for treating other disorders. In addition, functional
data are available for many causative nDNA genes and have been linked to distinct partial
aspects of mitochondrial dysfunction. For example, DNM1L, GDAP1, MFF, MFN2, MSTO1,
OPA1, STAT2, TRAK1, and YME1L1 cause primary mitochondrial diseases mainly by im-
pacting mitochondrial dynamics [107]. Disruption of mitochondrial dynamics has already
been proposed in the pathophysiology of PD [109]; therefore, it is reasonable to assume that
influencing the aforementioned genes may help treat this aspect by altering their respective
gene expression. Prioritizing treatment targets helps substantially to streamline the drug
development pipeline. In combination with high-throughput methods, potentially positive
treatment effects can be validated in a reasonable time frame [34]. Figure 3 provides an
overview of mtDNA- and nDNA-encoded genes causative for primary mitochondrial
diseases as potential therapeutic targets in PD.
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PD: Parkinson’s disease.

2.2.3. Allotopic Expression of mtDNA-Encoded Mitochondrial Genes

Mutations within the mtDNA appear to accumulate randomly in PD patients over
time. The lack of mtDNA quality control and repair systems leads to the assumption that
“allotopic expression” of mtDNA can be an approach in treating mitochondrial dysfunc-
tion [110]. The term “allotopic” means that mtDNA-encoded genes are either transiently
expressed in the nucleus or permanently inserted in the non-coding regions of the nuclear
genome [111]. In general, the allotopic expression strategy was developed to treat pri-
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mary mitochondrial diseases caused by mtDNA mutations. The design of allotopically
expressed mtDNA genes must adhere to different design standards: a mitochondrial tar-
geting sequence is necessary so that the encoded protein is directed to the mitochondria.
Additionally, differences in the codons used by the nuclear and mitochondrial genomes and
differing codon preferences between the nuclear-cytosolic and mitochondrial translation
systems must be considered [112]. mtDNA-encoded genes include 13 ETC complex sub-
units (for complex I, III, IV, and V), 22 mitochondria-specific tRNAs, and two mitochondrial
rRNAs [24]. Based on the random emergence of mtDNA variants in PD, all mtDNA-
encoded genes could potentially represent valuable treatment targets. However, it is
likely that OXPHOS deficiencies, as the hallmark and common end route of mitochondrial
dysfunction, should be prioritized for drug development [113].

The concept of allotopic expression gene therapies is currently being tested in humans.
A phase I/II clinical trial aims to treat Leber’s hereditary optical neuropathy (LHON) by in-
travitreal injection and allotopic overexpression of the mtDNA-encoded NADH:ubiquinone
oxidoreductase (complex I) (NCT04912843). The NADH:ubiquinone oxidoreductase can
also be a viable treatment target in PD, where complex I deficiency has been repeatedly re-
ported [44]. Whether a combined allotopic expression of mtDNA-encoded ETC complexes
can provide additional therapeutic benefits needs additional experimental validation. Low
vector capacities may additionally hinder the combined allotopic expression of mtDNA
genes [79]. There are still a few challenges to accelerate the application of allotopic gene
expression. These include necessary improvements in nuclear gene expression, mitochon-
drial import of cytosolic proteins, posttranslational protein modifications, and functional
integration in mitochondrial protein complexes [114–116].

2.2.4. Mitochondrial DNA Genome Editing and Heteroplasmy Shifting

Most pathogenic mtDNA mutations require a critical threshold to cause harm to cells.
This aspect has been employed as a potential treatment paradigm named heteroplasmy
shifting [117,118]. The underlying idea is to decrease the cumulative amount of mutated
mtDNA below a disease-causing heteroplasmy threshold. To achieve this goal, various
genome editing methods have been modified to alter mtDNA sequences in a targeted
and predictable manner [119]. These methods included mitochondria-targeted restriction
endonucleases, zinc finger endonucleases (ZFNs), transcription activator-like effectors
nucleases (TALENs), and the CRISPR/Cas9 methodology [118]. Many of these methods
have already been employed in the preclinical treatment of primary mitochondrial dis-
eases. For example, the restriction endonuclease SmaI decreased the mutation load in
cybrid cell lines with the m.8399T>G mutation causing neuropathy, ataxia, and retinitis
pigmentosa (NARP syndrome) [120]. Subsequent functional analyses revealed an increase
in ATP levels following genome editing in these cell lines. These findings have also been
confirmed in heteroplasmic mouse models of primary mitochondrial diseases following
AAV transfection of restriction endonucleases [121].

However, suitable restriction sites are limited in mtDNA, so more flexible approaches
have been designed. These limitations can potentially be overcome by introducing pro-
grammable nucleases like ZFNs [122] or TALENs [123,124]. These methods, widely known
from nuclear genome editing, have been specifically modified to be employed in mtDNA
genome editing (mtZFNs and mitoTALENs). Even though these methods have been suc-
cessfully applied in the preclinical evaluation for primary mitochondrial disorders, the
clinical use can be limited by inducing rapid mtDNA depletion in humans [125]. This
can mainly be caused by the lack of suitable mtDNA repair mechanisms following the
double-strand breaks introduced by these two methods [27]. Interestingly, the rise of
CRISPR/Cas9 technology for nuclear genome editing faces significant challenges in mito-
chondrial genome editing: the import of sgRNA (single guide RNA, the relevant functional
component of CRISPR/Cas9 for site-directed specificity) is generally limited by poor RNA
import capabilities of mitochondria [119]. Even though mitochondrial genome editing
and subsequent heteroplasmy shifting will likely be a viable approach for treating distinct
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primary mitochondrial disorders (caused by single-site mtDNA point mutations), the ap-
plicability in PD is unlikely. Because of the random appearance of multiple mtDNA point
mutations, a specific site targeted design will be nearly impossible. However, extensive
research is needed to evaluate whether single mtDNA point mutations in PD occur with a
higher frequency to define potential treatment targets. Our knowledge in this area is still
limited at the moment.

2.3. Special Considerations for Mitochondrial Gene Therapy

Allotopic expression of mtDNA faces significant challenges: each allotopic expressed
mtDNA gene needs to be imported to the mitochondria via a complex mitochondria import
machinery consisting of various proteins [126]. This is achieved most easily by attaching
a mitochondrial targeting sequence to the allotopic expressed mtDNA gene [127]. It ef-
fectively leverages the mitochondrial import machinery to bring the respective protein to
the correct mitochondrial compartment. Unfortunately, the import of allotopic expressed
mtDNA-encoded proteins may not be as simple of a solution as it initially appears. Re-
cent research has shown that the overproduction of nDNA-encoded and allotopically
expressed mtDNA proteins can itself cause mitochondrial dysfunction [128]. Producing
defective or misfolded mitochondrial protein precursors from the nuclear genome can
cause a toxic build-up in the cytosol. This unphysiological high expression level of mi-
tochondrial proteins can be named “mitochondrial protein import stress”. The build-up
accumulation of misfolded protein in the mitochondria can cause severe disruption of
OXPHOS, proteotoxic stress, and mtDNA depletion [129]. Mitochondrial protein import
stress can provide a tremendous challenge for gene therapies targeted against mitochon-
drial dysfunction [130]. For example, the subunits of ETC complexes to ensure efficient
OXPHOS is highly regulated and kept in a balanced equilibrium state. By tipping over
this fine-tuned balance, disassembled ETC complexes can lead to impaired OXPHOS and
bioenergetic depletion [131]. The subsequent increase of ROS by impaired OXPHOS can
further damage mitochondrial and overall cellular structures paving the way into a vicious
cycle. Based on the additional presence of heteroplasmy, this situation can become highly
complex and unpredictable concerning the design of mitochondrial gene therapies.

In summary, we have discussed several challenges for the experimental and clinical
evaluation of mitochondrial gene therapies. It is necessary to identify PD patients with
clear-cut mitochondrial dysfunction. There are currently no established methods for patient
stratification. Most likely, not all patients with PD primarily suffer from disease-relevant
mitochondrial dysfunction at any given time. Identifying a window of opportunity for
treatment will be one of the significant challenges for successful clinical trial designs. Ex-
tensive longitudinal data is needed, in particular in the prodromal stage of PD. However,
reliable biomarkers to achieve this goal have not yet been concludingly established [132].
A promising approach can derive from enhanced insights into the individual disease ge-
netics (e.g., by presymptomatic genetic testing or polygenetic risk scoring) [133]. However,
blood- or neuroimaging-based assessments of mitochondrial dysfunction can substantially
enhance our current understanding of mitochondrial dysfunction’s temporal and spatial
dynamics in vivo [8]. Current knowledge gaps of essential aspects of mitochondrial bi-
ology need to be closed for the rational design of gene therapies. This aspect extends to
unclear elements of the mitochondrial import machinery, our incomplete understanding of
mitochondrial protein import stress, and unknown tissue-specific mtDNA heteroplasmy
thresholds. Treatments targeting the mitochondrial genome require specific genome editing
techniques. Drug delivery to the mitochondrial matrix can be substantially hindered by the
subcellular compartmentalization and respective physical barriers to be overcome (BBB,
cell membranes, OMM, and IMM).

3. Conclusions

Mitochondria-targeted gene therapies may offer potential possibilities in the treat-
ment of PD. The recent progress in gene therapy-based treatment strategies for primary
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mitochondrial disorders is relevant to understanding the potential use in PD and other
neurodegenerative diseases [134]. However, particular challenges need to be overcome
and additional research is required to broaden our understanding of mitochondrial biology
in PD. Delivery methods must consider the specific properties of the specific mitochondrial
proteins, including their location within the mitochondrial organelle, and how they will
be targeted there without overwhelming the mitochondrial import machinery. General
advancements of gene therapy (e.g., genome editing technologies) will benefit the develop-
ment of innovative treatment strategies. Prioritization of drug targets and sophisticated
design strategies are needed to ensure the subsequent success of gene therapy in clinical
trials. These challenges are not insurmountable, but remarkable knowledge gaps need to be
closed before PD patients may benefit from such potentially disease-modifying treatments.
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