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Super-resolution for asymmetric 
resolution of FIB-SEM 3D imaging 
using AI with deep learning
Katsumi Hagita   1, Takeshi Higuchi2 & Hiroshi Jinnai2

Scanning electron microscopy equipped with a focused ion beam (FIB-SEM) is a promising three-
dimensional (3D) imaging technique for nano- and meso-scale morphologies. In FIB-SEM, the specimen 
surface is stripped by an ion beam and imaged by an SEM installed orthogonally to the FIB. The 
lateral resolution is governed by the SEM, while the depth resolution, i.e., the FIB milling direction, is 
determined by the thickness of the stripped thin layer. In most cases, the lateral resolution is superior 
to the depth resolution; hence, asymmetric resolution is generated in the 3D image. Here, we propose 
a new approach based on an image-processing or deep-learning-based method for super-resolution of 
3D images with such asymmetric resolution, so as to restore the depth resolution to achieve symmetric 
resolution. The deep-learning-based method learns from high-resolution sub-images obtained via 
SEM and recovers low-resolution sub-images parallel to the FIB milling direction. The 3D morphologies 
of polymeric nano-composites are used as test images, which are subjected to the deep-learning-
based method as well as conventional methods. We find that the former yields superior restoration, 
particularly as the asymmetric resolution is increased. Our super-resolution approach for images having 
asymmetric resolution enables observation time reduction.

The increased speed of high-throughput meso-scale three-dimensional (3D) observations is of general interest for 
both material science and medical applications1–3. Similarly, utilization of artificial intelligence (AI) technologies 
in such research areas is attracting widespread interest4–11. For future industrial innovation, application of AI 
technologies such as deep learning (DL) in addition to high-throughput 3D observation and high-speed analysis 
is urgent.

Recently, DL-based AI technologies have experienced a sudden, large increase in popularity with regard to 
many business and industrial applications, in addition to academic research4–11. The high performance of DL 
for image recognition12 compared to conventional approaches13 is well known, and DL has become a core tech-
nology for self-driving cars8. “AlphaGo” is another famous DL application9. DL is a type of machine learning 
by neural networks10,11. Three major tasks of machine learning are solution of clustering (with unsupervised 
learning), classification (with supervised learning), and regression problems. Super-resolution (SR) is classi-
fied as a regression problem. From the perspective of information science, particularly computer vision, SR is 
an ill-posed inverse problem involving recovery of information lost by down-sampling14. For SR, a description 
of the relationship between low- (input) and high-resolution images (output) is required. Before DL, SR rules 
were developed by analyzing neighboring pixels and/or pairs of low- and high-resolution images. Very recently, 
many highly successful DL approaches to SR have been reported15–18, e.g., the Super-Resolution Convolutional 
Neural Network (SRCNN)15 and Generative Adversarial Network for SR (SRGAN)16. In DL-based methods, 
the relationship between the low-/high-resolution images is described by deep CNN or GAN. Dong et al. have 
theoretically explained why the SRCNN yields better performance than example-based SR methods, such as 
sparse-coding-based SR19,20, in terms of CNN15. Further, Ledig et al. have reported that SRGAN exhibits superior 
performance to SRCNN16 for standard benchmark image datasets such as “Set5”21, “Set14”22 and “BSD100”23. 
Those researchers confirmed that SRCNN and SRGAN exhibit superior performance to conventional interpola-
tion methods such as nearest neighbor, bicubic, and bilinear. Compared to the nearest neighbor method, bicubic 
and bilinear seem to have comparable performance to SRCNN and SRGAN. As some implementations using a 
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DL software library such as TensorFlow24 have already been released, we can quickly perform network learning 
from big data regarding pairs of low-/high-resolution images.

Scanning electron microscopy equipped with a focused ion beam (FIB-SEM) is one of the most powerful 
tools for observation of polymer 3D structures. Compared with electron tomography25–31, this technique has 
the advantage of observing a wide volume region. FIB-SEM has a lower resolution than electron tomography 
due to its large stripping pitch (several to 20 nm, in general) for soft materials. However, FIB-SEM is capable of 
obtaining much larger observation volume than electron tomography does. These two 3D imaging techniques are 
complimentary. We note that it was possible to considerably reduce the stripping pitch by staining the specimens 
so that the rubbery part became glassy in the present study. In this technique, a sample surface is stripped via FIB 
and the cross-sectional surface is observed via SEM at high resolution (of the order of a few nanometers). The FIB 
stripping process and 2D SEM observation are repeated multiple times; then, the SEM 2D images are stacked to 
generate a 3D volume image. In this study, the SEM image resolution is defined as the lateral resolution (x- and 
y-directions), while the direction perpendicular to the lateral plane is the depth direction (z-direction). Thus, 
the lateral resolution is determined using SEM, whereas the depth resolution corresponds to the thickness of the 
FIB-stripped surface. Soft materials are mostly non-conductive and easily thermally decomposed; therefore, the 
depth resolution (several to tens of nanometers) is often much lower than the resolution for the SEM observations 
(a few nanometers). Therefore, in most cases, the resulting 3D image exhibits asymmetric resolution. One of the 
most popular applications of FIB-SEM with regard to soft materials is imaging of filler-filled polymer nanocom-
posites (PNCs)25–39. In the case of silica nanoparticles (NPs) filling poly(styrene-ran-butadiene) rubber (SBR), 
the FIB milling interval range is 10 to 20 nm. Because the local morphology of the NP-filled SBR system can be 
considered isotropic, SR may be effective to recover local information. If so, it should constitute a very effective 
method for providing symmetric 3D resolution for FIB-SEM 3D data. In addition, SR can significantly reduce 
FIB-SEM measurement time by decimating some SEM cross-sectional images. This decimation can be achieved 
by increasing the thickness of the FIB stripped surface and, thus, reducing the number of SEM images required to 
generate the 3D data, the resolution asymmetry of which is then restored via SR.

In this study, as a practical application to accelerate meso-scale 3D observations, we propose an SR technique 
for high-speed 3D observations with asymmetric resolution. An overview of this technique is given in Fig. 1. We 
believe that this method enables both acceleration and cost reduction of meso-scale 3D microscopy through 
use of an integrated system incorporating several 3D microscopy techniques. To demonstrate SR processing for 
meso-scale 3D observation, we perform FIB-SEM observation of filler-filled PNCs with asymmetric resolution in 
the z-direction. SR is then performed for 2D sub-images within the x-z and the y-z planes. A DL-based SR method 
is applied, with 2D sub-images within the x-y plane being used for the learning processes. The depth-to-lateral 
resolution ratio corresponds to the upscaling factor n of the SR processing. From the recovered sub-images in the 
x-z and the y-z planes, 3D volume data are reconstructed. Hence, we evaluate the dependence of the restoration of 
the image resolution on the n in the depth direction. In order to study the efficiency of the SR approach, we com-
pare SR results obtained using conventional interpolation methods and DL-based methods. Further, we clarify 
the parameter settings, i.e., conditions, beneficial for each method.

From the viewpoint of rubber technologies, there is a high interest in filler morphologies; the FIB-SEM obser-
vation of filler-filled PNCs is a powerful tool, as well as small-angle X-ray scattering (SAXS) experiments32–35, 
to observe 3D volume data of NP morphologies. Although many studies have semi-quantitatively compared 
the behavior of SAXS data and 2D images of SEM and/or TEM micrographs, it is, in principle, impossible to 
calculate scattering functions from the 2D image. If 3D volume data are observed, the scattering functions can 
be approximately calculated. Then, we expect to use the SAXS data to improve the resolution of the 3D volume 
data. Namely, some modifications to the FIB-SEM 3D image are made so that the scattering function calculated 

Figure 1.  Illustration of our proposed SR approach for treatment of 3D image data with asymmetric resolution.
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from the (modified) 3D volume data agrees well with the actually measured SAXS data. Such a super resolution 
technique should shorten measurement time because one needs only a roughly stripping pitch for FIB-SEM 
observation.

The remainder of this paper is organized as follows. The results for the original and reconstructed 3D volume 
data and numerical evaluations of the various SR methods are presented in the next section (Results). A compar-
ison of image-process-based and DL-based SR is presented. The final section (Methods) provides a brief descrip-
tion of the examined specimens, FIB-SEM observation methods, the SR procedures employed in this study, and 
the evaluation method.

Results
We performed FIB-SEM observation of 3D volume data for NP-filled SBR (supplied by JSR Corporation). Note 
that the mechanical properties and small angle X-ray scattering curves of these specimens have been examined in 
detail in previous studies32,35. These volume data with 2-nm/pixel resolution were used as a reference for SR in the 
present study. Stripping with 2-nm pitch was achieved by converting the specimen into a glass state by the OsO4 
staining of the rubbery matrix of filler-filled PNCs. In this case, local relaxations of NPs at the surface after milling 
were considered sufficiently small. A snapshot and some cross sections of a reference 3D image are presented in 
Fig. 2. In Fig. 2(a), we plotted the isosurface with a threshold value of 90 for the obtained 8-bit grayscale image. 
This threshold value was determined so as to reproduce the volume fraction of the NP-filled SBR. In Fig. 2(b–d), 
the original FIB-SEM images obtained at different depth positions are shown.

In this study, decimated volume images were generated by replacing n consecutive pixels with a representative 
value in the z-direction. The value u x y z( , , ) was obtained from = +⌊ ⌋ ⌊ ⌋u x y z u x y z n n n( , , ) ( , , / /2 ), where ⌊ ⌋X  
is the floor function of X. In our test, cases with n values of 2, 4, and 8 were examined. We trained the SRGAN 
model for each upscaling factor (n = 2, 4, and 8) using the TensorFlow package24. Here, SRGAN learned from 
sub-images within the x-y plane. We then applied the trained SR to 2D sub-images within the x-z and the y-z 
planes. For comparison with conventional interpolation methods, we performed image-filter-based SR for 2D 

Figure 2.  (a) Snapshot and (b−d) cross sections of 3D volume data used as reference. 2D images obtained via 
FIB-SEM are presented in (b−d).
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sub-images within the x-z and the y-z planes using the nearest neighbor, bicubic, and bilinear methods, along 
with the OpenCV 2.4 standard image processing library40,41.

Figure 3 shows ultra-thin sections in the x-z planes for the reference, input (low-resolution images), and out-
put images of our SR processing. The image size was (128, 128). Comparison of the three images with different 
n values for the input revealed that the difference in resolution is significant. In the case of n = 8, the SR results 
yielded by the bicubic and bilinear methods and SRGAN seemed to be improved.

Numerical evaluations based on root mean square (RMS) and peak signal-to-noise ratio (PSNR) calculations 
are presented in Tables 1 and 2. Table 1 lists the results obtained from 8-bit grayscale images with n = 2, 4, and 8. 

Figure 3.  Ultra-thin sections in x-z planes for reference, input (low-resolution), and output images of our SR 
processing.
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The bicubic and bilinear methods and SRGAN seemed to exhibit comparable performance. The same finding has 
been reported in several papers on DL-based SR15–18 for standard benchmark datasets21–23. However, for small n 
(= 2), the numerical values yielded by SRGAN were lower than those obtained through conventional methods. 
On the other hand, for large n (= 8), SRGAN yielded the best performance. Table 2 lists RMS and PSNR values 
obtained for 1-bit binary images, as a check of the binarization effect. The binary images were obtained with a 
threshold value of 90 for the 8-bit grayscale images. The order of the PSNR (and RMS) results exhibited similar 
trends for n = 2 and 4.

Note that, in the case of n = 8, SRGAN yielded the best results for the 8-bit grayscale images, followed by the 
bilinear and bicubic methods. However, for the 1-bit binary images, although SRGAN again exhibited the best 
performance, the order after SRGAN was inverted, i.e., the bicubic method was superior to the bilinear technique. 
Hence, it can be concluded that the DL-based method is preferable for larger n. On the other hand, for small n, 
conventional image processing seems useful. For practical engineering, optimization of the balance between the 
observation and computing times for the SR process is important.

Summary.  A combination of FIB-SEM observation with asymmetric resolution and SR was proposed to 
achieve high-throughput 3D observation of PNCs. We expected that large FIB milling intervals would facilitate 
acceleration of the FIB-SEM observation, with the aid of SR processing to recover the gaps between the resolution 
in the FIB milling direction (depth resolution) and that in the SEM observation (lateral resolution). In this paper, 
we examined the dependence of the restoration performance on the upscaling factor (n = 2, 4, and 8) and on the 
SR method. Image-processing and the DL-based SR methods were considered. To obtain real, representative 
FIB-SEM 3D images, FIB-SEM observations of NP-filled SBR with 2-nm/pixel resolution were performed. As 
an implementation of a DL-based SR process, SRGAN16 with the TensorFlow24 library was used. SRGAN learnt 
from sub-images of SEM observations in the lateral direction and applied the SR process to sub-images parallel to 
the FIB milling direction, i.e., in the depth direction. After the SR process, a 3D volume image was reconstructed 
from the recovered sub-images. In addition, conventional image processing instead of SRGAN was applied to 
sub-images in the depth direction. We evaluated the RMS and PSNR as indexes of the SR performance. Hence, 
it was confirmed that use of an SR process yielded improved 3D volume images. In addition, we confirmed that 
SRGAN is superior to conventional image processing methods such as the bicubic and bilinear techniques for 
larger n (= 8). However, the improvements due to SR for the bicubic and bilinear methods, and SRGAN, were 
comparable when n was small. The SR approach for observation with asymmetric resolution can be applied to 
not only PNCs, but also phase-separated polymer systems of block copolymers. Moreover, reduction of observa-
tion time is beneficial for a broad range of research fields and industrial applications, including biomedical and 
mechanical engineering. When engineering FIB-SEM observation, establishing a balance between the obser-
vation and computing times for the SR process is important. Detailed studies and engineering optimization of 
selected parameters such as the sub-image sizes are in progress. Moreover, we are considering exploration of 
different network structures in order to achieve better performance and speed in our future research.

Methods
As specimens for FIB-SEM observation, we used NP-filled SBR without end-functionalization, supplied by JSR 
Corporation. Details of the SBR used in this study are given in refs32,35. The average NP diameter was 18.8 nm and the 
NP volume fraction in the SBR was 16%. Analytical data on the SBR are given in ref.32. The total molecular weight, vinyl 
content of the butadiene part, and styrene unit content were, respectively, 189 kg/mol, 55%, and 20%. The glass transi-
tion temperature Tg was −36 °C. The NP-filled SBR compound had the following components: 100 per hundred parts of 
rubber (phr) SBR, 50-phr silica NP (Nipsil AQ, TOSOH SILICA), 4-phr silane coupling agent (Si75, EVONIK), 10-phr 
oil, 2-phr stearic acid, 1-phr N-(1.3-Dimethylbutyle)-N’-phenyl-p-phenylendiaminea, 1.5-phr diphenylguanidine, 

n 2 4 8

Input 0.0439 (39.0 dB) 0.0938 (32.4 dB) 0.172 (27.1 dB)

Nearest neighbor 0.0439 (39.0 dB) 0.0938 (32.3 dB) 0.211 (25.3 dB)

Bicubic 0.0252 (43.8 dB) 0.0415 (40.1 dB) 0.122 (30.0 dB)

Bilinear 0.0246 (44.0 dB) 0.0383 (39.4 dB) 0.121 (30.1 dB)

SRGAN 0.0320 (41.7 dB) 0.0421 (39.3 dB) 0.120 (30.2 dB)

Table 1.  Dependence of n on RMS (PSNR) for 8-bit grayscale image.

n 2 4 8

Input 0.00191 (18.1 dB) 0.00314 (13.8 dB) 0.00453 (10.6 dB)

Nearest neighbor 0.00191 (18.1 dB) 0.00314 (13.8 dB) 0.00530 (9.18 dB)

Bicubic 0.00126 (21.7 dB) 0.00180 (18.6 dB) 0.00389 (11.9 dB)

Bilinear 0.00126 (21.7 dB) 0.00191 (18.1 dB) 0.00392 (11.8 dB)

SRGAN 0.00158 (19.7 dB) 0.00203 (17.6 dB) 0.00383 (12.0 dB)

Table 2.  Dependence of n on RMS (PSNR) for 1-bit binary image with threshold value of 90 for 8-bit grayscale 
image.
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1.8-phr N-Cyclohexyl-2-benzothiazylsufenamide, and 1.5-phr sulfur. After mixing in a 75-ml Plastomill (Toyo Seiki 
Seisakusho, Ltd.), this compound was cured at 160 °C for 40 min under press forming. Note that details of the dynamic 
viscoelastic properties, transmission electron microscopy images, and the ultra-small angle X-ray scattering spectrum 
are given in ref.32.

For FIB-SEM observation, the silica-NP-filled SBR was stained with osmium tetroxide (OsO4) crystalline for 
1 day. Because OsO4 reacts with double bonds in the SBR and cross-links the SBR42,43, the stained SBR has suffi-
cient tolerance for Ga ion and electron beam irradiation. In particular, the addition of Os into the SBR improves 
the SBR electron conductivity, effectively preventing sample charging due to the Ga ion and electron beam irra-
diation. In this study, the staining facilitated stripping of the SBR at several-nanometer pitches with the Ga ion 
beam. We believe that our super resolution method is applicable to wide variety of composite materials that are 
in a glassy state at room temperature. Alternatively, it may be also possible to perform FIB-SEM measurements at 
the cryogenic temperatures that convert soft materials, such as rubbery materials, into a glassy state. As shown in 
the present work, staining is also an excellent way to make the rubbery materials glassy.

We used an FIB-SEM (SMF-1000, SII Nano Technology, Inc., Japan) installed at the National Institute for 
Material Science, Japan. This instrument has both FIB and SEM installed orthogonally, so that the SEM view is 
from directly above the specimen. The FIB and SEM were operated at 30 and 0.5 kV, respectively. We obtained 
880 images with (1000, 1000) pixels for each specimen through a repeated process of FIB sectioning and SEM 
observation at room temperature. The time required to measure one specimen was approximately 6 h. As the 
average FIB milling length was approximately 2 nm, the SEM magnification was chosen to yield a resolution of 
2 nm/pixel. Because of the OsO4 staining, the FIB and SEM resolutions were symmetric in this particular case. 
Using ImageJ44, we performed image registration based on correlations of neighboring SEM images along the 
depth direction45. Consequently, we obtained volume data with (650, 650, 848) pixels.

In our SR procedure, the size of a unit sub-image was (56, 56) pixels. From a single SEM image with 
(1000, 1000) pixels, 289 (= 17 × 17) sub-images were obtained. Thus, the number NL of sub-images for the 
learning process became 289 × 880/n. For n = 2, 4, and 8, NL = 127160, 63580, and 31790, respectively. In 
training, low-resolution sub-images were generated by decimation from high-resolution sub-images through 
a down-sampling operation with a factor of 1/n in a certain direction (in our case, the z-direction). The 
low-resolution sub-images were (56, 56/n) pixels in size. For the SR processes, a single image with (650, 848) 
pixels in the x-z or y-z plane was divided into 276 (= 12 × 23) sub-images with (56, 56) pixels. In order to elim-
inate the difference between the edges of adjacent images, the edges of those images were overlapped. In the 
present study, the numbers of overlapped pixels between neighboring sub-images were 1 and 10 pixels in the x- or 
y-direction, and in the z-direction, respectively. We chose 10 pixels in the z-direction, because 10 is the smallest 
even integer larger than the maximum of the examined values of n. We applied SR processing for 179400 (= 650 
× 276) sub-images within the x-z plane and 179400 sub-images within the y-z plane. 3D volume data were recon-
structed from these 358800 sub-images.

For the DL-based SR, we used the SRGAN model. In practice, DL networks were implemented using the 
TensorFlow package (version 0.12.0)24. SRGAN learned from the large NL within the x-y plane for each n (= 2, 
4, and 8). On a machine employing one NVIDIA GeForce GTX 1080 graphics card, training with 500 epochs 
for n = 2, 4, and 8 required roughly 70, 35, and 18 h, respectively. In all cases, the cost function during training 
seemed to decrease before 50 epochs and saturate and fluctuate after 50 epochs. Consequently, we expended 500 
epochs, which is ten times longer than 50 epochs.

For quantitative evaluation, we used the following root mean square (RMS) calculation of the difference 
between values for each pixel

=
∑ −
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where u(x, y, z) denotes the value of the pixel at (x, y, z) and uorg(x, y, z) is a reference data value. Further, the peak 
signal-to-noise ratio (PSNR) was used as a standard index to evaluate the goodness of the SR algorithms15–23. The 
PSNR (in dB) is defined as

=PSNR MAX
RMS

10 log , (2)
I

10

2

where MAXI is the maximum possible pixel value of the image. For 8-bit images and binary images, MAXI is 255 
and 1, respectively. In the present study, the significant digits of RMS and PSNR in Tables 1 and 2 were evaluated 
from the value of the area obtained by equally dividing the volume into eight equal parts.

Data availability.  The datasets generated during and/or analyzed during the current study are available from 
the corresponding author on reasonable request.
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