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Abstract: Oomycete and fungal interactions with plants can be neutral, symbiotic or pathogenic with
different impact on plant health and fitness. Both fungi and oomycetes can generate so-called effector
proteins in order to successfully colonize the host plant. These proteins modify stress pathways,
developmental processes and the innate immune system to the microbes’ benefit, with a very different
outcome for the plant. Investigating the biological and functional roles of effectors during plant–
microbe interactions are accessible through bioinformatics and experimental approaches. The next
generation protein modeling software RoseTTafold and AlphaFold2 have made significant progress
in defining the 3D-structure of proteins by utilizing novel machine-learning algorithms using amino
acid sequences as their only input. As these two methods rely on super computers, Google Colabfold
alternatives have received significant attention, making the approaches more accessible to users. Here,
we focus on current structural biology, sequence motif and domain knowledge of effector proteins from
filamentous microbes and discuss the broader use of novel modelling strategies, namely AlphaFold2
and RoseTTafold, in the field of effector biology. Finally, we compare the original programs and their
Colab versions to assess current strengths, ease of access, limitations and future applications.

Keywords: effector proteins; fungi; oomycetes; protein modelling; RoseTTafold; AlphaFold2

1. Introduction

Plants and their associated microbes have been interacting with each other for mil-
lions of years. Microbes can have either positive (mutualistic), neutral (communalistic),
or deleterious (pathogenic) impact on plant fitness [1–3]. Plant–microbe interaction is a
highly dynamic process not only affected by the interaction partners, but also the change
of living conditions associated to abiotic factors affecting overall plant health and perfor-
mance [3,4]. Symbiotic interactions can accelerate plant growth via nutrient acquisition
like phosphorus and nitrogen or enhance plant resilience against various stresses [5–7].
Beneficial microbes are able to deploy tactics such as stimulating the plants immune system
to generate anti-pathogenic products or activate defensive pathways [8]. The means of
plant–microbe interaction are the same for symbiotic and pathogenic microbes, all evade or
recruit methods to suppress the plants immune responses but with very different outcomes.
Evidence has illustrated that endophytic beneficial microbes, similar to pathogens, combat
with the plant’s defense layers [9,10].

Interestingly, the plant innate immune system does not distinguish between friend and
foe, with both bringing about defensive processes collectively termed microbe-associated
molecular patterns (MAMP) triggered immunity (MTI). This first layer of the immune
response involves recognition of MAMPs (e.g., ergosterol, bacterial flagellin, Pep-13,
xylanase) by so-called “Pattern Recognition Receptors” (PRRs) [11,12]. Invader induced
damage to the plant can also induce the innate immune system via damage-associated
molecular patterns (DAMPs). Hereby plant cell wall fragments can function as endogenous
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elicitors and serve as apoplastic signals to induce the immune system [13]. MAMP or
DAMP activation of the PRRs eventually leads, via signaling cascades, to active defense
responses, including production of reactive oxygen species (ROS), callose deposition, ac-
tivation of the MAPK cascade and biosynthesis of jasmonic acid (JA) and salicylic acid
(SA) [14]. MTI and pre-existing chemical and physical barriers comprise the plants basal
resistance to most pathogens and microbes.

In order to establish synergy or to combat defense responses microbes may instigate
further modulations. Adopted pathogens and mutualistic microbes evolved effector pro-
teins that can either be secreted to the intracellular space or translocated into the host cell.
In case of pathogens, suppression of MTI and the plant immune system is called effector
triggered susceptibility (ETS) [15,16]. In contrast to pathogens, mutualistic and symbiotic
microbes deploy effector proteins and secondary metabolites to establish symbiosis via
root or shoot colonization [17]. To avoid ETS, host plants utilize the second layer of innate
immune response called effector triggered immunity (ETI) [18]. The effector proteins
and/or effector target complexes are recognized by the protein products of plant resistance
genes (R-genes), which belong to the intracellular nucleotide-binding leucine-rich repeat
(NB-LRR) protein family [19]. NB-LRR proteins are activated either through direct recogni-
tion of an effector or indirectly when the effector targets one of the host’s proteins. Their
activation leads to ETI continued by an amplified disease resistance response [19]. Due
to their key role during the infection process this review will focus on effector proteins
originating from fungal and oomycete species.

2. Effector Proteins in Plant–Microbe Interaction

Phytopathogens and mutualistic microbes like filamentous fungi and oomycetes se-
crete effector proteins in order to colonize the host. Bioinformatic approaches allow us to
predict effectomes from genome and RNA sequencing data sets, which is based on known
signal peptides, effector motifs and domains (see below Section 2.2). Ultimately, these data
sets are the starting point to explore effectors and their biological and biochemical functions.
Depending on the host-range (specialist or broad range), fungi and oomycetes have both
highly conserved and unique effector proteins. This allows them to target critical mech-
anisms involved in the plant’s immune system, stress adaptation pathways and regular
cellular functions important to establish and survive on the host plant [20–22]. In the past
decade, effectomes have been published for a wide range of pathogenic species, including
dieback inducing species, rusts and smut fungi [23,24]. Recently, effectome sets are increas-
ingly published for symbiotic and mutualistic microorganisms, allowing us to compare the
molecular colonization strategies of pathogens and mutualistic microbes [25,26].

The most important function of effector proteins is the suppression of the plants signal
transduction pathways associated with MTI, ETI or both [27,28]. To allow for their molecular
function, effector proteins are either secreted into the apoplastic space or translocated into
the host cell [29,30]. Hence, effector proteins are classified as apoplastic and cytosolic effector
proteins (Figure 1). Apoplastic effectors can initiate the plant’s immune responses by early
recognition in the plant–microbe interaction, but originally, they aim to induce successful
colonization by blocking enzymatic reactions, mimicking plant proteins or disguising infec-
tion structures [31]. On the other hand, cytoplasmic effectors are delivered into plant cells to
target intracellular processes, where they can be recognized by intracellular receptors [32].
In this review, we will focus on host translocated effector proteins of filamentous microbes,
their known conserved domains, motifs and progression in the field of effector protein
biochemistry and effector protein modelling.
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biotic or pathogenic origin (a). A key element of plant–microbe interactions is the secretion of effectors into the apoplastic 
space (apoplastic effectors) or translocation into the host cell (cytosolic effectors) by the microbe (b). It has been shown 
that beneficial as well as pathogenic oomycetes and fungi use conserved and unique species-specific effector proteins to 
modulate the host’s immune system targeting proteins in organelles, cytosol and intermembrane system (c), with a very 
different outcome for the plant (d). 

2.1. All Lifestyles of Filamentous Microbes Use Effector Proteins to Establish Colonization 
Oomycetes and fungi are filamentous eukaryotic organisms. In contrast to fungi that 

contain species of symbiotic and pathogenic lifestyle, oomycete species are mostly limited 
to a pathogenic lifestyle. Nevertheless, some oomycetes of the Pythium class are consid-
ered beneficial to plants and are in use as bio-control organisms. Examples are Pythium 
olingandrum and Pythium periplocum, which are known to be mycoparasites that antago-
nizes fungal plant pathogens [33,34]. 

Until recently, effector proteins have been studied mainly in context with pathogenic 
fungi and oomycete species. Nevertheless, recent advances have shown that symbiotic 
organisms such as endophytes and mutualistic microorganisms also secrete effector pro-
teins [35,36] (Table 1). According to Rovenich et al., 2014 effector proteins contribute to 

Figure 1. Symbiotic and pathogenic filamentous microbes us effector proteins with very different outcome for the host. This
figure shows a simplified model for interaction of plants with filamentous microbes, which can be of beneficial, symbiotic
or pathogenic origin (a). A key element of plant–microbe interactions is the secretion of effectors into the apoplastic
space (apoplastic effectors) or translocation into the host cell (cytosolic effectors) by the microbe (b). It has been shown
that beneficial as well as pathogenic oomycetes and fungi use conserved and unique species-specific effector proteins to
modulate the host’s immune system targeting proteins in organelles, cytosol and intermembrane system (c), with a very
different outcome for the plant (d).

2.1. All Lifestyles of Filamentous Microbes Use Effector Proteins to Establish Colonization

Oomycetes and fungi are filamentous eukaryotic organisms. In contrast to fungi
that contain species of symbiotic and pathogenic lifestyle, oomycete species are mostly
limited to a pathogenic lifestyle. Nevertheless, some oomycetes of the Pythium class are
considered beneficial to plants and are in use as bio-control organisms. Examples are
Pythium olingandrum and Pythium periplocum, which are known to be mycoparasites that
antagonizes fungal plant pathogens [33,34].

Until recently, effector proteins have been studied mainly in context with pathogenic
fungi and oomycete species. Nevertheless, recent advances have shown that symbi-
otic organisms such as endophytes and mutualistic microorganisms also secrete effector
proteins [35,36] (Table 1). According to Rovenich et al., 2014 effector proteins contribute to
niche colonization and most likely to microbial competition [29]. In mutualistic connections,
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identical to pathogenic invasions, the microorganism is identified by the plant’s recognition
system and needs solutions to evade the plant’s immune strategies to maintain a mutual
beneficial connection [37]. Apoplastic secreted effectors, such as secreted proteins (SP’s),
β-glucan, [38] or RiSLM that binds to chitin [39], are known to play a role in early estab-
lishment of mycorrhiza–plant interaction. Recently, effectors translocated into the host’s
cytosol originating from symbiotic fungi become more and more the focal point of ongoing
research (Table 1) and we start to understand that oomycetes and fungi of all lifestyles
use effector proteins to establish an interaction with the host plant [40,41]. This includes
translocated effector proteins containing RxLR motifs and crinklers (CRN’s), which will
be reviewed in more detail in the next chapter. Effectors are likely to be used by plant
growth promoting fungi to limit the activation of the plant’s immune system by decreasing
the amount of specific MAMPs recognized by the plant’s PRRs. However, many ques-
tions remain unresolved about the molecular mechanisms governing mycorrhiza–plant
interaction—with one being how they can establish interaction with such a broad host
spectrum. Future research in this field will need to establish collaborative approaches, com-
bining ecology (bigger picture), molecular interaction studies of microbe and host on the
cellular level (organismal and cell level) and protein biochemistry approaches (molecular
level) to resolve these important questions.

Table 1. List of effector proteins identified for beneficial fungi, their host species and biological function.

Effector Protein Fungal Species Host Species Characterized Biological Function References

SP7 Glomus intraradices Medicago truncatula Interacts with JA/ethylene inducible ERF19
transcription factor and down regulates PTI [39]

Lysm effector Tal6 Trichoderma
atroviride Arabidopsis thaliana

Binds to chitin of plant’s cell wall and protects
the fungi hyphae from plant’s chitinase

favoring Trichoderma interaction and
increasing mycoparasitic effect

[42]

Lysm effector
RiSLM

Rhizophagus
irregularis Medicago truncatula

Binds to chitin and chitooligosaccharides of
plant’s cell wall and interferes with

chitin-triggered immune response protecting
hyphae from plant’s chitinase and enabling

symbiotic reactions

[43]

MiSSP7 Laccaria bicolor Populus trichocarpa

Suppresses JA-mediated immune response by
preventing JA-dependent degradation of

PtJAZ6, a negative regulator of JA-induced
genes

[44]

RiCRN1 Rhizophagus
irregularis

Medicago truncatula
Nicotiana

benthamiana

Establishes a functional AM symbiosis and
Arbuscules phosphate transporter

gene-MtP4-expression
[45]

Strigolactone
induced secreted
protein 1 (SIS1)

Rhizophagus
irregularis Medicago truncatula

Essential for AM symbiosis, gene silencing
causes suppression of colonization and

production of stunted arbuscules
[25]

RP8598 and
RP23081

Rhizophagus
proliferus

Medicago truncatula
Nicotiana

benthamiana Allium
schoenoprasum

Interacts with JA/ethylene inducible ERF19
transcription factor and down regulates PTI [22]

Nuclear localizing
effector (RiNLE1)

Rhizophagus
irregularis Medicago truncatula

Interferes with mono-ubiquitination of 2B
histone and decreases the expression of

defense-related genes while enhancing AM
colonization process

[46]

Hydrophobin-
like

OmSSP1
Ericoid mycorrhiza Vaccinium myrtillu

Mutants are unable to colonize V. myrtillu
roots and OmSSP1 may strengthen the

attachment of the fungi to the root protecting
the hyphae from plant’s immune system

[26]
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Table 1. Cont.

Effector Protein Fungal Species Host Species Characterized Biological Function References

PIIN_08944 Piriformospora indica Arabidopsis thaliana

Mutants show delayed colonization and
PIIN_08944 expression reveals impairment of
SA-defense pathway and reduced expression

of flg-22

[47]

Did1
(PIIN_05872) Piriformospora indica -

Interferes with iron-mediated defense
response which plays an important role in

ROS generation
[48]

2.2. Effector Proteins of Filamentous Microbes

Most of our knowledge on effector protein function, motifs, domains and structures
derives from pathogenic species rather than beneficial and symbiotic species. Compared
to oomycetes, identification of motifs and domains involved in delivering cytoplasmic
effectors has been particularly challenging for fungi due to less clear sequence conserva-
tion. Nevertheless, fungi and oomycetes have been shown to translocate RxLR/RxLR-like
effectors and CRNs into the host cell [41]. Oomycetes contain a particularly high num-
ber of RxLR effector proteins, which are likely to be secreted via the haustoria during
plant–oomycete interaction [49]. RxLR effector proteins are composed of an N-terminal
signal peptide responsible for effector secretion, followed by a highly conserved RxLR
(Arg-Xaa-Leu-Arg) motif. This motif has been proposed to be in charge of the translocation
of the effector protein into the host cell [50,51]. More recently, it has been hypothesized that
the RxLR motif is cleaved before translocation into the plant cell and only a mature effector
protein containing the C-terminal effector domain is delivered into the host cell [52]. The
RxLR motif is often followed by a downstream (D)EER motif (Glu-Glu-Arg) located within
40 AA after the signal peptide, which is also linked to the effector translocation [50,53]. The
effector proteins of Phytophtora species such as P. infestans (Avr3a and PexRD2), P. capsici
(Avr3a11) and downy mildews such as Hyaloperonospora arabidopsis (Hpa; Atr1) also contain
a WY or WL motif, which forms an alpha-helix [54]. The motif, identified by analyzing the
crystal structure of PexRD2, is comprised of two hydrophobic residues buried inside the
protein core that contribute to interactions with host target proteins. WY-containing effec-
tors and their structures have been recently reviewed in detail by Mukhi, et al. 2020 [54].
Other RxLR effectors have been shown to interact with their targets in the cellular en-
domembrane system, including P. infestans’s effector protein Pi03912 and Bremia Lactucae’s
effector proteins BLR05 and BLR09 that interact with NAC transcription factors located in
endoplasmic reticulum [55,56].

Translocated CRN effector proteins are distributed in nearly all pathogenic oomycetes
and have been shown to be translocated by fungi of pathogenic and beneficial lifestyle.
CRN’s share two conserved motifs in their N-terminal region, the LxLFLAK (Leu-Xaa-
Leu-Phe-Leu-Ala-Lys) motif and the HVLVVVP (His-Val-Leu-Val-Val-Val-Pro) motif. The
LxLFLAK motif is, comparable to the RxLR, associated with the translocation of the effector
in to the host cell [57,58]. CRNs, initially identified through their ability to cause crinkling
and necrosis upon expression in plant tissue are not typified by this characteristic. In fact,
expression of CRNs leads to cell death only in a select few cases. So far, CRNs are less well
studied than RxLRs [57,58].

Fungal species have further effector proteins with various effector motifs including but
not restricted to, lysin (LysM), DELD, RSIDEDLD, RGD and the EAR (ethylene-responsive
element binding factor-associated amphiphilic repression) motif.

Furthermore, most MAX effectors (Magnaporthe AVRs and ToxB- like effectors) so far
have been identified to be translocated, contributing to the virulence of pathogenic fungi.
These effectors contain a β-sandwich fold, showing similarities to the apoplast secreted
Pyrenapohora tritici-repentis ToxB. This group of effectors have at least one disulfide bond
with variable AA on their protein surface, which mediates their target interaction [59,60].
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RALPHs (Rnase-like proteins expressed in haustoria) are another group of fungal translo-
cated effectors discovered in pathogenic fungi, including the Blumeria graminis effector
BEC1054. RALPHs block the function of the host’s ribosome, inactivating proteins and
suppress the host cell death [61]. The flax rust effector AvrP is considered an HESP (haus-
torial expressed secreted protein) that does not contain an RxLR and the translocation
mechanisms in the host cell is not clear to date. Nevertheless, it is one of the few effector
proteins with a known structure. It contains Zn-finger like motifs and three Zn- binding
sites. The Zn-finger motifs are necessary for maintaining the integrity of the effector protein
and cell death activity [62]. Other structurally resolved fungal and oomycete effector
proteins are presented in Table 2.

Table 2. Summary of structurally resolved effector proteins available in PDB-deposited structures [63].

Effector Protein Organism Date of Release Method PDB Entry Family

Fungi

Ecp11-1 Passalora fulva 4 August 2021 X-ray 6ZUS LARS
APikL2A Magnaporthe oryzae 24 March 2021 X-ray 7NLJ MAX
APikL2F Magnaporthe oryzae 24 March 2021 X-ray 7NMM MAX

AVR-PikD Pyricularia oryzae 17 Februrary 2021 X-ray 7BNT MAX
AVR-PikF Pyricularia oryzae 3 February 2021 X-ray 7B1I MAX
AVR-PikC Pyricularia oryzae 3 February 2021 X-ray 7A8X MAX

SnTox3 Parastagonospora nodorum 4 November 2020 X-ray 6WES MAX
Zt-KP6-1 Zymoseptoria tritici 4 March 2020 X-ray 6QPK LysM

MLP124017 Melampsora larici-populina 18 December 2019 Solution NMR 6SGO Cys knot,
NTF2-like fold

Mg1LysM Zymoseptoria tritici 16 October 2019 X-ray 6Q40 LysM
AVR-Pia Pyricularia oryzae 10 July 2019 X-ray 6Q76 MAX
AvrPib Pyricularia oryzae 5 September 2018 X-ray 5Z1V MAX

MlpP4.1 Melampsora larici-populina 22 August 2018 Solution NMR 6H0I Cys knot,
NTF2-like fold

Avr4 Passalora fulva 22 August 2018 X-ray 6BN0 Chitin-binding
PIIN_05872 Piriformospora indica 2 May 2018 X-ray 5LOS DELD

BEC1054 Blumeria hordei 20 June 2018 X-ray 6FMB RALPH
AVR-PikE Pyricularia oryzae 13 June 2018 X-ray 6G11 MAX
AVR-PikA Pyricularia oryzae 3 June 2018 X-ray 6FUD MAX

AvrP Melampsora lini 30 August 2017 X-ray 5VJJ Zn-binding
Avr2 Fusarium oxysporum 16 August 2017 X-ray 5OD4 ToxA/TRAF

PevD1 Verticillium dahliae 5 July 2017 X-ray 5XMZ C2-like
Avr4 Pseudocercospora fuligena 29 June 2017 X-ray 4Z4A Chitin-binding

AVR1-CO39 Magnaporthe oryzae 14 October 2015 Solution NMR 2MYV MAX
Prp5 Saccharomyces cerevisiae 11 December 2013 X-ray 4LK2 DEAD-box

AvrLm4-7 Leptosphaeria maculans 11 December 2013 X-ray 2OPC LARS
AvrM Melampsora lini 16 October 2013 X-ray 4BJM RXLR-like

AvrM-A Melampsora lini 16 October 2013 X-ray 4BJN RXLR-like
Ecp6 Passalora fulva 17 July 2013 X-ray 4B8V LARS

AvrPiz-t Pyricularia oryzae 12 September 2012 Solution NMR 2LW6 MAX
AvrL567-D Melampsora lini 30 October 2007 X-ray 2QVT RXLR-like
AvrL567-A Melampsora lini 6 March 2007 X-ray 2OPC RXLR-like
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Table 2. Cont.

Effector Protein Organism Date of Release Method PDB Entry Family

Oomycetes

Avr1d Phytophthora sojae 17 March 2021 X-ray 7C96 RXLR
PsAvh240 Phytophthora sojae 6 February 2019 X-ray 6J8L RXLR/WY

SFI3 Phytophthora infestans 5 December 2018 X-ray 6GU1 RXLR/WY
PcRXLR12 Phytophthora capsici 15 August 2018 X-ray 5ZC3 RXLR/WY

PSR2 Phytophthora sojae 16 August 2017 X-ray 5GNC RXLR/WY
Avr3a Phytophthora infestans 11 January 2017 Solution NMR 2NAR RXLR/WY

PexRD54 Phytophthora infestans 3 August 2016 X-ray 5L7S RXLR/WY
ATR13 Hyaloperonospora parasitica 18 january 2012 Solution NMR 2LAI RXLR

AVR3a4 Phytophthora capsici 3 August 2011 Solution NMR 2LC2 RXLR
PexRD2 Phytophthora infestans 3 August 2011 X-ray 3ZRG RXLR/WY
Avr3a11 Phytophthora capsici 3 August 2011 X-ray 3ZR8 RXLR/WY

ATR1 Hyaloperonospora parasitica 20 July 2011 X-ray 3RMR RXLR/WY

Interestingly, even though filamentous effector proteins have been studied and defined
extensively with genetic and molecular biology approaches, available protein structures are
very limited (Table 2). Structural information is very valuable for elucidating the molecular
mechanisms behind biological and biochemical functions. It is complimentary to genetic
and molecular biology methods, giving a molecular explanation for observations seen in
these studies and seeding hypothesis for further of these studies. In addition, the funda-
mental molecular level insights ultimately help link genome and sequence information to
function and aiding improvements in effectome prediction. Considering the importance of
effector molecules during infection processes of plants, but also of humans and animals, it
is surprising that effector proteins have not been studied more intensively. This in part may
be due to experimental challenges with structure elucidation, including the membrane-
associated nature of many effector proteins and the potentially dynamic nature of their
different molecular interactions along the infection/colonization cycle. Nonetheless, struc-
tures and their detailed molecular function, are a significant knowledge gap and that is
true for oomycete as much as for fungal effectors.

3. Structures and Computational Modelling of Effector Proteins

To decipher the function and evolutionary pattern of different species, investigating the 3D
structure of effector proteins can play a promising role. Across species effector proteins show
only low sequence similarity, which limits the power of sequence-based analysis for predicting
functional and evolutionary patterns. It is predicted that structural conservation of effector
proteins may be able to resolve these evolutionary and functional relationships (shared, but
with low conservation) that sequence analysis alone cannot define [64]. Magnaporthe oryzae
effector proteins AVR1-CO39 and AVR-Pia advocate this statement. The NMR spectroscopy
of these effector proteins has shown that even though they lack sequence similarity, they both
contain six β-sandwiches in their structures with Cys disulfide bridges located in the same
positions. AvrPiz-t and ToxB are two other effector proteins of M. oryzae, which are sequentially
unrelated but possess structural similarities, forming the MAX effector family [59]. In addition,
the power of large-scale structural determination should not be underestimated. The more
structural information exists for different and distantly related effectors, the more sequences
can be linked to molecular level function. This in turn aids better prediction of effectomes
from sequence alone and seeds more experiments on function that feedback into the process.
To support this point, the structural resolution and identification of the WY motif in effectors
from filamentous microbes can be considered one of the key discoveries in the last decade, as it
helped to classify a completely new class of effector proteins. Importantly, this motif was only
discovered, because of the structural analysis of certain effectors Avr3a and PexRD2 [65], which
underlines the importance of structural resolution and modelling in this field.
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Analysis and prediction of 3D-structures of biological macromolecules such as pro-
teins, DNA and RNA are studied within the field of computational biology. In recent years,
computational modelling has become one of the most rapidly evolving research areas in
structural biology [66,67]. It is a highly utilized area by those without expertise in structural
biology, with clear reasons in public accessibility of many tools (online) and their utility
to inform a wide range of experiments across biology. Experimentally, protein structures
are mainly investigated through methods like X-ray crystallography, nuclear magnetic
resonance (NMR), bio-SAXS and cryogenic electron microscopy (Cryo-EM). While pow-
erful, with different strengths, each approach has limitations and involve considerable
investments of financial resources and time. Even then, there is no promise a structure
can be resolved, particularly for certain types of proteins, including those with intrinsic
disorder or those residing or interacting with membranes. Nonetheless over the past nearly
50 years a wealth of structural information has been accrued, with near exponential growth,
for the protein world which has been publicly deposited freely in the Protein Data Bank
(PDB) [68]. Computational methods, like structural bioinformatics have developed as a
result of, and benefitted greatly from, this public PDB resource and have in turn aided value
from its contents. Developing structural analysis tools gain us comprehensive information
about folds and local motifs in proteins, evolution and function/structure relationships and
molecular folding, in order to understand the main functions of proteins and their role in
biological processes [69]. Over the last decade scientists have evolved various systems and
algorithms to overcome the 3D protein structure prediction problem [70]. Improvement in
protein energy functions [71], protein conformational sampling and sequence optimization,
as well as rapid growth in biological databases has made great advances in protein struc-
ture prediction [72]. We believe that the recent developments in the field of computational
protein modeling will become of increasing value for the elucidation of plant–microbe
interactions and effector biology.

4. Protein Modelling Approaches for Effector Proteins

Analyzing the structure of effector proteins is critical for our understanding of the
molecular mechanism behind the pathogenic and symbiotic interaction processes. Meanwhile,
characterizing effector genes and proteins in a genome-wide scale provides a great insight
into their functional roles, classifying them based on their conserved sequence motifs and
deciphering their evolutionary patterns [73]. Moreover, predicting and identifying effectors
and their host target proteins, open up opportunities to realize related pathways involved, and
ways of manipulating them to establish plant protection [74]. There are thousands of effector
proteins known and many not known yet. Table 2 lists the known experimentally determined
effector proteins, currently represented in the PDB; to our knowledge, 32 structures of fungal
effector proteins and 12 structures of oomycete effector proteins are available in the RCSB PDB
database at present [75]. Among the experimentally determined structures revealed in the
PDB database, the effector proteins of bacterial origin were most dominant [54] with structures
mostly resolved by X-ray crystallography (Table 2). As can be seen by the family distribution
in the table, some effector types are represented (e.g., RXLR/WY proteins have numerous
representatives) while other effector families are not represented at all. As discussed in the
section above there are reasons for this lack of representation, including technical limitations.
The last decade has witnessed extraordinary advances in computational methods, which have
had great impact on the field of structural biology. This includes visualization of structures,
data analysis and sequence to structure prediction. The prediction of effector structures via
computational modelling mainly uses sequence-based approaches with machine learning and
deep learning computational methods and has been recently reviewed in Suh et al. 2021 [76].

Depending on the amount of prior knowledge on related proteins with similar se-
quences, two structural modelling approaches have been established: (1) If related se-
quences have been structurally characterized with representatives in the PDB then ho-
mology or comparative modeling is the first method of choice, (2) in case of no known
structures, ab initio or de novo modeling is the most common approach. Homology mod-
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elling has been implemented in bioinformatics prediction tools such as SWISS-Model [77],
Modeller [78] and Phyre [79] (Protein Homology/analogy Recognition Engine), and re-
lies on the assumption that similar sequences with common ancestors would probably
possess similar structures [75,76]. It essentially comprises seven steps, starting with a
template search and initial alignment-to-alignment refinement, model building comprising
of backbone production, loop modeling and side-chain modeling, model optimization
and validation [80]. Recent advances have been introduced to these steps of homology
modeling, improving the overall output [81]. Homology modelling has proven very use-
ful, particularly for proteins with high sequence identity, nevertheless, the method has
a number of limitations. This includes the limited confidence with which it can predict
the structural effect of point mutations and multi domain proteins and its accuracy wan-
ing with lower sequence identity, with sequence identity <30% being the lower limit for
confidence in the model. In the situation where no sequence similarities are available in
the data base or when the identity percentage is <30%, the protein structure prediction is
directly constructed from scratch using the ab initio or de novo modeling methods [74].
The current technology progresses combined with advanced contact mapping (the map
indicating the distance between the amino acid residues), co-evolutionary analysis empow-
ered by state-of-the-art neural networks allows improved prediction of larger-sized protein
folds [82]. Since 1994, novel structural prediction techniques are discussed and evaluated
every two years at CASP (Critical assessment of protein structure prediction), a global
protein structure prediction competition. Here, competitors apply their novel prediction
tool(s) to solve yet-unpublished protein structures. However, they are exclusively provided
with the amino acid sequences of the proteins. Results are compared to the corresponding
experimental structures and similarities evaluated based on accuracy of the predicted
models. Matrices commonly used for evaluation are the Global Distance Test Total Score
(GDT_TS) and the TM-score (Template Modeling score) [83].

4.1. New Developments: AlphaFold2 and RoseTTafold

The two last editions of CASP, (CASP13 and CASP14) have yielded some new modelling
procedures, including one approach, AlphaFold2 (developed by DeepMind technologies,
London, Great Britain) that has been touted as breakthrough advance in the field [84].
AlphaFold2, revealed in CASP14, is a highly superior version of AlphaFold1 with the
novel transformer initiative and repeated form of analysis. AlphaFold2 was introduced by
the Google DeepMind team. They won the competition achieving an average GDT_TS of
85.1 [85], which was relatively higher than the maximum GDT score of 65.7 achieved in
the CASP13 round [86]. The end-to-end AlphaFold2 prediction program used in CASP14
is generally comprised of two stages. Simply speaking, in the first stage the given amino
acid sequence is used for constructing the multiple sequence alignment (MSA). In this
step the query amino acid sequence is paired with multiple homolog sequences derived
from different species and also with the individual residues, constructing Nseq × Nres
and Nres × Nres (Nseq: number of sequences and Nres: number of residues) matrixes,
respectively. Multiple template matrixes from structure database search are additionally
used. The reason is the general conservation of protein structures despite mutational or
evolutional sequence differences. The result of the two matrixes is the MSA representation
and the pair interaction information. One of the breakthrough points of AlphaFold2 was
the introduction of the evoformer or transformer, which is responsible for refining the
mentioned representations by iteratively exchanging their information to come to a more
precise conclusion. For instance, in the published model the evoformer had repeatedly
refined the information with 48 cycles. In the second step, the neural network takes the MSA
representation and pair representation information to construct a static structure module in
just one-step unlike other novel models, which utilize many optimization procedures. The
very exciting novelty of AlphaFold2 belongs to its refinement cycles, which iteratively use
the output of the first stage (MSA representation and pair representation) and the output
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of the second stage (the predicted structure) in order to process them repeatedly between
the evoformer and the final step in model prediction [87].

In AlphaFold2 the predicted model is evaluated by overlaying the original structures
existing in PDB with an IDDT (local Distance Difference Test) score, which computes the
overall score by considering all heavy atoms or IDDT-Cα which measures the backbone
accuracy based on the Cα atom. RMSD95 (Cα Root-Mean-Square-Deviation at 95% coverage)
is also reported as an accuracy metric in AlphaFold2 [87]. Root-mean-square deviation of
atomic positions measure the average distance between the atoms, particularly the backbone
atoms of the two superimposed proteins, and it is calculated in angstroms. The lower the
distance in angstroms, the more similarity exists between the proteins [88]. AlphaFold2 takes
advantage of graphics processing unit (GPU) depending on the number of the amino acids of
the protein query. For instance, a V100GPU is able to predict a 256 residue query in 4.8 min,
384 residues in 9.2 min and 2500 residues in 18 h. When the ensembling option is off, all
predictions are 8× faster; 0.6 min, 1.1 min and 2.1 h respectively. Nevertheless, the ensembling
procedure has shown to have minor effects on the accuracy of the predicted models [87].

The other novel program utilized in the field of protein structure prediction and mod-
eling, RoseTTafold, was also released in 2021 to the scientific community [89]. RoseTTafold
is a software tool utilizing deep learning methods to predict protein structures compu-
tationally. This modeling software developed by RosettaCommons (developed by Baker
Laboratory, University of Washington, United States of America) uses a three-track neural
network, providing a better performance than trRosetta and Robetta, the older generation
prediction tools. Despite the two-track AlphaFold2, RoseTTafold takes advantage of a three-
track attention network comprising of (1) information from the 1D amino acid sequence,
(2) the 2D distance map and (3) the 3D backbone coordinates. In all three steps information
goes back and forth to generate an accurate structure. The 1D and 2D track are in the
2-track block and the 3D track forms the 3-track block. Furthermore, to increase modelling
performance RoseTTafold relies on the implementation of a transformer function. For a
protein query containing less than 400 residues RoseTTafold requires approximately 1.5 h
for sequence and template search, and ~10 min on an 8G RTX2080 GPU for the end-to-end
procedure to produce the backbone of the predicted model [90].

AlphaFold2 and RoseTTafold, are clearly two novel breakthrough approaches in the
modelling space with a lot of potential, in particular for the prediction of effector structures.
Potential integration in high-through-put and effectome prediction pipelines would allow
us to gain more insight on 3D conservation of effectors and their potential targets in plants.
Nevertheless, the full version of both AlphaFold2 and RoseTTafold need accessibility of
intensive core computing facilities.

4.2. User-Friendly Colabfold Alternatives

The full versions of AlphaFold2 and RoseTTafold require super computers in relation
to memory usage. Google Colabfold has made the access to AlphaFold2 and RoseTTafold
much easier by providing free computer resources, namely powerful GPUs for machine
learning applications. There are numbers of Notebooks provided by Google Colabfold,
responsible for modelling protein structures, each having specific parameters involved but
of course, not possessing all the algorithms used in the full version. AlphaFold2_mmseqs2,
AlphaFold2_advanced, AlphaFold2_batch, AlphaFold2 (from Deepmind) and RoseTTaFold
are the current available notebooks in Google Colabfold. Updates are published regularly,
and users need to check the most up-to-date notebooks available. AlphaFold2_mmseqs2
is for basic users and predicts structures based on MSAs produced by MMseq2 or the
MSA file uploaded by the user and when predicting the structures, it gives the option to
choose from already existing experimental based templates, relaxing the structures using
amber and generating up to five models. The AlphaFold2_advanced notebook on the other
hand provides users with more advanced options such as constructing MSA using HMMer,
number of random seeds (num_samples), number of times the structures go back to
Evoformer for refinement (max-recycles) which has the option to choose from 1 to 48 cycles
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(3 recommended), number of ensembles (num_ensemble) and enabling the stochastic part
of the model (is_training). Both notebooks generate a LDDT (Local Distance Different Test)
plot of their predicted proteins showing the accuracy of different secondary formations
with different colors. In both RoseTTafold and AlphaFold2 notebooks using templates
has been shown to have a surprisingly minor effect on the quality of the predictions [91],
hence, they allow users to produce high-quality protein models even without access to
high-performance computing facilities.

4.3. AlphaFold2 and RoseTTafold for Structural Prediction of Effector Proteins

In this review, we have compared the full version of AlphaFold2, RoseTTafold and the
presently available Google Colab version for the modelling of different groups of effector
proteins, originating from filamentous microbes in order to assess their relative utility
to the effector protein field (Figure 2). For practical reasons, we have chosen effectors
with existing 3D-structures in the PDB database and compared modelling results with the
experimentally resolved protein structures. This set of known structures shows diversity,
encompassing different secondary structures including, α-helices, β-sheets and turns from
both oomycete and fungal effectors. From these six chosen effector proteins, three are
oomycete RxLR effector proteins namely PexRD2 [3ZRG], Avr1d [7C96] and Avr3a [2NAR]
and three are non-RxLR fungi effector proteins including Avr2 [5OD4], ApikL2A [7NLJ] and
AvrP [5VJJ]. The P. infestans Avr3a effector protein structure consists of a single three-helix
WY domain continued by an extended N-terminal helix (the K motif) making a four-helix
bundle overall. It has been observed that the fourth α-helix of this protein has an additional
bend in comparison to other WY domains. The N-terminus of Avr3a forms a highly flexible
domain ready for protease cleavage. In contrast the domain consisting of Glu-70 to Tyr-147
makes the rigid core of the effector protein [52]. PexRD2, another RxLR effector protein of
P. infestans, also forms a single three-helix WY domain. It has been demonstrated that the
third loop of the three α-helices in this protein is longer when compared to other existing
RxLR effector proteins of the WY domain containing class. In contrast to Avr3a, which has
a monomeric formation, PexRD2 self-associates and forms a dimeric functional mode of
the effector protein in planta [92]. Avr1d (Avh6) is a P. sojae effector protein comprising of a
signal peptide continued by a conserved N-terminal RxLR motif and an effector domain.
Recent studies have shown its interaction with the U-box-type 3 E3 ligase of GmPUB13,
functioning as a susceptibility factor for plants. The structure of this effector has been
demonstrated to contain a single WY motif with a three α-helix bundle, in which the Tyr-118
and Trp-96 are able to form a hydrophobic core enabling the interaction with GmPUB13. It
has been observed that Phe-90 is the prominent amino acid in this interaction, inactivating
the ubiquitin ligase activity of GmPUB13 and contributing to the infection process [93]. In
contrast, Avr2 is a non-RxLR fungal effector protein produced by F. oxysporum, comprising
of a β-sandwich fold which is generated by two antiparallel β-sheets. The structure has
been released in PDB and shows that disulfide bonds between Cys amino acids exist
between different the β-sheets, stabilizing the β-sheets and associating the N-terminus
of the β-sheets to the core region of the β-sandwich [94]. APikL2A is an allelic variant
of APikL2 effector protein of M. orzyae. It has been shown to have binding capabilities
to the host’s heavy-metal associated (HMA) domain family (similar to AVR-Pik)—vital
for the M. orzyae infection process. APikL2A has been shown to have similarities to the
MAX-effector protein class [95]. The last of the six effector proteins, AvrP, is translocated by
the flax rust fungus into the host plant. It consists of four β-strands and one short α-helix
at the C-teminus. Three Zn-ions have been shown to interact within these effector proteins.
The virulence action of AvrP is associated to these Zn-binding motifs, which eventually
induce cell death in the host plant [62].
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version, AlphaFold2 full version, RoseTTadfold Google Colab version and RoseTTafold full version and their RMSD and
GDT-TS values calculated when superimposing models with their PDB structures. The following methods were used to
model the structures: AlphaFold2_advanced Google Colab notebook [96] with the settings of: MSA_method: MMseq2 (fast
method), max_msa: 512:1024, num_models: 5, active use_ptm, num_ensemble: 1, max_recycles: 3, num_relax: Top1, NeSI
(New Zealand eScience Infrastructure) AlphaFold2 full version [97], RoseTTafold Google Colab notebook [98] with the setting
of: MSA_method: MMseq2, and RoseTTafold Robetta server [90] and the RMSD value (blue) of the superimposition of the
proteins PDB structures and their corresponding models calculated by PDBefold [99,100]. GDT-TS (red) was calculated using
the online LGA (Local-Global-Alignment) program [101]. UCSF Chimera version 1.15 [102] was used to visualize the models.

By doing this systematic comparison, with a diverse range of known effector proteins, we
are able to assess not only both programs that have been touted as major recent advances, but
also determine if the easier and faster to run Colab alternatives produce models as accurate as
their full versions. Moreover, it allows to observe which secondary structures may be predict
better—or weaknesses of prediction set-ups. One way to assess the reliability of the two novel
programs is to compare the accuracy of modelled secondary structures to the experimentally
determined structures using overlays (Figure 2). Furthermore, RMSD and GDT-TS were used
as similarity comparison metrics for evaluation of the models (Figure 2).

Overall, both full versions of the programs performed well, particularly across defined
secondary structure regions, though each had differences in performance with different
types of structure. Interestingly, in most cases the Colab version of AlphaFold2 has shown
structures with similar RMSD values as the original full AlphaFold2 version. On the other
hand, the RoseTTafold Google Colab version was not as successful as AlphaFold2′s Colab
version. It had significantly lower RMSD scores than its full version, confirming the fact
that the RoseTTafold Google Colab version might need more updates and newer versions.
While the full AlphaFold2 version performed for some proteins slightly better than its
Colab version (PexRD2, Avr3A)—overall performance was rather comparable between
the two. Furthermore, modeling of proteins with β-sheets seemingly challenged both
AlphaFold2 versions more than the full RoseTTafold version, at least for the modelled
effector AvrP (Figure 2). It will be interesting to see, if future effector modelling approaches
might further confirm this aspect of these new modelling approaches.
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Similar to former programs, flexible long loops are still the most challenging struc-
tures to predict in all versions and might need to rely on experimental approaches for
re-evaluation of the model. According to our comparison, we can say that the Google
Colab versions have over all more positive than negative points. Besides their apparent
benefits, including being user friendly and time- and cost-effective, their accuracy of model
predictions in comparison to the original programs is not negligible. However, utilizing
the full versions of the programs are able to give us more details in every aspect of the
modeling parameters, the Google Colab versions can aid scientists to model their desired
proteins—especially if they do not possess access to super computers. Nevertheless, best
practice is to use multiple modelling approaches as shown here, in particular for proteins
with completely unknown structures. This allows comparison of the resulting models
and helps with the decision on whether the model is acceptable or not. In our experience,
regions that are predicted similarly within different modelling tools have a significant
chance to be correct. In contrast, regions that are predicted more divergently between
different modelling tools, have a higher chance to be predicted “incorrect” or less precise.
Furthermore, it is possible that less accurately predicted regions reflect high dynamics
and potential functional importance, for example, sites involved in substrate-binding,
protein–protein interaction or post-translationally induced conformational changes. In
this context, the newly released AlphaFold-Multimer has been developed to predict in
particular multi-chain protein complexes. Along prediction of multimeric interfaces, it
allows high accuracy prediction of intra-chain interactions. This new tool will find applica-
tion in protein-protein interaction research and facilitate future insights on effector-target
interactions [103].

5. Conclusions

Plants are faced with a diverse range of microbiota—from the neutrals, beneficials
to the pathogenic. Where pathogens cause devastating diseases, beneficial microorgan-
isms enhance the plants adaptation to abiotic conditions and defense against pathogenic
organisms, accelerating over all the plants fitness. These microbes are regularly recognized
by the plant’s immune system by their MAMPs. Recent research shows that plants do
not distinguish between friends or foes, generating highly similar defensive reactions. We
have shown in this review that both pathogenic and beneficial filamentous microbes use
so called “effector proteins” in order to gain access and establish an interaction with the
host. In contrast to pathogenic effector proteins, not many studies have worked on the
functional roles of effector proteins of beneficial filamentous microbes. For both pathogens
and symbionts, availability of effector protein structures is limited, leading to a significant
knowledge gap on conservation, function and interaction with target proteins. Ultimately,
future research on structures and structure models of effectors and their corresponding
targets will allow discovering new (conserved) motifs, domains, their evolution and role in
plant–microbe interaction. Experimental procedures such as NMR and X-ray crystallog-
raphy have made great advances in structural biology and effector biology, nevertheless
they are still a limiting factor. The use of computational prediction methods can overcome
some of these limitations and pertinently are more accessible to those in the field than
time-consuming, expensive, expertise intensive experimental approaches. Despite this
computational prediction methods have their own limitations, though recently, utilization
of novel artificial intelligence has been able to counteract the lagging of protein prediction
procedures. The most recent advances, AlphaFold2 and RoseTTafold, have great potential
to support the field of effector biology with accurate modeling of their 3D structures. Their
user-friendly Colab versions (now also available via the new version of ChimeraX [104])
will allow a broad user base to apply 3D-modelling for effectors and integrate them into
existing effectome identification pipelines, which will allow for more precise identification
of effectomes. Of particular interest will be the approach for the identification of unknown
conserved 3D structures involved in effector-target interaction and the modelling of the
interactions by multimer modelling [103].
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In cases, where no experimental comparison is available, it will be important to have
ways to validate the resulting predicted structures. Our observations have suggested that
each program, and Colab version has different strengths and weaknesses. For proteins with
unknown functions it will be very important to utilize, and compare the results of, more
than one method for structure prediction. It is also important to be aware of the limitations
of prediction methods and the fact that the protein structure is dynamic and one predicted
structure may not represent all forms possible for an effector protein. Limitations aside
the recent advances in ab initio modelling software have great potential to lead to effector
structures that give molecular level insights and inform and inspire future experiments
probing plant–microbiome interaction.
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