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Abstract

Modeling of biological behavior has evolved from simple gene expression plots represented by mathematical equations to
genome-scale systems biology networks. However, due to obstacles in complexity and scalability of creating genome-scale
models, several biological modelers have turned to programming or scripting languages and away from modeling
fundamentals. In doing so, they have traded the ability to have exchangeable, standardized model representation formats,
while those that remain true to standardized model representation are faced with challenges in model complexity and
analysis. We have developed a model diagnostic methodology inspired by program slicing and debugging and
demonstrate the effectiveness of the methodology on a genome-scale metabolic network model published in the
BioModels database. The computer-aided identification revealed specific points of interest such as reversibility of reactions,
initialization of species amounts, and parameter estimation that improved a candidate cell’s adenosine triphosphate
production. We then compared the advantages of our methodology over other modeling techniques such as model
checking and model reduction. A software application that implements the methodology is available at http://gel.ym.edu.
tw/gcs/.
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Introduction

In order to represent various biological mechanisms, modeling

in systems biology has taken on several different forms [1]. Some

modelers, such as the creators of the Systems Biology Markup

Language (SBML), have advocated that modeling maintain a

fundamental of standardized representation that can be ex-

changed, interpreted and simulated by a variety of applications

outside of the environment that the model was created in [2].

Other practitioners have advocated that the next evolution of

modeling is to move towards software engineering and have

turned to programming or scripting tools such as MATLAB, and

several object-oriented languages such as Java, C#, and Python

[3–5]. They have done so in order to take advantage of analysis

tools such as run-time debuggers, build automation and other

features of common integrated development environments (IDE).

These complexity issues are currently serious obstacles for

biological modelers trying to maintain modeling fundamentals

[6–9]. For example, modelers are often left to question whether a

poor simulation is due to the stochastic nature of the simulation or

a flaw in the model design. If the flaw is in the model design, then

the modeler is left to guess where in the model to begin a model

analysis. As models reach higher levels of complexity, the number

of computations also increases, creating scalability and perfor-

mance issues that further burden diagnostics. More generic

approaches used in other modeling fields, such as traditional

model checking, struggle with compatibility to a biological context

due to the scale and stochastic nature of systems biology.

Although there exists efforts at model refinement protocols with

tools such as SBMLToolbox and COBRA Toolbox, performing

these manual refinement methods can take months to a year

[10–12]. Our work on a diagnostic application offers algorithms to

narrow the scope of areas requiring investigation. The application

is built specifically for standardized model representation formats

such as SBML and address complexity, scalability, exchangeability

and efficiency. The methodology consists of creating an instance of

the model in physical memory, mapping core debugging practices

from software engineering, and applying computational algo-

rithms developed for a systems biology context. These comple-

mentary features allow a modeler to perform focused analysis on

specific model mechanics without being convoluted by model

complexity.

Methods

2.1 Diagnosis Methodology
Reaction graph. After instantiation of a model, a reaction

graph is created to act as a data structure for the creation of model

slicing and predictive weights. Upstream connections for a

reaction r are determined by all reactions that produce the

reactants for reaction r. Conversely, all downstream connections

for a reaction r are determined by all reactions whose reactants are

produced by reaction r. An example of a reaction graph with up

and downstream reactions is demonstrated in Figure 1. In order to

prevent infinite or repetitive links, a downstream connection will

not be added to the same reaction graph twice, which can occur
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during a network cycle or converging reaction paths. Exceptions

are made for up and downstream connections for a list of common

cofactors that can be defined by the user.

Model slicing. In order to address the scalability issue of

genome-scale modeling we have implemented a model slicing

technique, which borrows in fundamentals from program slicing,

where portions of the model are sliced away to give a much

simpler model subset [13]. Slicing is performed by identifying and

combining all reaction paths that can create the desired species,

each path known as a pathway candidate, into a new abridged

model. Only the unique reactions of pathway candidates become

part of the slice, with completely redundant candidates left

unneeded. The technique complements core debugging method-

ologies that are more effective as the scope of model information is

reduced. Model slicing allows the modeler to view a limited

number of reactions, parameters, and species that are relevant and

have a dynamic impact on a species of interest. This allows

simulation-based analysis to become much more feasible. The

algorithm for model slicing is described in Figure 2.

Evaluation of model slicing. We used a heuristic justifica-

tion approach to analyze the relevant information maintained by

the model slice and assume all cofactors are readily available.

Figure 3 uses simplified examples to demonstrate the logic behind

the model slice. The assumption regarding the availability of

cofactors is detailed in the discussion.

1. Base: A model slice for a model with a single species a will still

yield the same model according to the creation of the initial

pathway candidates.

2. Inductive step of upstream connections: An added species b
with a reaction converting b to a will result in an upstream

connection for a, yielding a slice of the same composition as the

original. All further upstream reactions are similarly handled.

3. Inductive step of downstream connections: If a single species b
and a new reaction in the downstream direction are added, the

model slice will also include the new species and new reaction

for only the 1st degree downstream reaction. All 1st degree

downstream reactions that contain current model slice species

as reactants must also be added to the model slice because they

consume the key reactant. When a 2nd degree reaction, e.g. a

reaction converting species b to a new species c is added, the

model slicing begins to slice away information irrelevant to the

status of species a.

The evaluation of model slicing demonstrates how simple

networks treat slicing for information upstream and downstream of

a target species a while maintaining biologically relevant

information for the behavior of the target species. Larger networks

that are used for biological network modeling are essentially

extensions of these base examples and follow the same up and

downstream patterns that model slicing recognizes. By following

these patterns and scaling up, model slicing aims to extract

network behavior that influences a target species while behavior

that is not of direct influence to the target is removed, making for a

simpler composition that is easier to model relative to a specific

species. After correcting model behavior for the slice, the modeler

can reintroduce the edited slice to the original model.

Forward algorithm-like predictive weights. The proba-

bility that a reaction occurs at a given time is determined by the

Gillespie algorithm implemented in the simulation engine. The

algorithm takes into account reactant availability and the

reaction’s kinetic law, specified in the model, in order to compute

a reaction weight, which is correlated with the probability. In

several instances, especially that of long pathway networks, several

reactants may not yet be available until the execution of

mandatory upstream reactions. However, a calculation is still

useful to determine the probability of reaching a certain reaction

as the species created may be of central interest to the network. To

address this, we have implemented an algorithm based on the

forward algorithm for hidden Markov models which calculates a

state sequence probability by iterative probability aggregation.

The algorithm uses the same reaction graph model slice to

calculate the probability of a reaction occurring when none of the

reaction’s reactants are immediately available. The algorithm

looks at the first instance of reaction availability in upstream

reactions. This ‘‘predictive weight’’ is calculated dynamically at

each simulation time point using the algorithm described in

Figure 4.

Core model debugging. The methodology of debugging for

biochemical organisms consists of core methodology derived from

Figure 1. A concept diagram of the reaction graph. In this example, the product for reaction 1 is a reactant for reaction 2. These two reactions
can be connected together with reaction 2 designated as a downstream reaction for reaction 1. If the reactants for reaction 1 are available but the
reactants for reaction 2 are not, reaction 2 will receive a non-zero predictive weight due to being a downstream reaction of an available reaction. The
predictive weight represents a probability that a reaction will occur after the execution of mandatory upstream reactions.
doi:10.1371/journal.pone.0110380.g001
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traditional software debugging methods found in common IDEs.

The most commonly used features are: allowing a user to specify

conditions in which runtime execution of a simulation will halt,

observable values of model components at any simulation time

point, modifying the data objects and reaction ordering of the

model during runtime, and receiving an informative notification

when the instruction set reaches an inoperable, non-progressable

state.

Being able to control the simulation and having direct access to

the parameters in the model can provide insight into faulty model

behavior and mechanics [14]. The parameters determine the rates

of reactions and the upcoming pattern of the model. After

evaluating the status of the model at varying time points, decisions

can be made on whether to continue the simulation or make

modifications that will affect the following set of instructions.

The debugging application also provides the user with detailed

information on simulation ‘‘deadlock’’. Execution of an instruction

can modify a model to an inoperable and non-progressable state

and a notification will be produced with the reason for being

inoperable. Common reasons are: lack of available reactants in the

Figure 2. The algorithm for model slicing.
doi:10.1371/journal.pone.0110380.g002
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model, reaction rates of available reactions being too low, or a

constraint is set by the model’s instruction set that does not allow

simulation to advance. The application allows on the fly

modification to get out of a deadlock, or allows the user to skip

the terminating instruction.

Complementary features. There are several complementa-

ry pieces of functionality in the debugging application that allow a

user to further analyze and improve the accuracy of a systems

biology model. A table of all the debugging features in the

application along with descriptions and possible usage scenarios

can be found in the supporting information.

2.2 Simulation
Stochastic algorithm. The algorithm implemented in the

application’s simulation engine is based on Gillespie’s exact

stochastic simulation algorithm (SSA) for coupled chemical

reactions, which is a Monte Carlo procedure for time trajectories

of molecular populations [15]. A stochastic algorithm has been

found to be more accurate than a deterministic algorithm for

smaller systems such as cells because they assume a large number

of molecules and no random fluctuations in population values [6].

For stochastic simulation, the 4-step algorithm expects at

minimum a core set of species and reactions within the model

[16] and is described below:

1. Initialization: Initialize the model with time = 0 and set all

species to their initial amounts.

2. Monte Carlo step: Propensity values or reaction weights are

calculated based on the reaction rate to determine the

probability of the next reaction and the combinatorial

evaluation of available reactants. The chosen reaction and

time of execution is dependent on a comparison of the reaction

weight.

Figure 3. A concept diagram of the model slicing evaluation. In this example we have graphically represented the evaluation of model slicing
with simplified upstream, downstream, and combination of upstream/downstream connections as an inductive foundation for more complex
examples. The first figure (a) shows the inductive step of upstream connections, where anything upstream of species a is included in the slice. The
second figure (b) show a 1st and 2nd degree downstream connection, where the 2nd degree downstream connection is removed, however the 1st is
kept due to its direct influence on a. The third figure (c) represents how slicing treats downstream connections for peer branch species of a. In all
figures, the light blue color represents the model information cleaved from model slicing with respect to compound a.
doi:10.1371/journal.pone.0110380.g003

Figure 4. The algorithm for predictive weights.
doi:10.1371/journal.pone.0110380.g004
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3. Execution: When the next reaction is selected, the time units

are increased according to the Monte Carlo step. Each species’

populations are changed according to the execution of the

reaction.

4. Iterate: The process is repeated starting from the Monte Carlo

step.

Deterministic algorithm. One of the benefits of using

standardized model formats is that they can be interpreted

differently by various simulation models [17]. The reactions in our

implementation are executed in a stochastic manner, but the

methodology can similarly be applied to biochemical models that

contain deterministic behavior. Examples of such are triggered

events, assignment rules, or rate rules where the simulated

equations always result in the same outcome.

2.3 Model Source
The BioModels database, hosted by the European Bioinfor-

matics Institute, has a category of whole-cell metabolic network

models available for download. These contain both computation-

ally translated models such as those done by the path2models

project and manually created efforts [18]. One of which, an effort

by Palsson’s group at the University of California, San Diego,

BioModels ID MODEL1108160000, reconstructed a model to

represent the entire metabolic network of an E. coli cell [19] using

a reconstruction protocol originally published in Nature Protocols

[11]. While the latest model is the most comprehensive model to

date it still lacks, due to the intended flexibility of the model,

several required pieces of information and is not available for

simulation in its initial state.

Results

Our goal was to demonstrate computer-aided identification of

modifications required to boot up the energy generating mechan-

ics of the model via promotion of adenosine triphosphate (ATP)

development and observe their effect on the glycolysis pathway.

We chose ATP production since it is a well-known, important and

complex cell function that a modeler may be interested in

reproducing [20]. Application of the debugging methodology is

not focused on correcting issues that are hard to solve, but proving

its effectiveness in computer-aided identification of issues that may

be hard to find. Although there are many uses and approaches

possible with our diagnostic methodology, our approach for this

exercise was as follows:

1. Create a model slice specific to ATP production

2. Identify and refine the mechanics required to produce ATP

3. Insert the modified model slice back into the original model to

confirm a transfer of simulation behavior

Reaction nomenclature such as R_PGM and R_PGK is used to

identify specific metabolic reactions. More information regarding

the reaction details can be found in the corresponding reference

[19] and the supporting information.

3.1 Model Slicing of Genome-Scale Models
Initial pathway candidates. Using the model slicing algo-

rithm, we created an initial slice of the model which yielded 7,061

unique potential pathway candidates that could generate ATP.

Evaluation of the pathway candidates showed missing connections

in the reaction graph for expected glycolysis reactions, shown in

Figure 5. This identification, which would not have been

discovered via gap analysis of dead-end metabolites, led to the

discovery of missing reversibility assignments in two key glycolysis

reactions, R_PGM and R_PGK. Although reversibility is assumed

to be true by default for the version of SBML that the model was

encoded in, by the latest SBML standards the model does not meet

that minimum requirement. We resolved the issue by specifying

the correct reversibility for the reactions and regenerated a new set

of pathway candidates that contained the expected pathway.

Selection of source metabolites. After correcting the model

reversibility of select reactions we generated a model slice

consisting of 8,240 unique pathway candidates, 1,323 unique

reactions and 1,160 unique species. Using model reaction count as

a measure for model complexity, this yielded less than a 50%

reduction in model complexity from the original model. We then

assigned glucose as the primary source for ATP generation to

reduce the scope of possible sugar sources. The comparison of

original model and model slice are represented in Table 1.

By setting pyruvate as the sink, the original model with 2,583

reactions and 1,807 species was reduced to a model slice with

1,755 reactions and 1,386 species, a very small reduction as many

reactions can lead to pyruvate and several upstream paths can lead

to those reactions. Assigning ATP as a source yielded a model slice

with 1,323 unique reactions and 1,160 unique species, also a small

reduction due to the number of energy sources used to generate

ATP. By specifying glucose as the source, we achieved a slice of

178 reactions and 304 species, over a 93% reduction in model

complexity.

3.2 Analysis of Behavioral Mechanics
In order to run an initial simulation of the model we needed to

populate the model with an initial amount of species and non-zero

reaction kinetic law values, two pieces of information not in the

original model. We first set all reactions to an arbitrary 0.1 kinetic

law value with the intention of refining the species amounts first.

With non-zero kinetic law values we were able to calculate

reactions weights and use predictive weights to determine species

that would have an effect on the eventual production of ATP, even

if they were not related to reactions that directly produced ATP.

Each time a new metabolite was produced, the predictive weight

for all reactions in the model slice were recalculated. A screenshot

of the diagnostic application’s reaction workspace with reaction

and predictive weights is seen in Figure 6.

Although the applications of predictive weights can go far

beyond testing of initial species, we were able to test the influence

of a minimum set of initial species based on their influence on ATP

generating reactions. We then added the cofactors ATP, ADP,

phosphate and NAD due to their positive influence on ATP

generation and simulated our new model with the initial species

amounts using the application’s multiple simulation feature. The

feature overlays concentration plots for select species in order to

capture more informative insight as to the possible fluctuation due

to stochastic behavior. Each simulation demonstrated ATP growth

and has been plotted in Figure 7.

3.3 Parameter Estimation via Core Debugging
After setting the required initial amounts for a glycolysis

pathway we began to refine the efficiency of the pathway’s kinetic

law values. From the application’s watch panel we observed a

drop-off in production of 2-phosphoglycerate, which is largely

dependent on the execution of the R_PGM reaction, a reaction

that turns 3-phosphoglycerate to 2-phosphoglycerate. Once we

identified 2-phosphoglycerate as a bottleneck metabolite, we set

breakpoints at all 3-phosphoglycerate consuming reactions to

determine the simulation mechanic when 3-phosphoglycerate

becomes available. Aside from R_PGM, the only other reaction in

Diagnostics for Stochastic Genome-Scale Modeling
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our model slice was R_PGCD, a reaction that turns 3-

phosphoglycerate to 3-phosphohydroxypyruvate.

Each time 3-phosphoglycerate became available, we compared

the reaction weight of R_PGCD with R_PGM at the breakpoint.

The weight for R_PGCD was exponentially larger due to the

Gillespie algorithm identifying multiple combinations of available

reactants for R_PGCD, which also uses NAD, whereas R_PGM

only uses 3-phosphoglycerate. We then used the watch panel to

adjust the kinetic law value for R_PGM to raise the weight to be

more relative to the R_PGCD weight observed during break-

points. Alternatively, lowering the kinetic law values for R_PGCD

could generate a similar effect. A screenshot of the diagnostic

application during breakpoint usage in this scenario is demon-

strated in Figure 8.

3.4 Incorporation into the Whole-Cell Model
The motivation for model slicing was not only to reduce the

scope of irrelevant information so that it could be easily modified

but to put the modifications back into the whole cell and transfer

similar behavior to the original. Glycolysis is an exceptional

pathway in that it requires ATP before it can generate ATP. The

reaction graph used to create the model slice does not make

upstream and downstream connections with cofactors such as

ATP for reasons detailed in the discussion. Therefore, as we

created pathway candidates for the model slice, the slice skipped

the reactions that consume ATP and the downstream associations

of those reactions never connected.

We were able to observe a lack of ATP due to the low

production of initial glycolysis species in the application’s watch

panel. Since ATP is required for ATP production, we lowered the

kinetic law values of ATP consuming reactions. We identified 4

ATP consuming reactions (R_AP4AS, R_NADK, R_PPKr,

R_PPK2r) that were in the original model and not accounted

for in the model slice. These reactions could be executed with the

initial reactants of the model slice during predictive weight testing.

The results in species production for all model simulations are

represented in Figure 9.

Discussion

4.1 Debugging Compatibility in a Biological Context
While debugging’s effectiveness in software and electrical

engineering has been clearly defined and practiced for over 60

years, debugging fundamentals have not yet been mapped to a

standardized systems biology modeling context. Often times, in-

depth knowledge of a model’s mechanics can bypass the use of a

Figure 5. An excerpt of pathway candidates generated during an initial model slicing of the E. coli model using ATP as the sink
species and glucose as a source. R_PYK, the pyruvate and ATP generating reaction, was correctly connected to R_ENO, which produces
phosphoenolpyruvate, during creation of the reaction graph. However, R_ENO only contained one upstream reaction, R_GLYCK, due to the incorrect
assignment of R_PGM’s reversibility. This reaction is normally upstream to R_ENO in the glycolysis pathway. The reactants in R_ENO are not
considered dead-end metabolites that would normally be found in gap analysis as they can still be produced by R_GLYCK.
doi:10.1371/journal.pone.0110380.g005

Table 1. Comparison of complexity reduction when specifying different source and sinks for the model slice.

Model Reactions Species

Original model 2,583 1,807

Pyruvate slice 1,755 1,386

ATP slice 1,323 1,160

ATP slice with glucose as a source 178 304

doi:10.1371/journal.pone.0110380.t001
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debugger, such as immediately checking glycolysis reactions and

maxing out their kinetic law amounts without an analysis.

However, that knowledge will not always be available, especially

for less well-defined cell functionality and with models that are

constantly exchanged. With the trend that model complexity has

taken over the past years, the idea of mapping a scalable

debugging practice from software and electrical engineering to

standardized biological modeling is new, yet reasonable given the

associations systems and synthetic biology has drawn from

engineering. However, there are still some important caveats that

need to be addressed.

The stochastic behavior of common simulation algorithms cause

instructions to be executed in random order. In software, the code

is normally executed in a constant order. Reactions, however, are

analogous to multi-threaded processes. Each reaction belongs to its

own thread and the connection pool decides which thread to

execute. Instances like that are uncommon in most software

applications, however, in some pathway situations, the occurrence

or magnitude of occurrence of reactions will have an orderly

pattern as downstream reactions will not occur without proper

upstream reactions. In such cases, breakpoints can also be useful in

determining when the stochastic execution of reactions has

reached certain bottlenecks in a pathway.

Similarly, in some designs, for example the classic repressilator

design, single reactions are very insignificant in respect to the

grand pattern of a model’s behavior. The same reactions are

repeated and they need to be repeated several times in order to

generate the underlying pattern. In software, each line can be very

distinct and the impact can be very powerful, yet software can also

contain loops in which several iterations need to be run before the

software demonstrates a noticeable change in behavior. In cases

like these, using the debugging method’s step by step approach

would not be a fruitful exercise, but a similar scenario is equally

inefficient in a software debugger.

4.2 Comparison of Analytical Approaches
Traditional model checking is an expensive process that aims to

exhaustively explore all possible behaviors of a model [21] and

becomes unrealistic when applied to the random behavior of

stochastic models [22]. In recent years there have been several

statistical approaches that use Bayesian approaches or probabilistic

models to accommodate for the stochastic behavior. These use

mathematical approximations and are recommended to be used

with other approaches based on simulation runtime [23] for more

accurate results.

As systems become more complex, the idea that simulation

defects can appear that are undetectable by compile time model

checking will become more evident. Attempts have been made to

create simulation-based model checking [21] but even for

relatively minimal models, applying model checking’s fundamen-

tals can require over 10,000 simulations. Computation time for

Figure 6. A list of reactions as seen in the main workspace of the diagnostic application. The highlighted reaction represents the reaction
that the Gillespie algorithm has chosen to execute based on reaction weight. The predictive weight column informs the user of the normalized
probability of the reaction taking place even if the reactants are not directly available. For example, R_PYK, has a zero reaction weight due to the lack
of phosphoenolpyruvate but a predictive weight of 1025. This value is a result of the availability of glucose and the upstream R_HEX1 reaction.
doi:10.1371/journal.pone.0110380.g006
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this type of checking can become improbable when a complex

model simulation can reach 10 hours [24]. The diagnostic

methodology allows analysis at specific problem areas and

debugging has been proven to be more scalable in its use with

software engineering.

Several modeling tools have compile time integrity checks for a

network where defects such as incorrect formats or contradicting

interactions will be analyzed [25,26]. Those checks are based on

the model and the information in the model, while runtime

debugging is directed towards checking for defects during the

simulation of the model and interaction of components.

The advantage of model checking is that there is little user

involvement required to perform the diagnostic. A modeler can

begin a model checking routine and return the next day to see the

results, while original forms of model diagnostics required

modelers to manually simulate and analyze the results of their

models. Two traditional approaches to a manual form of analysis

that are still practiced and more intuitive for new modelers are (1)

pausing or slowing a simulation during defective behavior to

analyze the current model variables and (2) printing out model

simulation information for post-simulation analysis, otherwise

known as tracing.

We analyzed a cell cycle control model that was benchmarked

in the Jha et al. article on Bayesian model checking [22] to

understand the differences between model checking and manual

approaches. The model checking approaches yield statistically

high acceptance rates, but the high sampling count required

several hours to complete. Manual approaches, while much less

computationally intensive, became infeasible due to the growing

speed and capacity of modern computers. For example, without a

Figure 7. Concentration plots for ATP with initial metabolites and varying reaction kinetic law values. We repeated each simulation 11
times to generate a sample of simulation variability, with some simulations reaching a deadlock state before others. The concentration plot (a) shows
the level of ATP, initialized at 100 units, throughout each simulation with arbitrary 0.1 reaction kinetic law values. ATP is consistently consumed
towards the start of simulation and slowly builds back up to plateau at an amount ranging from 60 to 80. The exact number of units produced for
each species for the model slice is available in the application’s watch panel. We then used the diagnostics application to adjust kinetic law values
according to reaction weights at simulation breakpoints which allowed the simulation to bypass reaction bottlenecks (b).
doi:10.1371/journal.pone.0110380.g007
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way to narrow the scope of data, a modeler would have to analyze

the entirety of 606 MB of simulation data for our current E. coli
example if they were performing the tracing approach.

For the pause or slow down simulation speed approach that was

successful with earlier diagnostics, nowadays a user would be very

unlikely to pause a simulation at an informative frame. In order to

quantify the probability of pausing at an informative frame, we

determined a possible range of 3,010 instructions from the

moment a simulation first expressed undesirable behavior to the

frame the user could pause the simulation with average reaction

speed. This was calculated by taking the average number of

instructions per second performed by our simulation engine,

14,000, multiplied by the perception to finger movement reaction

time, approximately 0.280 seconds depending on hand position

[27]. In order for this method to be effective, the defect causing

mechanism would still have to be prevalent approximately 3,010

instructions after the modeler first observed undesirable results.

A hybrid, or computer-aided debugging approach, provides the

modeler with the benefits of both types of approaches. Breakpoints

can be set to perform computer-aided pauses at exact behavioral

events and output variables for the model are always available,

narrowing the context of simulation data. Although these tools

offer great aid, it should be mentioned that the feasibility of

discovering a defect with a standard simulation sampling is still

somewhat dependent on the expertise and knowledge of the

modeler. Multiple simulations may need to be debugged in order

to create a hypothesis of model behavior. In our E. coli example,

an average of 4 full debugging simulations were required to

construct a thorough analysis and correction on the mechanics of

the genome-scale ATP production model behavior.

4.3 Comparison with Model Reduction
Although there have been efforts in systems biology towards

reducing overall model complexity known as model reduction,

there are key differences that specialize model slicing as a unique

type of model reduction. General model reduction is a reduction

that focuses on the removal of model intermediates while

maintaining stoichiometry [28], most commonly via mathematical

evaluations of differential equation dynamics within a model

[29,30]. Model slicing, in this context, is focused on the application

to stochastic, randomized simulations with a reduction of outer

information rather than the reduction of intermediates and cannot

be evaluated with mathematical equations.

The reduction of model slicing is relative to a user-defined

species and at a user-defined simulation time point. When a

species is chosen, the slicing removes information that is not

relevant to that specific species. The slice can change depending

on the time point that the slice occurs. At different time points, the

amounts of the species will vary and influence the availability of

certain reactants which will affect the slice, as seen in the pseudo-

code in Algorithm 1.

We have performed a comparison of the model reduction

algorithm described in Gay et al. [29] versus our model slicing

approach. The models used were MAPK cascade models,

BioModels ID BIOMD0000000026 as the original and

BIOMD0000000027 as the reduction, from the BioModels

database. The authors of the model reduction had evaluated

these models with their model comparison algorithm and had

determined them to be reductions in the same family. Since the

original model has a source/sink architecture with 500 units of M

slowly transferring to MPP till stabilization, we used a model slice

relative to the sink, MPP, and designated M as the source, the only

species with a non-zero initial amount. A figure with a graphical

representation of the three models is shown in Figure 10.

In Table 2 we present the quantified comparison. Data was

collected from a single instance, but multiple replications showed

little variation. The first three columns of our table focus on the

effectiveness of the reduction, while the last three focus on the

accuracy of the reduction. For the model size, a number of

components was calculated using the sum of model reactions and

species. The model slice was slightly larger than the reduction, but

the complexity of the remaining reactions led to vast improve-

ments in simulation speed and memory required. For the behavior

of the model reductions, both reductions had slightly different end

amounts for MPP, with model slicing being slightly more accurate.

However, the rate of the behavior and time to behavior

Figure 8. Refining simulation behavior with breakpoints and the watch panel. The reaction list (a) represents the initialized instructions of
the model, with each reaction offering a breakpoint or conditional breakpoint to pause the simulation when specified criteria are met. Breakpoints
can also be set by the application based on outliers of a multiple simulation. The watch panel for the model (b) shows current amounts and total
production amounts for parameters, species and compartments.
doi:10.1371/journal.pone.0110380.g008
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stabilization was much more accurate in the model slice than with

the graphical model reduction method. The percentage of model

behavior difference was calculated using the sum of the percentage

difference in time unit count to stabilization and the percentage

difference in ending MPP amount. Time of simulation stabiliza-

tion was defined as the first time unit count at which the amount of

MPP differed by less than 1% within the proceeding 10 time units.

This definition assumes that there is no significantly different

behavior in the time period between the two measurements, which

is characteristic of the simulation behavior for this particular set of

models. The increase in MPP amount is most drastic towards the

beginning of a simulation and slowly plateaus in magnitude.

All simulations were run using an Intel Core i7 3.4 GHz, 16 GB

RAM, 64-bit personal computer running Windows 7 Professional.

4.4 Comparison with Flux Balance Analysis
An analysis tool used to analyze the flow of metabolites through

a system known as flux balance analysis (FBA) has been growing in

popularity [31]. While today it is seen as a possible approach to

identify bottlenecks in a system, there are still substantial

qualitative differences between the flux balance analysis approach

and the slice and debugging approach. The FBA approach

determines the balanced state of a system as a whole, while the

slice and debug approach focuses on specific areas of interest,

which may be more favorable during the creation of a model

where the entire model may not be finished and ready to be

balanced. FBA also does not use kinetic parameter information,

which the modeler may be interested in understanding how

different parameter values can affect behavior. Finally, FBA uses

value constraints to limit the result of the balance, whereas

debugging is more interactive in that conditional breakpoints are

set to prompt the modeler on next steps when a constraint is

reached instead of obtaining a balanced system.

Figure 9. Various network graphs created from production counts in the application’s watch panel. The production counts were
averaged over multiple simulations. In the initial slice simulation with arbitrary reaction kinetic law values (a), 100 glucose units conserve semi-
efficiently through the glycolysis pathway until the production of 2-phosphoglycerate, which only produces 16.2 units on average. The
representation in (b) shows the results after the adjustment of the R_PGM reaction. Production amount of downstream species can sometimes be
greater than the production of their upstream counterparts due to other species and reactions not listed in the glycolysis pathway that are
nonetheless part of the slice. These can be cyclic paths that cause high production counts for those specific intermediates but do not cause a high
overall amount. The initial simulation of the whole model with the adjusted slice (c) demonstrated glycolysis bottlenecks towards the initial ATP
consuming reactions, however, after adjusting for competing ATP consuming reactions that were not incorporated into the reaction graph we were
able to observe adequate production (d). The debugging information for the network representations were obtained from the application’s watch
panel and are not typically observable in traditional concentration plots.
doi:10.1371/journal.pone.0110380.g009
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4.5 Reaction Graph Refinement in Future Work
Unidentified Co-factors. The inclusion of co-factors into

the reaction graph can cause misleading information. In the 1st

reaction of glycolysis, an H+ is created during the hexokinase of

glucose. H+ compounds are also involved in several reactions that

create pyruvate as seen in the reactions below. We produced a list

of common cofactors to negate this false pathway creation during

upstream and downstream connections, but this technique

depends on the identification of those cofactors that are not

normally identified in SBML. Other compounds that are

associated with reactions outside the expected pathway may cause

similar effects.

N Upstream reaction:

# ATP +D-Glucose R ADP +D-Glucose 6-phosphate +H+

N Pyruvate producing downstream reaction:

# H++ Oxaloacetate R CO2 + Pyruvate

N Alternate pyruvate producing downstream reaction:

# ADP +H++ Phosphoenolpyruvate R ATP + Pyruvate

Co-factor list used: H+, AMP, ADP, ATP, CoA, NAD, NADH,

NADP, NADPH, and phosphate

Ignoring these cofactors makes assumptions that they will exist

in ample amount in the whole-cell. This can cause discrepancy if

the assumption is not held between the slice and the whole-cell

[32] as seen in the glycolysis example where ATP was quickly

exhausted.

Compatibility of reaction weights with probabilities for

the forward algorithm. As mentioned in the methods section,

the predictive weights correlate with the probability a reaction will

occur without having the reactants for the reaction readily

available, which can make it more useful than the reaction

weight. This is calculated by using the forward algorithm

traditionally seen in hidden Markov models on reaction weights.

However, reaction weights do not follow the same mathematical

principles as probability, for example, the weights could be greater

than 1. This can cause incompatibilities that may lead to

misleading predictive weights. For example, in order to determine

the probability that two reactions will occur consecutively,

traditionally statistics would suggest multiplying both probabilities

together. However, if those probabilities are instead weights, and

Figure 10. Graphical representations of the original model (a), Gay et al. model reduction (b), and MPP model slice (c). Regarding the
Gay et al. model reduction, although MAPKK and MPK3 have no substrate or product role in a reaction, their concentration influences the rate of
other reactions as described in the model. Furthermore, unlike model parameter constants, they have been defined as independent species and are
thus represented on the figure as being part of the collection of species but without having any direct reaction connections. The reduction removes
the intermediate species and directly connects M, MP and MPP while preserving the redundant reaction traffic between the species. As mentioned
previously, removal of intermediates is a common approach for model reduction. The MPP model slice preserves the intermediate connections, but
has a more definitive source and sink architecture resulting in less redundancy of M to MPP flow. Although fewer reactions occur and the slice is
designed for a source/sink architecture, the MPP model slice is able to preserve the time unit speed of reactions to reach stabilization and
demonstrates more similar behavior to the original model.
doi:10.1371/journal.pone.0110380.g010

Table 2. Comparison of efficiency in available model reduction methodologies for systems biology models.

Model reduction
methodology

Model size, number
of components

Simulation
runtime, seconds

Memory
used, MB

Time unit count
at behavior
stabilization

MPP amount
at stabilization

Percentage in model
behavior difference

Original model 21 60.0 423 80 375 0.0%

Gay et al. model
reduction

9 50.2 370 10 250 120.8%

Model slicing 13 0.8 8 80 475 26.0%

doi:10.1371/journal.pone.0110380.t002

Diagnostics for Stochastic Genome-Scale Modeling

PLOS ONE | www.plosone.org 11 November 2014 | Volume 9 | Issue 11 | e110380



are instead greater than 1, the multiplication will result in a

product larger than either of the initial weights, which incorrectly

suggests the probability of the reactions occurring consecutively is

greater than the probability of either reaction occurring indepen-

dently. One approach to solve this is to use another metric to

convert and normalize the weights into a traditional probability,

but the methodology and accuracy of such a conversion has not

yet been determined.

Conclusion

Model slicing and debugging offers a different approach that

may be more intuitive for the creation or reconstruction of models

of a studied system and that combines manual interactivity with

computer-aided computation. During an early phase, rates and

parameters that best mimic a studied system will need to be

specified in order to have a model that can be simulated. The

glycolysis example shows how a model that needs to be adjusted to

look like glycolysis can be created by (1) identifying the desired

behavior, (2) supplying possible value parameters (calculated from

observed data or arbitrary in our case), (3) running the simulation

and identifying that there is a defect, (4) slicing for the goal species

and debugging the defect, (5) iteratively repeating until the desired

behavior is met.

Supporting Information

File S1 Diagnostic platform features, API documentation, and

reaction listing of E. coli metabolic network.
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