
Citation: Rosenberger, J.; Urlaub, M.;

Rauterberg, F.; Lutz, T.; Selig, A;

Bühren, M.; Schramm, D. Deep

Reinforcement Learning Multi-Agent

System for Resource Allocation in

Industrial Internet of Things. Sensors

2022, 22, 4099. https://doi.org/

10.3390/s22114099

Academic Editors: Xiao Liu, Jiong Jin

and Fang Dong

Received: 30 April 2022

Accepted: 25 May 2022

Published: 28 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Deep Reinforcement Learning Multi-Agent System for
Resource Allocation in Industrial Internet of Things
Julia Rosenberger 1 , Michael Urlaub 1, Felix Rauterberg 1, Tina Lutz 1, Andreas Selig 1, Michael Bühren 2

and Dieter Schramm 3,*

1 Bosch Rexroth AG, Automation and Electrification Solutions, 97816 Lohr am Main, Germany;
julia.rosenberger@boschrexroth.de (J.R.); ask.michael.urlaub@outlook.com (M.U.);
felix.rauterberg@boschrexroth.de (F.R.); tina.lutz@boschrexroth.de (T.L.); andreas.selig@boschrexroth.de (A.S.)

2 Westfälische Hochschule, 46395 Bocholt, Germany; michael.buehren@w-hs.de
3 Faculty of Engineering, University of Duisburg-Essen, 47057 Duisburg, Germany
* Correspondence: dieter.schramm@uni-due.de; Tel.: +49-203-3793275

Abstract: The high number of devices with limited computational resources as well as limited
communication resources are two characteristics of the Industrial Internet of Things (IIoT). With
Industry 4.0 emerges a strong demand for data processing in the edge, constrained primarily by the
limited available resources. In industry, deep reinforcement learning (DRL) is increasingly used in
robotics, job shop scheduling and supply chain. In this work, DRL is applied for intelligent resource
allocation for industrial edge devices. An optimal usage of available resources of the IIoT devices
should be achieved. Due to the structure of IIoT systems as well as security aspects, multi-agent
systems (MASs) are preferred for decentralized decision-making. In our study, we build a network
from physical and virtualized representative IIoT devices. The proposed approach is capable of
dealing with several dynamic changes of the target system. Three aspects are considered when
evaluating the performance of the MASs: overhead due to the MASs, improvement of the resource
usage of the devices as well as latency and error rate. In summary, the agents’ resource usage with
respect to traffic, computing resources and time is very low. It was confirmed that the agents not
only achieve the desired results in training but also that the learned behavior is transferable to a
real system.

Keywords: deep reinforcement learning; multi-agent system; Industrial Internet of Things; load
balancing; resource allocation; dynamic network

1. Introduction

In the last years, digitization and the Internet of Things has arrived in industry. It led to
the fourth industrial revolution and, in addition to smart manufacturing and cyber-physical
systems, the Industrial Internet of Things (IIoT) evolves [1]. Due to the new organization
design principles in Industry 4.0 [1] and new business models, especially an increasing
number of data-driven business models, the demand for edge computing is growing. Data
analysis close to the data acquisition, processed on so-called edge devices for low latency
and more data security, gains relevance compared to the currently prevailing cloud-based
approaches [2]. An optimal usage of the generally scarce resources, namely CPU, RAM
and memory, of edge devices, as well as bandwidth, is needed. Each device itself is very
limited, but making optimized use of all available resources of large IIoT networks can
push data analysis and other computing tasks to the edge. As the IIoT has the structure of
a dynamic mesh net, one of the most important prerequisites is the capability to handle
dynamic changes. In this work, a systematic overview of possible dynamic changes in
IIoT networks is given (see Figure 1). They are divided into three groups. The first group
includes the most obvious changes, i.e., changes in the network topology like linkages and
network nodes. The two other groups consider changes from the perspective of the purpose

Sensors 2022, 22, 4099. https://doi.org/10.3390/s22114099 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22114099
https://doi.org/10.3390/s22114099
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7207-6077
https://orcid.org/0000-0002-7945-1853
https://doi.org/10.3390/s22114099
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22114099?type=check_update&version=3

Sensors 2022, 22, 4099 2 of 23

of the network, namely changes in the transmitted data and in the applications carried out.
They are also considered increasingly relevant for the next generation of distributed stream
processing systems. As the fourth generation combines processing on edge and cloud, it is
expected that the main processing in the fifth generation will run in the edge.

Changes in the streaming
data

Changes in the network
topology

Changes of the data
analysis tasks

- Variable number of network nodes
- Linkages between network nodes
- Variable network protocols and

information models

- Changes in the sampling rates
- Changing number of sources

- Changes in the algorithms
- Changing number of tasks
- Changes in the order of execution

Figure 1. A systematic overview of the dynamic changes in IIoT networks.

To maximize edge computing on IIoT network devices while taking into account load
balancing across the network, a system for intelligent resource allocation is proposed that
meets the following requirements.

• RQ1: The system should be adaptive to dynamic changes in the network.
• RQ2: Data loss due to overload has to be avoided.
• RQ3: No additional hardware should be required for the resource allocation.
• RQ4: The maximum number of different computing tasks is not specified and must

match current and future requirements.
• RQ5: The system should be agnostic for different sensor signals.
• RQ6: The system should be able to handle streaming data processing tasks.
• RQ7: The parameterization effort should be low.

In large decentralized and dynamic systems, static programming is no longer sufficient.
Modern approaches based on machine learning are said to be a more promising solution.
In particular, Reinforcement Learning (RL) systems that learn via trial and error are suited
for problems to be solved by sequential decision-making. So far, RL is typically applied to
tasks in the fields of gaming, logistics, robotics and routing [3].

Chen et al. [4] identify the IIoT as one of the main scopes of application of Deep
Reinforcement Learning (DRL). In the context of enabling edge computing, the computing
tasks to be performed, especially data processing, can be intelligently allocated by RL
agents according to the available resources of each network participant and the available
bandwidth for transmission. Thus, available resources can be optimally utilized and further
computations can increasingly be executed even on resource-limited devices. Different
architectures, namely single-agent RL, centralized multi-agent reinforcement learning
(MARL) and fully decentralized MARL, are compared and result in the latter to be the
preferred approach. This article describes a possible implementation and its evaluation of
the very basic idea originally sketched in [5]. As proposed in [5], each device runs its own
agent to allocate its resources, and the decision-making takes place sequentially. This study
differentiates from the previous study in the change to static-sized state and action spaces,
the change of the observed resources (bandwidth, CPU, partly RAM but not hardware
memory), the detailed description of the implementation, the comparison of different
architectures and the evaluation. In [5], neither bandwidth allocation nor dynamic changes
in the number of network participants and network linkages were taken into account. The
main contributions of this study can be summarized as follows:

1. A systematic overview on dynamic network environments and approaches for han-
dling different changes during runtime are presented.

2. A MARL system for intelligent allocation of IIoT computing resources is described.
3. A MARL system for intelligent bandwidth allocation is described.

Sensors 2022, 22, 4099 3 of 23

4. Enabling edge computing in IIoT through cooperation of two independent MASs for
resource allocation is demonstrated and evaluated.

5. A comparison of different architectures of DRL-agent systems is drawn.

The remainder of this article is organized as follows: Section 2 describes the state of
the art of MARL for resource allocation in Industry 4.0, followed by an introduction of
the relevant backgrounds of RL in Section 3. In Section 4, the detailed description of the
proposed decentralized agent systems as well as their interactions are introduced. It is
followed by comparisons of different possible architectures for problem–solution. Section 5
contains the validation focusing the low complexity for implementation of MASs in IIoT, the
resource allocation itself and the ability to handle changes in topology. Section 6 concludes
with a discussion and outlook for future work.

2. Related Work

Several RL systems for the optimization of different resources, e.g., production ma-
chine load, energy, computational load or bandwidth, with different optimization goals, e.g.,
energy efficiency, latency or load balancing, are already presented in literature. This section
summarizes existing work on single- and multi-agent RL approaches for optimization of
resource usage with focus on industrial applications.

In the industrial context, job shop scheduling (JSP) is one of the relevant tasks that
is increasingly solved by RL systems. Wang et al. [6] use DRL for dynamic scheduling of
jobs for a balanced machine utilization in smart manufacturing. In [7,8], two examples
for energy optimization in cyber-physical production systems are presented and, in [9],
real-time requirements for JSP fulfilled by a system of heterogeneous agents.

In the context of IIoT networks, the most common way to handle the resource limita-
tions are computation offloading and mobile edge computing. In [4], Chen et al. provide a
method for single-agent based DRL for dynamic resource management for mobile edge
computing with respect to latency, energy efficiency and computation offloading for in-
dustrial data processing. For task offloading in IoT via single-agent DRL, a couple of
further examples [10,11] exist already, as well as a few approaches based on multi-agent
DRL [12–14]. For IoT networks in general, Lui et al. [12] propose a decentralized MARL
for resource allocation that is used for the decision about computation offloading to a local
server. Considering the specific challenges in industry, a MAS for computation offloading
is presented in [13] but, different from the work of Liu et al. [12], using DRL. In contrast to
our work, mobile edge computing applications generally offload tasks to an edge server
instead of resource-limited IIoT edge devices. The main differences of our solution to
these task offloading optimization problems are, firstly, the limited computing resources
of the IIoT devices instead of offloading to the nearly unlimited servers in the fog and,
secondly, the assumed infinity of the streaming data processing tasks; thus, metrics like the
absolute number of CPU cycles for task execution are not known a priori. These challenges
of distributed streaming data processing instead of finite task processing are considered
in [15]. However, the solution is based on single-agent DRL and is not suitable to solve
the challenges of dynamic networks due to the predefined size of the action space, which
depends on the number of machines. A more flexible approach for data stream processing
using MAS is presented in [16], using model-based RL for intelligent resource utilization.

Apart from JSP and computation offloading, a third field of application, communica-
tions and networking, is of increasing relevance [3]. DRL is a key technology for IIoT and,
according to Chen et al. [4], resource optimization in industrial wireless networks is one of
the main application fields. It is to differ between two main challenges in the context of
communication resource optimization: firstly, resource allocation, i.e., channel allocation,
frequency band choice, etc., and secondly, routing problems that are solved by finding the
best transmission way through the network for a defined source and destination. In the
context of resource allocation, the focus is on intelligent choice of communication parame-
ters, e.g., frequency band, considered by Ye et al. [17] for vehicle-to-vehicle communication,
where each vehicle or vehicle link represents an agent, and by Li and Guo [18], who

Sensors 2022, 22, 4099 4 of 23

use MARL for spectrum allocation for device-to-device communications. Gong et al. [19]
present a multi-agent approach for minimizing energy consumption and latency in the
context of perspective 6G industrial networks. The agents decide about task scheduling,
transmission power and CPU cycle frequency.

Instead of allocating the resources for transmission, the choice of the best transmission
path is the goal of RL systems for routing. For single-agent approaches, the agent chooses
the whole path from source to sink [20]. Liu et al. [21] present a DRL routing method. The
path is chosen under consideration of different resources like cache and bandwidth. To
provide more scalability, MARL systems are often the preferred solution for decentralized
applications. Thus, the systems are based on multi-hop routing as shown in [22–24]. These
approaches differ from our work as the destination is known in advance, while our system
searches for a suited destination for the processing. Nevertheless, the next-hop approach is
still transferable assuming that the next neighbor could be a suitable destination.

Especially in case of wireless sensor networks and energy-harvesting networks, where
energy is the most limited resource, DRL applications increasingly focus on energy usage
optimization as it is limiting both computation and communication [22,25–27].

Another RL application field of high interest is load balancing. In the recent work of
Wang et al. [28], DRL is used for latency improvement and load balancing for 5G in IIoT in
a federated learning architecture. According to [29], most existing load balancing solutions
are of centralized structure in decision-making and, thus, limited in effectiveness in large
networks. The authors propose a multi-edge cooperation but still stick to a single-agent
approach. MARL for load balancing is examined in [30] for controller load in software-
defined networks. The problem definition is single objective as in [31], where MARL
enables a load-balancing control for smart manufacturing. However, the cloud assistance
needed contradicts our requirements. Load balancing is not an explicit goal of our work
but is also indirectly covered by the proposed system presented in this work. Due to the
goal of maximizing usage of the available resources and the assumption that the resources
are always too scarce for the computational and transmission needs, resource usage over
the whole network is expected to be balanced around the specified threshold.

The main objective, the combined optimization of both computing and communication
resource allocation, is of great novelty, especially in the context of the IIoT. Thus, few
studies [11,14] have considered this optimization potential so far. Our proposed system of
two interacting MASs based on DRL differentiates these two approaches as follows:

• Architecture: In contrast to the proposed fully decentralized system, the existing
approaches are either a single-agent [11] or a centralized MAS [14].

• Dynamic changes: Due to the centralized architectures, the adaptivity to dynamic
changes is not given in the existing studies.

• Field of application: Only one of the existing algorithms is developed for application
in industry [14].

• Data: Both existing algorithms are not suited for resource allocation for streaming
data processing tasks.

• Objective: The main objective in this work is to maximize the edge computing using
available edge resource rather than minimizing routing and computation delays [11,14].

In summary, there is no work known that considers the allocation of IIoT edge device
resources for streaming data processing tasks and further edge computations in dynamic
IIoT networks. Furthermore, no approaches of two interacting MARL systems in the context
of network and computational resource allocation have been presented so far. The current
relevance of the topic is evidenced by the high degree of topicality of the related work.

3. Background

RL is a research field of machine learning in which an agent learns via trial and error.
As shown on the left side of Figure 2, the single agent takes an action a depending on
the current state st of the environment and receives a reward r. This is mathematically
described by the Markov Decision Process (MDP). The reward value depends on its current

Sensors 2022, 22, 4099 5 of 23

state st and the next state st+1 the action at puts him into, i.e., whether the chosen action
is expedient for the goal achievement or not. With the long-term goal of maximizing the
discounted reward Vπ(sT), the agent tries to learn an optimal policy π∗, i.e., the mapping
of current state and action for the best way to solve his mission. On the right side, the
analogous structure of a system with more than one agent, i.e., a MAS, is illustrated. For
MAS, the Markov Game (MG) can be used for mathematical description instead of the MDP.

Environment

Agent

a (s,r)

Environment

Agent 1

a
1

(s, r
1
)

Agent 2

Agent n

...

a
2

a
n

(s, r
2
)

(s, r
n
)

(a) Markov Decision Process (b) Markov Game

Figure 2. Comparison of the general models MDP (a), describing a single-agent-system, and MG (b),
describing multi-agent systems, according to [32].

3.1. Mathematical Preliminaries

In general, the simplest way to describe an RL system is the above-mentioned MDP.
According to [32,33], the MDP is defined as 5-tupel (S, A, P, R, γ) with

• S : Set of states, s ∈ S;
• A : Set of actions, a ∈ A;
• P : Transition function, P : S;×A× S→ [0, 1];
• R : Reward function, R : S× A;×S→ R;
• γ : Discount factor, γ ∈ [0, 1).

The transition function P describes the probability that the environment passes at
time t due to action at from state st into st+1, where applies st+1 ∼ P(st+1|st, at). For this
transition, the agent receives a reward r according to R(st, at, st+1). Based on the policy π,
the agent chooses an action at ∼ π(at|st) [32,34]. If the transition function and the reward
function are explicitly known, e.g., by a model, the optimal policy could be found with
one of the standard procedures, e.g., value iteration or policy iteration. Without this prior
knowledge, model-free RL methods are to be applied [32,35].

The MDP assumes the environment to be fully observable, i.e., the observation space
Ω is equal to the state space S. If only parts of the environment can be observed by the
agent, a generalization of the MDP, the so-called partially observable MDP (POMDP),
applies, which is defined by the 7-tupel (S, A, P, R, Ω, O, γ) [32,33]. The 7-tupel extends the
MDP as follows:

• Ω : Set of observations, o ∈ Ω;
• O : Observation function, O : S× A×Ω→ [0, 1].

The observation function describes the probability that the agent has the observation
ot at the time t when the environment changes due to action at from st in st+1.

As the MDP and POMDP are only suited for single-agent setups, further general-
izations have to be considered for the description of the interaction of more than one
agent with the environment. For a mathematical description of MAS, the MG, also called
Stochastic Game (SG) [36], is used instead of the MDP. According to [32], the MG is defined
by the 6-tupel (N, S, {Ai}i∈N , P, {Ri}i∈N , γ). It applies:

• N : Set of all agents, N = {1, ..., n} and n > 1;
• S : Set of all states, s ∈ S;

Sensors 2022, 22, 4099 6 of 23

• Ai : Set of all actions of the; agents i, A := Ai × ...× An and a ∈ A;
• P : Transition function, P : S× A× S→ [0, 1];
• Ri : Reward function of the agent i, Ri : S× A× S→ R;
• γ : Discount factor, γ ∈ [0, 1).

Each agent i has the goal to find its optimal policy πi with ai
t ∼ πi(ai

t|st). Depending
on the state st at the time t, each agent i takes an action ai

t simultaneously. The reward
function Ri(st, ai

t, st+1) rates the transition to st+1. The transition function P(st|ai
t, st+1)

describes the probability of this state transition. Figure 2 compares the MDP and MG.
Analogous to the POMDP for single agents, the POMG is a generalization of the MG

that considers the partial observability of real-world applications and is defined, according
to [37], by the 8-tupel (N, S, {Ai}i∈N , P, {Ri}i∈N , {Ωi}i∈N , {Oi}i∈N , γ). It extends the MG
as follows:

• Ωi : Set of all observations of the agent i, Ω := Ωi × ...×Ωn and o ∈ Ω;
• Oi : Observation function, Oi : S× A×Ω→ [0, 1].

The observation function Oi(oi
t+1|ai

t, st+1) describes the probability for the observation
oi

t+1 at the time t for agent i, when the environment passes from st into st+1 due to action ai
t.

Under the assumption that all agents act simultaneously and are homogeneous, and
thus interchangeable, and consequently have the same reward function, a fully observ-
able system can be classified as a so-called Team Game [32], also called multi-agent MDP
(MMDP) [38], which is a special case of the MG. This is further generalized by the decentral-
ized POMDP (Dec-POMDP) that is similar to the MMDP but where agents only partially
observe the entire state [38].

The mathematical model that considers a sequential—instead of simultaneous—decision-
making of the agents is the Agent Environment Cycle (AEC) game [39]. In [37], Terry et al.
prove that, for every POMG, an equivalent AEC game exists and vice versa. Thus, the meth-
ods AEC game and POMG are equivalent. The 11-tupel (N, S, {Ai}i∈N , {Ti}i∈N , P, {Ri}i∈N ,
{Ri}i∈N , {Ωi}i∈N , {Oi}i∈N , γ, v) defines the AEC game according to [37], extended by the
discount factor for the purpose of unification to previous described processes. The follow-
ing adaptions are made in comparison to the POMG definition:

• Ti : Transition function of the agents, Ti : S× Ai → S;
• P : Transition function of the environment, P : S× S→ [0, 1];
• Ri : Set of all possible rewards for agent i,Ri ⊆ R;
• Ri : Reward function for agent i, Ri : S× N × A× S×Ri → [0, 1] ;
• v : Next agent function, v : S× N × A× N → [0, 1].

At time t, agent i has an observation oi
t with the probability of the observation function

Oi and consequently takes the action ai
t. It is to differentiate between two cases for status

update from st to st+1. For environment steps, (i = 0) applies that the next state st+1 is
random and occurs with the probability of the transition function P. Otherwise, for agent
steps i > 0, a deterministic state transition according to the transition function Ti takes
place [39]. Afterwards, the next agent i′ with the probability of the next-agent function
v(i′|st, i, ai

t) is chosen. The reward function Ri(r|st, j, aj
t, st+1, r) gives the probability that

agent i receives the reward r if the action aj
t of agent j leads to the transition from st to st+1.

Figure 3 clarifies the described relations of the decision processes in a venn diagram.

POMG ~ AEC POMDP MGMDP MMDP

Figure 3. Venn diagram of the decision processes according to [38]. According to the diagram: MDP
⊂MMDP ⊂MG ⊂ POMG and MDP ⊂ POMDP ⊂ POMG and POMG ∼ AEC.

Sensors 2022, 22, 4099 7 of 23

MASs (n > 1) can be further distinguished by the following criteria:

• Timing of actions: sequential or simultaneous decision-making.
• Reward function: unique or shared reward function.
• Agent types: homogeneous or heterogeneous agents.
• Interaction: cooperative or competitive behaviour.
• Training architecture: central training + central execution (CTCE), central training +

decentral execution (CTDE), decentral training + decentral execution (DTDE).

3.2. Reinforcement Learning Algorithms

As the execution of DRL systems only depends on the trained policy, i.e., deep neural
networks, the training of the neural networks requires further attention. The learning
approaches are to be distinguished by the following criteria:

• Model: Model-based approaches have knowledge about the transition dynamics
P(st+1|st, at), so-called models [40]. Model-free approaches cannot access this knowl-
edge. It is to highlight that both value and policy iteration algorithms are model based,
as they are required to compute the Bellman operator [32].

• Collection of experience: While in on-policy learning, the target policy is the same
as the behavior policy that interacts with the environment to collect experience; in
off-policy algorithms, the agent bases its decision on the behavior policy while the
target policy is optimized [32].

• Optimization approach: While value-based approaches optimize indirectly by trying
to optimize the value function, policy-gradient approaches optimize directly on the
policy. A combination that makes use of the advantages of both are actor–critic
algorithms.

3.3. Network Topology of the Industrial Internet of Things

The IIoT is one of the main components of the Industry 4.0 [1]. The network consists
of a large number of participants, primarily industrial edge devices like smart sensors
or control units, with limited resources, but it can also have linkages to private or public
clouds and local servers. In general, its topology is assumed to be a mesh network. This
means the participants have a variable number of linkages between each other but need
not to be fully connected.

4. Methodology
4.1. Problem Definition

The proposed DRL approach has to be able to allocate the execution of different edge
computing algorithms to different IIoT network participants depending on the available
resources. The problem is abstracted in Figure 4.

Input:
Task q1
Task q2
Task ...

States of the IIoT network s ∈ S

RL-System

Output:
Execution on computing unit d1,
Execution on computing unit d2,
Execution on computing unit...,

No execution

Figure 4. Abstraction of the problem statement.

For the incoming tasks, it must be decided where they should be executed or, e.g.,
to avoid overloading, not to execute a task at all at this time. The decisions are made in
dependence on the states of the IIoT network, i.e., the current available resources. In the
context of this work, a task q can either be a pair of data stream and processing algorithm,
e.g., anomaly detection [41] or data compression [42], or only a computing task that does
not process data, e.g., a node in a distributed ledger technology network [43]. The proposed
system optimizes the usage of multiple resources. The solution fulfills all above specified
requirements RQ1-RQ7. In a first step, it is assumed that all computing units are capable
and authorized to read and process all data. Furthermore, the agents decide only about

Sensors 2022, 22, 4099 8 of 23

CPU and bandwidth allocation; RAM usage is only considered as an observation so far. In
Figure 5, the idea for solving the problem is schematically illustrated.

DC-AE/ESW4 | 15.12.2021

© Bosch Rexroth AG 2021. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.
4

Agent zone

4

Data sources
Target devices

IIoT network Edge device (resources controlled by agent)

Edge device (resources not controlled by agent)

Agent

Data stream transmission way

Figure 5. Schematic problem–solution approach on system level.

4.2. Proposed RL System

As both network and device resources are to be considered, the proposed solution
for the described problem is an RL system that consists of two agent systems, one for the
allocation of device resources, subsequently abbreviated with MAS1, and one for allocation
of the network resources, subsequently abbreviated with MAS2. Due to its advantage of
maximum flexibility with respect to scalability and adaptivity to the number of network
nodes, the fully decentralized approach is superior to centralized systems and is chosen
for both agent systems. It is shown schematically in Figure 6. The interaction of these two
cooperating MASs is described as flow chart by Figure 7.

DC-AE/ESW4 | 15.12.2021

© Bosch Rexroth AG 2021. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

Agent zone

Data sources

IIoT network
device

agent

agent communication way

data stream transmission way

Task queue (ID:1)

…

ID: 1

ID: 2

ID: 3

ID: i

ID: 4
ID: n

ID: …

ID: …

ID: …

Task queue (ID:3)
…

Task queue (ID:…)

…

Figure 6. Schematic view on the fully decentralized multi-agent architecture.

Sensors 2022, 22, 4099 9 of 23

START

New task of task queue

MAS 1:
Execute task on

device i

RETURN

MAS 2:
Forward task to

neighbour j

j == k

Forward task to
device j = j + 1 RETURN

Reject task RETURN

j = j + 1

Yes

No Yes

No

No

Yes

Figure 7. Interaction of MAS1 and MAS2 on one computing unit with k neighbors.

The presented fully decentralized systems are capable of handling a dynamic changing
number of network nodes and linkages, i.e., dynamic changes in the network topology
(RQ1), as well as changes in the data sources and processing tasks as the number of tasks
does not have to be specified in advance (RQ4, RQ5). Both states of the single edge devices
and tasks influence the overall set of states and set of actions, i.e., input and output sizes
of the neural net. Varying input and output sizes are very difficult to handle by neural
networks. Instead of existing approaches like DeepSets [44], Pointer Networks [45] or
sequence-to-sequence-framework [46], the structure of the RL system is adapted, and the
problem is broken down to static input and output sizes for a single agent decision. The
piece-wise decision-making via subdividing the system into the smallest units, i.e., one
agent per device and one task to decide about, maximizes the flexibility of the system. Thus,
each computing unit runs one agent of MAS1 to decide about the allocation of the resources
of its own computing unit. The input size is kept static as the agents take one decision about
one task after the other. To avoid data loss due to overload (RQ2), a threshold that should
not be exceeded is defined. In our RL systems, the thresholds of CPU and bandwidth load
are set to 80%. In addition, the priority of the tasks assigned by the agents is set lower than
the main tasks, e.g., a PLC task, of the edge devices. This secures that the agent systems do
not interfere with a stable operation of the industrial plants. To fulfill RQ3, the agents are
designed to be of low complexity so that they can be run on the existing IIoT devices and no
additional devices are needed. According to RQ4 and RQ5, different computing algorithm
and data streams to process should be executed. As the tasks are not known a priori, the
agents are not trained on a specific set of tasks to allocate resources for. Considering RQ6,
the ability to handle streaming data processing tasks implies that the processing of a task
is not temporary. Thus, the allocated resources are permanently occupied by an assigned
task. The agents are not trained on finite tasks and get no information about the total
computational load of a task. A low parameterization effort according to RQ7 is ensured as
the proposed RL system is not designed for a specific production site but to be adaptive
for different IIoT networks. Adaptivity with respect to structure is achieved by the same
mechanism as for adaptivity to dynamic changes, i.e., the subdivision of the system into
the smallest units. Adaptivity with respect to processing algorithms and transmission
rates is achieved by the agents’ training setup where random values are generated for both
computational effort of the tasks as well as available and required bandwidth. For the

Sensors 2022, 22, 4099 10 of 23

training of MAS2, minor noise is added to these. In addition, the base loads of the devices,
i.e., simulation of a load generated by running their main task, are varied.

Characteristic for MMDPs, the agents within each system MAS1 and MAS2 are ho-
mogeneous and, therefore, action space Ai, state space Si and reward function Ri are
identical for all agents in one system. The decision-making takes place sequentially, which
leads to the classification as AEC game. For efficiency enhancements, the policy training
is centralized, but execution is still decentralized. On-policy model-free approaches are
chosen. All agents have to cooperate to reach the overall goal. For cooperation, the agents
communicate and share relevant information while the decision-making still takes place
locally. In reward shaping, it is considered that, according to [47], (a) the reward function
should reward the goal achievement (what-reward) and not predefine how to achieve the
goal (how-reward), and (b) there should be credit assignment of local and global rewards.

For both systems, the resource allocation is not a permanent process. It is triggered by a
new task q in task queue Q. A watchdog functionality is developed to handle overload, i.e.,
rejection of an executed task. There are two cases, one is computational resource overload,
i.e., CPU load, and the other is network resource overload, i.e., bandwidth. Overload is
identified if either the computing unit or the transmitting linkage reaches a certain number
of times 100% load within a defined time range. The detection of overload triggers the
rejection of the latest task in the task execution list of the respective device with CPU
overload or bandwidth overload when transmitting to the next neighbor. The rejected task
is returned the same way as it was forwarded. The path is included as metadata in the task
execution list. When the task reaches its origin, i.e., the first device that was deciding about
the task execution, it is appended to the end of the task queue of that device so that it can
be assigned in a new game round again.

4.3. MAS1: Decentralized Multi-Agent System for Computational Resource Allocation

The agents in the system MAS1 pursue the goal of allocating resources for execution
of computing tasks on edge devices under the condition to keep the device load under a
defined threshold. As the agents can only add tasks but not remove them, the maximization
of edge computing is indirectly encouraged. The same applies for load balancing. It is
assumed that the desired edge computing tasks exceed the limited device resources. Thus,
it is to expect that the load of all devices will settle around the threshold value. In the
following paragraph, the MMPD for MAS1 is defined, followed by the training procedure
of MAS1 described in Algorithm 1.

• Environment: The computing tasks should be run on different IIoT devices di. Thus,
the IIoT network is the environment of the agents.

• Set of agents: In dependence of the network size, i.e., the number of IIoT devices D, the
number of agents varies as NMAS1 = D. For multi-agent systems,
N = {1, 2, ..., n} and n > 1.

• Set of states: The observation array of each agent consists of two partial states
st = {s1

t , s2
t } with 0 < s1, s2 ≤ 1 and s ∈ S. s1 describes the observed CPU usage

of di and s2, the average CPU usage of all agents, calculated as follows:

s2 =
1
n

n

∑
i=0

s1,i

• Set of actions: There are two discrete actions: execute computing task (a = 1) or not
(a = 0). For action a ∈ A, A = {0, 1}.

• Reward: All agents have the same reward function.

R(s, a) = R1(s, a) = R2(s, a) = ... = Rn(s, a)

Exceeding a threshold or inactivity are penalized. The allocation of resources for data
processing below the threshold is rewarded.

Sensors 2022, 22, 4099 11 of 23

RMAS1(s, a) =

Penalty r = −10 if a = 1 and st+1 > threshold
Penalty r = −1 if a = 0 and st+1 < threshold
Reward r = 1 else

(1)

Algorithm 1 Training procedure of MAS1.
Input Task queue Q = q1, q2, ..., qn, ...

1: All agents i ∈ N observe states si,t = {s1
i,t, s2

i,t}
2: while Training steps t < Set number of training steps do
3: for All agents i ∈ N do
4: Pass state si,t to neural net as input
5: Get action ai,t as output
6: Next agent: i = i + 1
7: Pass chosen actions of all agents to step-function
8: for All agents i ∈ N do
9: if Action ai,t = 1 then

10: Add task load to CPU load s1
i,t+1 of device i

11: if s1
i,t+1 > threshold or length(Q) < N then

12: Set done-flag
13: Recalculate average CPU load s2

i,t+1
14: else if Action at = 0 then
15: Append end of task queue Q by rejected task qi

16: Award reward for agent i
17: Agent observes new state st+1
18: i = i + 1
19: Query done-flag
20: Pass done-flags, observations st+1 and rewards r to training algorithm
21: Optimize policy, i.e., neural net
22: if done-flag is set then
23: End of training
24: Training steps: t = t + 1

4.4. MAS2: Multi-Agent System for Bandwidth Allocation

Besides MAS1 for allocation of computational resources, this subsection describes
the second system MAS2 that interacts with MAS1 and is responsible for intelligent tasks
forwarding in dependence of available bandwidth. It replaces a hard-coded next-agent
function v of the AEC game by an intelligent mechanism also based on DRL to avoid data
loss due to bandwidth bottlenecks. The following overview defines the MMDP for MAS2,
followed by Algorithm 2 that summarizes the training procedure.

• Environment: The environment is again the IIoT network.
• Set of agents: The number of agents is—analogous to MAS1—equal to the number of

computing units in the IIoT NMAS2 = D.
• Set of states: The observation of each agent includes the maximum available and

the used bandwidth (s1, s2) between the agent device and the next neighbor device j,
the average bandwidth to all k neighbor devices (s3), the computing resources CPU
and RAM of the neighbor device j (s5, s6) and the expected required resources, i.e.,
bandwidth, CPU and RAM, of the task (s4, s7, s8).

s = {s1, s2, ..., s8} with s1, s2, s3, s4 ∈ R+ and 0 < s5, s6, s7, s8 ≤ 1 and s ∈ S

and s3 =
1
k

k

∑
j=0

s1,j (2)

Sensors 2022, 22, 4099 12 of 23

• Set of actions: Transmit task to neighbor j (a = 1) or do not transmit and decide for
next neighbor j + 1 (a = 0). For action a ∈ A, A = {0, 1}.

• Reward: All agents have the same reward function.

R(s, a) = R1(s, a) = R2(s, a)... = Rn(s, a)

Similarly to the MAS1, exceeding a threshold or inactivity are penalized. The allocation
of resources for task forwarding below the threshold is rewarded. The reward consists
of three parts RMAS2(s, a) = RMAS2

1 (s, a) + RMAS2
2 (s, a) + RMAS2

3 (s, a).

RMAS2
1 (s, a) =

Penalty r= −200 in % if st+1 > threshold and a = 1

Penalty r= −25 in % if st+1 < threshold and a = 0

Reward r= bandwidth usage in % if st+1 < threshold

Reward r= threshold value else

RMAS2
2 (s, a) = (1− s5

t+1) · 50 with s5
t+1 - CPU load of neighbor j at t + 1

RMAS2
3 (s, a) = (1− s6

t+1) · 50 with s6
t+1 - RAM load of neighbor j at t + 1

(3)

Algorithm 2 Training procedure of MAS2.
Input Task queue Q = q1, q2, ..., qn, ...

1: Agents i ∈ N observe states si,t
2: while Training steps t < Set number of training steps do
3: for All agents i ∈ N do
4: Pass state si,t to neural net as input
5: Get action ai,t as output
6: Next agent: i = i + 1
7: Pass chosen actions of all agents to step-function
8: for All agents i ∈ N do
9: if action ai,t = 1 then

10: Add task load to bandwidth usage of respective linkage (s2
i,t+1)

11: if s2
i,t+1 > max. bandwidth OR length(Q) < N then

12: Set done-flag
13: Recalculate average bandwidth usage of all linkages in environment (s3

t+1)
14: else if action at = 0 then
15: Append end of task queue Q by rejected task qi

16: Award reward for agent i
17: Agent observes new state si,t+1
18: i = i + 1
19: Query done-flag
20: Pass done-flags, observations st+1 and rewards r to training algorithm
21: Optimize policy, i.e., neural net
22: if done-flag then
23: End of training
24: Training steps: t = t + 1

4.5. Execution and Interaction of MAS1 and MAS2

Unlike the training process, in which every agent participates in each game round,
in the execution of the MASs, not every agent is involved in every game round. In the
execution system, we define that one game round lasts from the first decision of an agent
1MAS1 about a new pending task to an agent iMAS1 choosing action a = 1, i.e., decides
to execute the pending task, or the rejection of task by an agent iMAS2, i.e., the decision
of not forwarding. The metadata of the task is extended by a list of involved agents, i.e.,
subsequently appending the path of the task through the network. If the task cannot
be assigned for execution, it is sent back the entire path and is again appended to the

Sensors 2022, 22, 4099 13 of 23

end of task queue of the first agent connected to the data source. The interaction and
execution of both systems MAS1 and MAS2, previously separately trained, is summarized
in Algorithm 3.

Algorithm 3 Interaction of MAS1 and MAS2.

1: Next pending task qi in task queue Qi for device di
2: Query states of device and neighbor devices
3: if Agent iMAS1 decides for execution (a = 1) then
4: Agent triggers execution on device
5: Path of task is extended by Agent i
6: Metadata of task is added to local list of executed tasks
7: done
8: else if Agent iMAS1 decides against execution (a = 0) then
9: Hand over task to agent iMAS2

10: for Neighbors 1...k of device i do
11: if Agent iMAS2 decides for forwarding to neighbor j then
12: Add task qi to task queue Qj for device dj
13: Extend path of task by j
14: i = j
15: go to top
16: else if Agent iMAS2 decides against forwarding to neighbor j then
17: if Neighbor j == k then
18: Task is rejected and removed from task queue
19: Task is sent back to first device di according to task path
20: Append task to end of task queue
21: done
22: j = j + 1

Due to the separate training, there is no way to award the agents with a global reward
for their overall goal achievement. In the case of combining both systems already in the
training procedure, a global reward is expected to optimize the learning behavior. We
propose a global reward that depends on the successful execution of the task and the
number of hops h between first and last agents’ device when game round is finished.
It is awarded in the end of a game round. It is needed to add the number of hops as
an additional observation in MAS1 to ensure a learning success. Adding the hops as
observation in MAS2 is not expedient as the MAS1 agents decide about the execution on
the respective edge device, and thus, there is the need for further transmission. A global
reward might be shaped as described in Equation (4).

Rglobal(s, a) =

{
Reward rglobal

1 = 80 · 0.9h Decision for execution of task

Penalty rglobal
2 = −80 · 1.1h Rejection of task

(4)

To avoid the loss of tasks, tasks may only be forwarded to devices controlled by an
agent. In addition, it is relevant to check the permission of the device to receive and process
the data. Both can be ensured by adding the needed information to the asset administration
shell [48] of the Industry 4.0 components. In the vision of IIoT, the devices are addressable
via the administration shell, which is comparable to a digital type plate with all relevant
information about the software and hardware of the asset [49].

4.6. Comparison to Other Agent System Architectures

In addition to the proposed fully decentralized system, other architectures should
be mentioned and compared. The following subsection describes a comparison of three
architectures of RL agent systems for resource allocation differing in their expression of
decentrality, i.e., a single-agent approach, a centralized multi-agent approach and the
chosen fully decentralized system already described in Section 4.3. In a preceding study, all

Sensors 2022, 22, 4099 14 of 23

three approaches were evaluated and compared on the use case of computational resource
allocation, resulting in the above-presented fully decentralized system to fit the specified
requirements best. Table 1 summarizes the results in a qualitative manner.

Table 1. Advantages and disadvantages of different agent system architectures.

Single Agent Centralized MAS Decentralized MAS

Scalability low limited high
Adaptivity no no yes

Observation full partial marginal
Communication load medium medium low/medium/high *
Single point of failure yes yes no

* Communication load in decentralized systems highly depends on the implementation (see [50]).

4.6.1. Single-Agent System

The first system is of full centralized structure with only one agent, illustrated in
Figure 8. It is expected to make good decisions due to the full view on the network, i.e., the
resource consumption of all network devices, and no uncertainties due to the decisions of
other agents.

Agent zone

Data sources

A

Computing

device

IIoT network
device

agent

agent-device communication way

data stream transmission way

Task queue

…

Figure 8. Schematic view on the architecture of the single-agent approach. The single agent has
full view on the network and can communicate with all computing units. The agent receives the
current CPU usage of the devices as states and either chooses a computing unit for task execution
or no execution of the task. No execution would lead to appending the task again at the end of the
task queue.

The single-agent approach is defined as follows:

• Set of states: The observed states include the percentage CPU loads si of all computing
units N in the network and the expected load of the task to allocate resources for s0

with s ∈ S and S = |N + 1|.
• Set of actions: The action space A = |N + 1| covers all observed computing units N

that can be chosen for task execution a1, a2, ..., aN plus one additional action: to not
execute the task at all a0. The agent chooses one action a ∈ A per time step.

• Reward: The allocation of resources for data processing below the threshold is re-
warded, while no allocation under or allocation above the threshold is penalized. For
the reward function, R(s, a) applies:

Sensors 2022, 22, 4099 15 of 23

R(s, a) =

Reward r = 20 if at,j = 1 and sj,t+1 <threshold
Penalty r = −20 if at,j = 1 and sj,t+1 >threshold
Reward r = 20 if at = 0 and all si,t+1 >threshold
Penalty r = −5 if at = 0 and minimum one si,t+1 <threshold
Penalty r = −10 if at = 0 and all si,t+1 <threshold

4.6.2. Centralized Hierarchical MAS

The second approach is a centralized hierarchical MAS. It consists of one central
agent, here called controller, that interacts with further decentralized agents, here called
sub-agents, schematically illustrated in Figure 9. Thus, it is to distinguish between two
different types of agents. The sub-agents cannot interact or communicate amongst each
other. While all sub-agents are homogeneous, the central agent differs from them. In
our implementation, each sub-agent is equivalent to the previous described single-agent
approach. The MDP of the central agent is defined as follows:

DC-AE/ESW4 | 15.12.2021

sub-agent

zone 1

Data sources

Computing

device

sub-

zon

IIoT network

Central Agent

device

agent

agent communication way

agent – device communication way

data stream transmission way

Task queue

…

zone i

zone n

Figure 9. Schematic view on the architecture of the centralized multi-agent approach. The controller
receives the incoming tasks to allocate resources for. It communicates with the sub-agents but not
with the computing units directly. Depending on the states provided by the sub-agents, the central
agent forwards the task to one of the sub-agents, which will further assign the task to one of its
observed computing units.

• Set of agents: There is exactly one agent that acts as central instance.
• Set of states: The controller observes one state per sub-agent isub. Thus, the cardinality

of the state space is S = |Nsub + 1| with s ∈ S. Each state ssubi describes the average
resource usage of all m devices dsubi in the local environment observed by each sub-
agent isub.

ssubi =
1

dsubi

m

∑
i=0

di
CPU (5)

• Set of actions:The action space with the cardinality A = |Nsub| covers all observed
sub-agents that can be chosen for task forwarding.

• Reward: The controller-agent receives a reward for choosing the sub-agent with the
lowest averaged computational load in its observed environment.

R(s, a) =

{
Reward r = 20 if action at = ai and ssubi

t < s
subj
t

Penalty r = −20 else

Sensors 2022, 22, 4099 16 of 23

4.6.3. Fully Decentralized MAS

The fully decentralized MAS corresponds to the system described in detail in Section 4.3.
It consists of as many agents as devices in the network.

4.6.4. Qualitative Comparison

This section summarizes the advantages and disadvantages of the different architec-
tures. The biggest advantage of the single-agent approach is its full view on the states
of the network and, thus, no uncertainties in decision-making. Since the computational
resources for execution of the agent on edge devices are limited and the computational
load depends on the size of the problem space, which, in this case, directly depends on
the size of the network, it does not have unlimited scalability. Additionally, querying the
states of all other devices in the network is time consuming. The centralized multi-agent
solution improves as the load is shared among the sub-agents, which can also be seen
as a hierarchical approach. The number of the controlled devices by the single-agent or
controlled sub-agents by the controller agent is crucial for the number of inputs and outputs
of the neural network. Thus, it has to be defined a priori, and adaptive changes in the
number of network participants are not possible during runtime. As already described in
Section 4.2, the fully decentralized approach is able to solve both scalability and adaptivity
issues. One disadvantage compared to the two previously mentioned architectures is the
limited observation space, since each agent only can observe its own devices’ states and the
average load of the nearest neighbors. The communication overhead for the decentralized
system cannot be defined in general terms, since it depends on the particular implementa-
tion. In our presented system, it is reduced to a minimum. In case of n:n communication
between all agents, it would be significantly higher than in the other approaches. From the
perspective of security aspects, the decentralized system prevails due to its fault tolerance.
While, in our preferred solution, a fully decentralized MAS is chosen for its scalability
and adaptivity, it should be emphasized that, depending on the network structure and
requirements, the other two approaches may also prevail, as a fully observable system may
achieve more optimal results.

Further optimizations in terms of scalability and adaptivity of the single and cen-
tralized agents might be achieved if the one-hop decision-making of the central agents is
changed into stepping through all existing devices one by one.

5. Results

This section contains the results of the experiments evaluating the presented RL system
to intelligently allocate resources for enabling edge computing in IIoT. The description of
the experimental setup follows three subsections about the training phase and experiments
evaluating the overhead of the agents themselves and the performance of the system in
optimizing resource usage.

5.1. Experimental Setup

For the experiments, both MASs were implemented in Python 3.8.10 and were executed
on a network of industrial control units to simulate an IIoT, namely physical ctrlX CORE
from Bosch Rexroth with a 64-bit quad core ARM CPU, 1 GB RAM and 4 GB eMMC memory
and virtual ctrlX COREs from Bosch Rexroth with a 64-bit quad core AMD CPU, 4 GB RAM
and 4 GB eMMC memory, run as virtual machines on a laptop with an Intel Xeon E3-1503M
v5 processor and 32 GB RAM. The operating system is Linux Ubuntu Core that requires the
agents to be run as snaps. The network consists of one physical and six virtual devices and,
thus, seven agents in each MAS. As network structure, the grid topology that was chosen
is a special type of mesh network.

The following RL python libraries were used: The OpenAI Gym [51] is a python library
from OpenAI [52] that enables episode-based RL. It allows an abstraction of a POMDP
environment for a single agent. The library does not include functions for the agents. Anal-
ogous to the OpenAI Gym, the python library PettingZoo [53] (version 1.15.0) provides

Sensors 2022, 22, 4099 17 of 23

environments for MAS that represent an abstraction of AEC games [37]. Furthermore, the
library includes standardized ways, using the python package SuperSuit (version 3.3.3),
of a parallelized execution of the environments, which allows us to implement POMGs
that are equivalent to AEC. A third library used is StableBaselines3 [54] (SB3, version 1.1.0),
developed by the German Aerospace Center. It includes pretrained implementations of
model-free RL methods for finding the optimal policies for the above-mentioned environ-
ments. For the snaps, the SB3 model was exported as a TensorFlow Lite model, which is
explicitly suited for edge devices.

5.2. Training Results

The first part of evaluation considers the training phase. The systems MAS1 and
MAS2 are trained separately as described in Algorithms 1 and 2, according to the parame-
terizations listed in Table 2.

Table 2. Training parameters of MAS1 and MAS2.

Parameter MAS1 MAS2

Total number of training steps 100,000 100,000
Training steps per episode 100 100

Learning rate α 0.003 0.003
Discount factor γ 0.99 0.99

RL algorithm PPO PPO
Number of agents 3 3

Figure 10 presents the training results of MAS1 and Figure 11, the results of MAS2. The
upper plots show the CPU bandwidth usage at the last time step of the training episodes.
The lower plots show the resource usage at each time step of the test episode. It can
be seen that the training of both MAS1 and MAS2 agents (green, orange and blue lines)
was successful as they learn to allocate resources for additional tasks up to the specified
threshold value of 80 % (red dotted line), without overloading the devices.

0 20 80 10040 60
training episodes

0

25

50

75

100

C
PU

 u
sa
ge

 [%
]

0 20 40 60 80 100
time steps in test episode

0

25

50

75

100

C
PU

 u
sa
ge

 [%
]

Figure 10. Results of the training and test of MAS1 with three agents (green, blue, orange lines: CPU
usage of agent devices; red dotted line: threshold 80%). Above: CPU usage at the end of each training
episode. Below: CPU usage at each time step of a single test episode.

Sensors 2022, 22, 4099 18 of 23

0 20 40 60 80 100
training episodes

0

25

50

75

100

ba
nd

w
id

th
 u

sa
ge

 [%
]

0 20 40 60 80 100
time steps in test episode

ba
nd

w
id

th
 u

sa
ge

 [%
]

0

25

50

75

100

Figure 11. Results of the training and test of MAS2 with three agents (green, blue, orange lines:
bandwidth usage; red dotted line: threshold 80%). Above: Bandwidth usage at the end of each
training episode. Below: Bandwidth usage at each time step of a single test episode.

5.3. Evaluation of Resource Consumption

Secondly, the overhead due to the agent systems, i.e., the resource consumption by
the agents themselves, was evaluated. Table 3 summarizes the results of measuring the
resource consumption, i.e., CPU usage, RAM usage, traffic and memory, of the agents-snap,
including a MAS1 and a MAS2 agent, executed on the physical control unit. The time
required for the execution of the agents, i.e. the decision making itself, is summarized in
Table 4.

Table 3. Resource demand of the agents-snap measured on the physical control unit.

CPU CPU Hardware RAM a RAM a

avg. [%] max. [%] Memory [MB] avg. [%] max. [%]

Agents-Snap 0.81 6.60 53.8 4.6 4.7
a RAM is only used for task queue and list of executed tasks incl. metadata of tasks.

The traffic overhead is generated by the communication between the agents to ac-
complish their task. It depends on the number of decisions and hops and consists of three
communication contents: the description of the task, the agents’ observation query and the
callback about the found route. This information is transmitted in JSON format. The traffic
overhead has three causes and is calculated by adding up:

• the number of tasks forwarded times the size of the task description (∼217 bytes);
• the number of decisions about task forwarding times the size of states of the neighbor

(∼50 bytes);
• the number of found routes times the number of hops times the callback information

(∼149 bytes).

Table 4. Run time of agents of MAS1 and MAS2.

Agent tavg [ms] tmax [ms]

MAS1-Agent 0.74 1.16
MAS2-Agent 0.81 0.98

Sensors 2022, 22, 4099 19 of 23

5.4. Evaluation of Performance

For the last part of evaluation, the performance and benefit of the agent system, i.e., the
optimization through intelligent resource allocation, was measured. Figure 12 illustrates an
exemplary usage of bandwidth. In the experiments, the required task executions are finite,
i.e., the data streams are also finite and end after a given period of time, to obtain more
dynamics in the system. The results are similar to the results of the training phase (see
Figure 11); thus, the agents’ good performance in the training environment is transferable
to the test setup. The decision of the agent resulted in overload (100% peak) only one time.

0 20 40 60 80 100 120 140
0

20

40

60

80

100

time [s]

ba
nd

w
id

th
 u

sa
ge

 [%
]

Figure 12. Exemplary bandwidth usage in the test environment with data streams of finite length
allocated by MAS2.

The test system was able to allocate resources for task execution and, in 38 cases,
suitable routes for task forwarding were found. Table 5 summarizes the latency and hops
per route.

Table 5. Latency and hops per successful task forwarding.

Time b avg. [s] Time b max. [s] Hops h avg. [] Hops h max. []

4.84 11.87 1.84 3
b Time span between first decision and successful routing to executing device. The values highly depend on the
overall network load.

5.5. Limitations

The experimental evaluation presented is subject to the following limitations. A
distinction is made between limitations of the proposed method itself and limitations of
the experiments.

Limitations of the proposed method:

• Resources: Up to now, CPU load and bandwidth are considered for allocation. Further
computing resources like RAM and hardware memory as well as energy are not
considered. The algorithm is not explicitly optimized for energy-constrained networks
such as wireless sensor networks.

• Priority: In this study, all computing tasks have the same priority, and priority is not
yet considered by the agents.

• Permissions: In this study, all network participants are permissioned to read and
process the data.

• Hyperparameter tuning: Hyperparameters are manually chosen. So far, no hyperpa-
rameter optimization methods have been applied.

Sensors 2022, 22, 4099 20 of 23

• Overhead: If all devices are heavily loaded, the agent system is not able to allocate
resources but causes additional load by forwarding requests.

• Data loss: Data loss is accepted until a route is found. Therefore, the approach is not
suitable for applications where no lost bit is allowed.

• Action space: The agents decide whether or not to add load, but they cannot reduce
load by terminating running tasks.

• Field of application: The training was intentionally very general so that the agents
can be used in most industrial setups. Optimizing the policy to specific use cases, e.g.,
learning long-term dependencies, requires training the agents with specific data.

Limitations of the experimental evaluation:

• Implementation: The agents were implemented in the snap format, and Python is the
chosen programming language. To improve speed, other programming languages
should be taken into account. As a more generic format, the Open Neural Network
Exchange (ONNX) format could be considered.

• Network topology: Only grid topology was evaluated. Since it is a form of mesh
network and dynamic meshes are assumed to be the most complex topology, most
cases should be covered by the experiments.

• Network size: The evaluation network was of small size compared to real industrial
networks. Different and especially larger network sizes should be evaluated in order
to be able to make a more precise statement about the full potential of the proposed
algorithms.

• Field of application: The evaluation took place in a test setup of homogeneous con-
trol units.

• Adaptivity: Adaptivity to dynamic changes was not part of the experiments yet.
• Metrics: Computing and communication resource usage of the agents-snap as well

as latency and hops of the successfully found routes were evaluated. Additional
metrics such as the context of the overall resource usage in the network and the energy
consumption of the agents are not yet considered.

6. Discussion

The proposed MARL-based approach for optimal edge resource usage consists of two
interacting multi-agent DRL systems that are able to allocate computational power and
bandwidth in dynamic IIoT networks to enable edge computing in the IIoT. The require-
ment of adaptivity to various dynamic changes is fulfilled, firstly, by the system structure
subdivided into the smallest units and sequential decision-making for full adaptivity in the
number of tasks, nodes and linkages and, secondly, by the training process not limited to a
specific data stream or algorithms to compute for achieving the agents to act in a generic
manner. A comparison of the three approaches with different degrees of decentrality
is drawn, and the preferred architecture, a fully decentralized system, is selected under
consideration of the specified requirements and network topology.

The suitability of RL-based resource allocation on resource-limited IIoT devices is
confirmed by evaluation results. The experiments show that the proposed system is
of low computational complexity, decision-making is very fast and the models are of
small size; thus, it is suited for application on resource-limited IIoT devices. Both traffic
overhead and latency between the first decision about a new task and the successful
forwarding to an edge device that can compute the task depend on the overall CPU and
bandwidth load in the network. Both increase when the resources are highly utilized,
which complicates the resource allocation, and more decisions, hops and time are needed.
While agent decision-making is very fast and takes only milliseconds, the overall latency
needs to be improved as it is many times higher. This is caused by the number of decisions
and the time span between the request of MAS2 agents and response of the neighbor’s
available computing resources (states s5, s6). To improve performance, the change to other
programming languages like C or C++ should be considered.

Sensors 2022, 22, 4099 21 of 23

In future work, experiments will be extended by evaluation of the success rate of task
execution depending on the overall resource usage and performance measurements in
dealing with dynamic network changes. Furthermore, the proposed system should be
evaluated in a real IIoT network, e.g., a production site, with a higher number of nodes
and linkages. In addition, a comparison to a manual, static task allocation would be
helpful to be better able to classify the results. As most data processing is still done via
cloud computing and there is not a state-of-the-art method for edge task allocation yet,
it is difficult to draw this comparison. In a further step, the following aspects should
additionally be considered: In MAS1, the state space could be extended by the resources
RAM and hardware memory as well as the already needed hops. In MAS2, the priority
of data or task as well as permissions for reading the data of the respective IIoT network
participants should be considered. As mentioned above, the proposed global reward and
a combined training of both systems would be interesting to evaluate as it is expected
to improve results. A further improvement could be a managed degree of difficulty of
processing an algorithm. The MARL agents could decide to execute the algorithm in a
mode of heavy or light computational load.

Author Contributions: Conceptualization, J.R. and M.U.; methodology, J.R., M.U. and F.R.; software,
M.U., F.R. and T.L.; validation, J.R., F.R. and T.L.; formal analysis, J.R.; investigation, J.R., M.U. and
F.R.; resources, J.R.; data curation, J.R.; writing—original draft preparation, J.R.; writing—review and
editing, J.R., M.U., D.S., M.B. and A.S.; visualization, J.R., M.U. and F.R.; supervision, A.S., M.B. and
D.S.; project administration, J.R.; funding acquisition, D.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by the Open Access Publication Fund of the University of
Duisburg-Essen.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

AEC Agent Environment Cycle
DRL Deep Reinforcement Learning
IoT Internet of Things
IIoT Industrial Internet of Things
MARL Multi-Agent Reinforcement Learning
MAS Multi-Agent System
MDP Markov Decision Process
MG Markov Game
MMDP Multi-Agent Markov Decision Process
POMDP Partially Observable Markov Decision Process
POMG Partially Observable Markov Games
SG Stochastic Games
RL Reinforcement Learning

References
1. Hermann, M.; Pentek, T.; Otto, B. Design Principles for Industrie 4.0 Scenarios. In Proceedings of the 2016 49th Hawaii

International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016; pp. 3928–3937.
2. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3, 637–646.

[CrossRef]
3. Luong, N.C.; Hoang, D.T.; Gong, S.; Niyato, D.; Wang, P.; Liang, Y.C.; Kim, D.I. Applications of Deep Reinforcement Learning in

Communications and Networking: A Survey. IEEE Commun. Surv. Tutor. 2019, 21, 3133–3174. [CrossRef]
4. Chen, Y.; Liu, Z.; Zhang, Y.; Wu, Y.; Chen, X.; Zhao, L. Deep Reinforcement Learning-Based Dynamic Resource Management for

Mobile Edge Computing in Industrial Internet of Things. IEEE Trans. Ind. Inform. 2021, 17, 4925–4934. [CrossRef]

http://doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/COMST.2019.2916583
http://dx.doi.org/10.1109/TII.2020.3028963

Sensors 2022, 22, 4099 22 of 23

5. Rosenberger, J.; Urlaub, M.; Schramm, D. Multi-agent reinforcement learning for intelligent resource allocation in IIoT networks.
In Proceedings of the 2021 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT), Dubai, United
Arab Emirates, 12–16 December 2021; pp. 118–119.

6. Wang, L.; Hu, X.; Wang, Y.; Xu, S.; Ma, S.; Yang, K.; Liu, Z.; Wang, W. Dynamic job-shop scheduling in smart manufacturing using
deep reinforcement learning. Comput. Netw. 2021, 190, 107969. [CrossRef]

7. Bakakeu, J.; Kisskalt, D.; Franke, J.; Baer, S.; Klos, H.H.; Peschke, J. Multi-Agent Reinforcement Learning for the Energy
Optimization of Cyber-Physical Production Systems. In Proceedings of the 2020 IEEE Canadian Conference on Electrical and
Computer Engineering (CCECE), London, ON, Canada, 30 August–2 September 2020; pp. 1–8.

8. Roesch, M.; Linder, C.; Bruckdorfer, C.; Hohmann, A.; Reinhart, G. Industrial Load Management using Multi-Agent Reinforcement
Learning for Rescheduling. In Proceedings of the 2019 Second International Conference on Artificial Intelligence for Industries
(AI4I), Laguna Hills, CA, USA, 25–27 September 2019; pp. 99–102.

9. Luo, S.; Zhang, L.; Fan, Y. Real-Time Scheduling for Dynamic Partial-No-Wait Multiobjective Flexible Job Shop by Deep
Reinforcement Learning. IEEE Trans. Autom. Sci. Eng. 2021, 1–19. [CrossRef]

10. Xiong, X.; Zheng, K.; Lei, L.; Hou, L. Resource Allocation Based on Deep Reinforcement Learning in IoT Edge Computing. IEEE
J. Sel. Areas Commun. 2020, 38, 1133–1146. [CrossRef]

11. Wang, J.; Zhao, L.; Liu, J.; Kato, N. Smart Resource Allocation for Mobile Edge Computing: A Deep Reinforcement Learning
Approach. IEEE Trans. Emerg. Top. Comput. 2021, 9, 1529–1541. [CrossRef]

12. Liu, X.; Yu, J.; Feng, Z.; Gao, Y. Multi-agent reinforcement learning for resource allocation in IoT networks with edge computing.
China Commun. 2020, 17, 220–236. [CrossRef]

13. Ren, Y.; Sun, Y.; Peng, M. Deep Reinforcement Learning Based Computation Offloading in Fog Enabled Industrial Internet of
Things. IEEE Trans. Ind. Inform. 2021, 17, 4978–4987. [CrossRef]

14. Cao, Z.; Zhou, P.; Li, R.; Huang, S.; Wu, D.O. Multiagent Deep Reinforcement Learning for Joint Multichannel Access and Task
Offloading of Mobile-Edge Computing in Industry 4.0. IEEE Internet Things J. 2020, 7, 6201–6213. [CrossRef]

15. Li, T.; Xu, Z.; Tang, J.; Wang, Y. Model-Free Control for Distributed Stream Data Processing Using Deep Reinforcement Learning.
Proc. VLDB Endow. 2018, 11, 705–718. [CrossRef]

16. Russo, G.R.; Nardelli, M.; Cardellini, V.; Presti, F.L. Multi-Level Elasticity for Wide-Area Data Streaming Systems: A Reinforcement
Learning Approach. Algorithms 2018, 11, 134. [CrossRef]

17. Ye, H.; Li, G.Y.; Juang, B.H.F. Deep Reinforcement Learning Based Resource Allocation for V2V Communications. IEEE Trans.
Veh. Technol. 2019, 68, 3163–3173. [CrossRef]

18. Li, Z.; Guo, C. Multi-Agent Deep Reinforcement Learning Based Spectrum Allocation for D2D Underlay Communications. IEEE
Trans. Veh. Technol. 2020, 69, 1828–1840. [CrossRef]

19. Gong, Y.; Yao, H.; Wang, J.; Jiang, L.; Yu, F.R. Multi-Agent Driven Resource Allocation and Interference Management for Deep
Edge Networks. IEEE Trans. Veh. Technol. 2021, 71, 2018–2030. [CrossRef]

20. Murudkar, C.V.; Gitlin, R.D. Optimal-Capacity, Shortest Path Routing in Self-Organizing 5G Networks using Machine Learning.
In Proceedings of the 2019 IEEE 20th Wireless and Microwave Technology Conference (WAMICON), Cocoa Beach, FL, USA, 8–9
April 2019; pp. 1–5.

21. Liu, W.; Cai, J.; Chen, Q.C.; Wang, Y. DRL-R: Deep reinforcement learning approach for intelligent routing in software-defined
data-center networks. J. Netw. Comput. Appl. 2021, 177, 102865. [CrossRef]

22. Zhang, W.; Liu, T.; Xie, M.; Zhang, J.; Pan, C. SAC: A Novel Multi-hop Routing Policy in Hybrid Distributed IoT System based on
Multi-agent Reinforcement Learning. In Proceedings of the 2021 22nd International Symposium on Quality Electronic Design
(ISQED), Santa Clara, CA, USA, 7–9 April 2021; pp. 129–134.

23. You, X.; Li, X.; Xu, Y.; Feng, H.; Zhao, J. Toward Packet Routing with Fully-distributed Multi-agent Deep Reinforcement Learning.
In Proceedings of the 2019 International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOPT), Avignon, France, 3–7 June 2019; pp. 1–8.

24. Ding, R.; Yang, Y.; Liu, J.; Li, H.; Gao, F. Packet Routing Against Network Congestion: A Deep Multi-agent Reinforcement
Learning Approach. In Proceedings of the 2020 International Conference on Computing, Networking and Communications
(ICNC), Honolulu, HI, USA, 17–20 February 2020; pp. 932–937.

25. Mao, Y.; Zhang, J.; Letaief, K.B. Dynamic Computation Offloading for Mobile-Edge Computing With Energy Harvesting Devices.
IEEE J. Sel. Areas Commun. 2016, 34, 3590–3605. [CrossRef]

26. Jin, T.; Ji, Z.; Zhu, S.; Chen, C. Learning-based Co-Design of Distributed Edge Sensing and Transmission for Industrial Cyber-
Physical Systems. In Proceedings of the 2021 IEEE 19th International Conference on Industrial Informatics (INDIN), Mallorca,
Spain, 21–23 July 2021; pp. 1–6.

27. Yang, H.; Alphones, A.; Zhong, W.D.; Chen, C.; Xie, X. Learning-Based Energy-Efficient Resource Management by Heterogeneous
RF/VLC for Ultra-Reliable Low-Latency Industrial IoT Networks. IEEE Trans. Ind. Inform. 2020, 16, 5565–5576. [CrossRef]

28. Wang, X.; Hu, J.; Lin, H.; Garg, S.; Kaddoum, G.; Jalilpiran, M.; Hossain, M. QoS and Privacy-Aware Routing for 5G enabled
Industrial Internet of Things: A Federated Reinforcement Learning Approach. IEEE Trans. Ind. Inform. 2021, 18, 4189–4197.
[CrossRef]

29. Chen, X.; Hu, J.; Chen, Z.; Lin, B.; Xiong, N.; Min, G. A Reinforcement Learning-Empowered Feedback Control System for
Industrial Internet of Things. IEEE Trans. Ind. Inform. 2022, 18, 2724–2733. [CrossRef]

http://dx.doi.org/10.1016/j.comnet.2021.107969
http://dx.doi.org/10.1109/TASE.2021.3104716
http://dx.doi.org/10.1109/JSAC.2020.2986615
http://dx.doi.org/10.1109/TETC.2019.2902661
http://dx.doi.org/10.23919/JCC.2020.09.017
http://dx.doi.org/10.1109/TII.2020.3021024
http://dx.doi.org/10.1109/JIOT.2020.2968951
http://dx.doi.org/10.14778/3184470.3184474
http://dx.doi.org/10.3390/a11090134
http://dx.doi.org/10.1109/TVT.2019.2897134
http://dx.doi.org/10.1109/TVT.2019.2961405
http://dx.doi.org/10.1109/TVT.2021.3134467
http://dx.doi.org/10.1016/j.jnca.2020.102865
http://dx.doi.org/10.1109/JSAC.2016.2611964
http://dx.doi.org/10.1109/TII.2019.2933867
http://dx.doi.org/10.1109/TII.2021.3124848
http://dx.doi.org/10.1109/TII.2021.3076393

Sensors 2022, 22, 4099 23 of 23

30. Sun, P.; Guo, Z.; Wang, G.; Lan, J.; Hu, Y. MARVEL: Enabling controller load balancing in software-defined networks with
multi-agent reinforcement learning. Comput. Netw. 2020, 177, 107230. [CrossRef]

31. Li, D.; Tang, H.; Wang, S.; Liu, C. A big data enabled load-balancing control for smart manufacturing of Industry 4.0. Cluster
Comput. 2017, 20, 1855–1864. [CrossRef]

32. Zhang, K.; Yang, Z.; Basar, T. Multi-Agent Reinforcement Learning: A Selective Overview of Theories and Algorithms. arXiv
2019, arXiv:1911.10635.

33. Wiering, M.; van Otterlo, M. Reinforcement Learning; Springer: Berlin/Heidelberg, Germany, 2012.
34. Frochte, J. Maschinelles Lernen; Carl Hanser Verlag: Munich, Germany, 2018.
35. Bertsekas, D.P. Dynamic Programming and Optimal Control, 3rd ed.; Athena Scientific: Belmont, MA, USA, 2005; Volume I.
36. Shapley, L.S. Stochastic Games. Proc. Natl. Acad. Sci. USA 1953, 39, 1095–1100. [CrossRef] [PubMed]
37. Terry, J.K.; Black, B.; Hari, A.; Santos, L.; Dieffendahl, C.; Williams, N.L.; Lokesh, Y.; Horsch, C.; Ravi, P. PettingZoo: Gym for

Multi-Agent Reinforcement Learning. arXiv 2020, arXiv:2009.14471.
38. Yang, Y.; Wang, J. An Overview of Multi-Agent Reinforcement Learning from Game Theoretical Perspective. arXiv 2020,

arXiv:2011.00583.
39. Terry, J.K.; Grammel, N.; Black, B.; Hari, A.; Horsch, C.; Santos, L. Agent Environment Cycle Games. arXiv 2020, arXiv:2009.13051.
40. Wang, H.N.; Liu, N.; Zhang, Y.Y.; Feng, D.W.; Huang, F.; Li, D.S.; Zhang, Y.M. Deep reinforcement learning: A survey. Front. Inf.

Technol. Electron. Eng. 2020, 21, 1726–1744. [CrossRef]
41. Rosenberger, J.; Müller, K.; Selig, A.; Bühren, M.; Schramm, D. Extended kernel density estimation for anomaly detection in

streaming data. In Proceedings of the 2021 15th CIRP Conference on Intelligent Computation in Manufacturing Engineering,
Virtual Event, 14–16 July 2021.

42. Rauterberg, F. Performance Vergleich von Datenkompressions Algorithmen auf Industriellen Edge-Devices; Studienarbeit; Technische
Hochschule Mittelhessen: Giessen, Germany, 2022.

43. Rosenberger, J.; Rauterberg, F.; Selig, A.; Bühren, M.; Schramm, D. Perspective on Efficiency Enhancements in Processing
Streaming Data in Industrial IoT Networks. In Proceedings of the 2021 IEEE Global Conference on Artificial Intelligence and
Internet of Things (GCAIoT) (2021 IEEE GCAIoT), Dubai, United Arab Emirates, 12–16 December 2021.

44. Zaheer, M.; Kottur, S.; Ravanbakhsh, S.; Poczos, B.; Salakhutdinov, R.R.; Smola, A.J. Deep Sets. In Advances in Neural Information
Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran
Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30.

45. Vinyals, O.; Fortunato, M.; Jaitly, N. Pointer Networks. In Advances in Neural Information Processing Systems; Cortes, C., Lawrence,
N., Lee, D., Sugiyama, M., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2015; Volume 28.

46. Vinyals, O.; Bengio, S.; Kudlur, M. Order Matters: Sequence to sequence for sets. arXiv 2016, arXiv:1511.06391.
47. Mao, H.; Gong, Z.; Xiao, Z. Reward Design in Cooperative Multi-agent Reinforcement Learning for Packet Routing. arXiv 2020,

arXiv:2003.03433.
48. IEC 63278-1. IEC 63278-1 ED1—Asset Administration Shell (AAS) for Industrial Applications—Part 1: Asset Administration

Shell Structure. IEC Internationale Elektrotechnische Kommission: Geneva, Switzerland, 2021.
49. Hoffmeister, M.; Boss, B.; Orzelski, A.; Wagner, J. Die Verwaltungsschale: Zentrum der digitalen Vernetzung in Fabriken (Teil 1).

Atp Magazin, April 2021.
50. Alagha, H.E. Communicating Intention in Decentralized Multi-Agent Multi-Objective Reinforcement Learning Systems. Master’s

Thesis, University of Groningen, Groningen, The Netherlands, 2019.
51. Available online: https://www.gymlibrary.ml/ (accessed on 25 April 2022).
52. Available online: https://openai.com/ (accessed on 25 April 2022).
53. Available online: https://www.pettingzoo.ml/ (accessed on 25 April 2022).
54. Available online: https://stable-baselines3.readthedocs.io/en/master/ (accessed on 25 April 2022).

http://dx.doi.org/10.1016/j.comnet.2020.107230
http://dx.doi.org/10.1007/s10586-017-0852-1
http://dx.doi.org/10.1073/pnas.39.10.1095
http://www.ncbi.nlm.nih.gov/pubmed/16589380
http://dx.doi.org/10.1631/FITEE.1900533
https://www.gymlibrary.ml/
https://openai.com/
https://www.pettingzoo.ml/
https://stable-baselines3.readthedocs.io/en/master/

	Introduction
	Related Work
	Background
	Mathematical Preliminaries
	Reinforcement Learning Algorithms
	Network Topology of the Industrial Internet of Things

	Methodology
	Problem Definition
	Proposed RL System
	MAS1: Decentralized Multi-Agent System for Computational Resource Allocation
	MAS2: Multi-Agent System for Bandwidth Allocation
	Execution and Interaction of MAS1 and MAS2
	Comparison to Other Agent System Architectures
	Single-Agent System
	Centralized Hierarchical MAS
	Fully Decentralized MAS
	Qualitative Comparison

	Results
	Experimental Setup
	Training Results
	Evaluation of Resource Consumption
	Evaluation of Performance
	Limitations

	Discussion
	References

