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Abstract

Background: The precise mechanisms involved in the initiation and progression of rheumatoid arthritis (RA) are not known.
Early stages of RA often have non-specific symptoms, delaying diagnosis and therapy. Additionally, there are currently no
established means to predict clinical responsiveness to therapy. Immune cell activation is a critical component therefore we
examined the cellular activation of peripheral blood mononuclear cells (PBMCs) in the early stages of RA, in order to develop
a novel diagnostic modality.

Methods and Findings: PBMCs were isolated from individuals diagnosed with early RA (ERA) (n = 38), longstanding RA
(n = 10), osteoarthritis (OA) (n = 19) and from healthy individuals (n = 10). PBMCs were examined for activation of 15
signaling effectors, using phosphorylation status as a measure of activation in immunophenotyped cells, by flow cytometry
(phospho-flow). CD3+CD4+, CD3+CD8+ and CD20+ cells isolated from patients with ERA, RA and OA exhibited activation of
multiple phospho-epitopes. ERA patient PBMCs showed a bias towards phosphorylation-activation in the CD4+ and CD20+
compartments compared to OA PBMCs, where phospho-activation was primarily observed in CD8+ cells. The ratio of
phospho (p)-AKT/p-p38 was significantly elevated in patients with ERA and may have diagnostic potential. The mean
fluorescent intensity (MFI) levels for p-AKT and p-H3 in CD4+, CD8+ and CD20+ T cells correlated directly with physician
global assessment scores (MDGA) and DAS (disease activity score). Stratification by medications revealed that patients
receiving leflunomide, systemic steroids or anti-TNF therapy had significant reductions in phospho-specific activation
compared with patients not receiving these therapies. Correlative trends between medication-associated reductions in the
levels of phosphorylation of specific signaling effectors and lower disease activity were observed.

Conclusions: Phospho-flow analysis identified phosphorylation-activation of specific signaling effectors in the PB from
patients with ERA. Notably, phosphorylation of these signaling effectors did not distinguish ERA from late RA, suggesting
that the activation status of discrete cell populations is already established early in disease. However, when the ratio of MFI
values for p-AKT and p-p38 is .1.5, there is a high likelihood of having a diagnosis of RA. Our results suggest that
longitudinal sampling of patients undergoing therapy may result in phospho-signatures that are predictive of drug
responsiveness.
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Introduction

Rheumatoid arthritis (RA) is a common, relapsing autoimmune

disease primarily affecting the joints. RA affects approximately 1%

of the population worldwide [1]. The clinical manifestations

include joint swelling, deformity, pain, stiffness, and weakness [2].

Within the affected RA joint, there is proliferation of synovial

lining cells, pannus accumulation over articular cartilage and

erosion of the underlying bone. The rheumatoid synovium is an

area of intense immunological activity [3,4] with a profound

infiltration of inflammatory cells, including mononuclear cells and

lymphocytes, which occasionally form secondary lymphoid

structures [5]. Additionally, RA is not exclusively restricted to

the joints and other extra-articular manifestation occur and

account for considerable mortality and morbidity [6]. While the

specific molecular events that lead to initiation and onset of RA

are not known, a systemic activation of the immune system is

considered to be a critical component of the disease.
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The etiology of RA is unclear, however, many cells types

including fibroblast like synovial cells (FLS), B and T lymphocytes,

macrophages and neutrophils all contribute to joint inflammation.

Both T and B lymphocytes have prominent roles in RA pathology.

The genetic association of RA with specific HLA-DR1 underscores

the importance of T lymphocytes in RA pathology [7]. Additionally,

adoptive transfer of CD4+ T cells from affected animals induces

joint inflammation in healthy recipients [8], while blocking T cell

activation clearly has beneficial consequences in human RA patients

[9]. Recently, a novel IL-17 secreting T cell subset (Th17) has been

implicated in RA disease pathogenesis in both human RA and in

mouse models of disease [10]. B lymphocytes undoubtedly play a

critical role in RA pathology, as autoantibodies are found in the

majority of patients [11,12] and B cell depletion with rituximab

results in significant improvement in disease symptoms [13].

Additionally, B cells maintain T cell activation in the RA joint

[14] and interactions between T and B cells may represent unique

events in autoimmune disease [11]. Taken together, the activation

of T and B lymphocytes may be early precipitating events in disease

pathology and, as such, may identify useful diagnostic markers of

disease initiation and/or progression.

Effective management of RA requires early diagnosis and timely

treatment to prevent significant joint destruction and improve

patient outcomes. Diagnosis of RA is difficult and is based on

specific clinical parameters, radiographic evidence of joint

destruction and/or the presence of anti-CCP/RF antibodies

[12,15]. The current criteria for diagnosis of RA have come

under scrutiny due to an inability to establish the diagnosis of RA

in the early stages of the disease [16]. While considerable progress

has been made in identifying predictive criteria for disease

progression [17,18], identification of definitive diagnostic markers

with higher sensitivity and specificity are required. Early aggressive

therapy with multiple DMARDs including biological agents is

highly effective in preventing disease progression [19]. Currently

there are no specific and/or rapid tests for monitoring disease

progression and/or responsiveness to therapy. Viewed altogether,

these deficiencies promoted the examination of patient cells for the

identification of early activation markers in RA.

Recent advances in flow cytometry have expanded the number

of simultaneous analyses to greater than 13, allowing for the

detection of both surface and intracellular factors, thereby

enabling identification of specific cell subsets as well as their

functional activation in a heterogeneous cell population. Phospho-

specific flow cytometry (phospho-flow) permits the quantification

of phosphorylation levels of intracellular signaling proteins in

individual cells, including rare populations of cells [20,21,22].

Phospho-flow is highly quantitative [21,23] and novel network-

based screens of complex populations in disease samples can easily

be obtained [20]. Phospho-flow technology has identify mutated

signaling pathways in leukemia [24], predicted responsiveness of

leukemic patients to chemotherapy [25] and can assess the

effectiveness of drug therapy in blocking cellular signaling [26].

Accordingly, we have employed phospho-flow technology to

analyze the peripheral blood (PB) of patients with early RA

(ERA) and established RA and compared the phospho-flow

signatures with those from the PB of patients with osteoarthritis

(OA) and healthy individuals. In addition, patients were stratified

according to medication status and phospho-specific activation

was used to examine responsiveness to specific therapies. This

exploratory study examined fifteen phospho-epitopes in 3 cell

lineages: CD3+CD4+, CD3+CD8+, and CD20+. The data

suggest that analysis of the phospho-activation status of the PB

leukocyte population may useful for monitoring disease activity

and/or responsiveness to therapy.

Results

Signaling profiles in RA joint T cells
At the outset, to confirm the activation status of T cells in RA in

the context of phosphorylation-activation, we employed a

customized BD PowerBlot immunoarray as a high throughput

Western blot screen for phosphorylated signaling effectors. 20

paired phospho-signaling effectors were evaluated. CD3+ T cells

were isolated from the affected joints of 3 patients with established

RA at the time of joint replacement and protein lysates prepared.

We identified elevated levels of phosphorylated (p)-AKT, p-p38, p-

JNK, p-STAT1, p-STAT3, p-STAT5, p-ATF2, p-cdc2, p-p120,

p-PKARIIb and p-src in joint infiltrating CD3+ T cells (Figure 1).

Notably, phosphorylation of src is consistent with T cell activation

[27].

Phosphorylation-activation of PB cell subsets in ERA, RA
and OA.

Next, multiparameter phospho-FACS was employed to analyze

the phosphorylation-activation status of specific signaling effectors

in the PB of patients with ERA, established RA and OA, gating on

CD3+CD4+, CD3+CD8+ and CD20+ cell populations. The 15

signaling effectors employed in this study were specifically chosen

as they are critical signaling nodes activated by multiple pathways

and are likely candidates as indicators of activation in multiple cell

populations. Multiple phospho-epitopes were activated in the

circulating CD4+ and CD8+ T cells and CD20+ B cells from ERA

(Figure 2) and established RA patients (data not shown) compared

with healthy individuals. Notably, p-AKT, p-CBL, p-JNK, p-

PLC-c, p-STAT1, p-STAT3, p-STAT6 and p-ZAP70 mean

fluorescent intensity (MFI) levels were significantly elevated in

ERA patient PB subsets in all three cellular compartments. The

MFI values were not significantly different between the ERA and

established RA patient PB subsets (Figure S1) for any of the 15

phospho-epitopes examined. Because this was an exploratory

study investigating the general utility of phospho-flow in diagnosis

and treatment, no correction for multiple comparisons was made

Figure 1. Phospho-specific epitopes are activated in RA
synovial tissue lymphocytes. Cell lysates were prepared from ST
lymphocytes isolated from the affected joints of 3 patients with late-
stage RA, at the time of joint replacement, as described in Methods.
Lysates were analyzed by a customized BD PowerBlot and data are
shown as mean6SE. Values represent the average intensity of triplicate
readings except for p-JNK, p-STAT5, p-cdc2 and p-src, which are
averages of duplicate samples.
doi:10.1371/journal.pone.0006703.g001

PBMC Phospho-Analysis in RA
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in Figure 2, Figure S1, or other similar analyses (Please refer to the

section on Statistical analysis). If we had corrected using the

Bonferroni correction for 45 comparisons (as shown in Figures 2

and 3), a p-value of less than 0.0011 would be considered

statistically significant. Rather than discourage the future study of

potentially valuable phospho-epitopes by applying such a

correction, we instead note that we have not adjusted for family-

wise error.

Next we examined whether phosphorylation of specific

signaling effectors was disease specific, by comparing the

phosphorylation profiles of PBMC from ERA and OA patients.

The MFI levels for p-AKT, p-CBL and p-JNK were statistically

higher (p,0.05) in ERA patient PBMCs compared with OA

patient PBMCs, in the CD4+, CD8+ and CD20+ compartments

(Figure 3). Additionally, the extent of phosphorylation-activation,

as measured by the number of phosphorylated signaling effectors

for which the MFI values were significantly different between ERA

and OA samples, was greatest in the CD4+ T cell population

(Figure 3). For each of the phospho-epitopes we next set an

arbitrary threshold MFI level that was 10% higher than the

maximum MFI level recorded amongst the healthy individuals

(Table 1). Our subsequent analysis, based on this threshold,

distinguished ERA patients with activated phospho-epitopes in all

three cell compartments (CD4+, CD8+ and CD20+) (Table 1). In

contrast, OA patients had fewer phospho-epitopes activated,

predominantly in the CD8+ T cell compartment (Table 1).

Further analysis directly comparing the ERA and OA patient

groups, again using a threshold of 10% greater than the highest

OA patient MFI value, provided evidence for a distinguishing

activation profile in the CD4+ T cells and CD20+ B cells in

patients with ERA (Table 2). The data in Figure 4A reveal a

significant difference (p,0.001) in the ratio of the CD8 range/

CD4 range for p-AKT, p-CBL, p-H3, p-PLCc and p-ZAP70

between RA and OA patients.

Scrutiny of ratios of MFI values between pairs of different

phosphorylated signaling effectors identified that p-AKT and p-

p38 ratios as well as p-JNK and p-p38 ratios distinguished between

ERA and OA patients (Figure 4 B, C). Since p-p38 MFI values

remained fairly constant across the control, OA and ERA patient

specimens, we postulated that p-p38 serves as an internal control

to normalize individual samples. Significant differences in the p-

AKT/p-p38 ratios were observed in ERA compared with OA in

the CD4+, CD8+ and CD20+ cell populations (Figure 4B,

p,0.05), whereas the p-JNK/p-p38 ratios were significantly

different in the CD4+ and CD8+ populations only (Figure 4C,

p,0.05). There were no significant differences in these phospho-

pair ratios between the OA and healthy individual cohorts, for any

of the three cell types. As anticipated, examination of these

phospho-pair ratios in RA patients with established disease, in

their PB CD4, CD8 and CD20 cells likewise distinguished RA

Figure 2. Distinct PBMC subsets in ERA are activated. PBMCs from patients with ERA (n = 10, closed circles) and healthy individuals (n = 10,
open circles) were analyzed by multiparameter phospho-FACS, gating on CD3+CD4+, CD3+CD8+ and CD20+ cell populations, as indicated.
Scatterplots of the MFI for15 phospho-specific epitopes are shown. Significant differences in MFI values were calculated by Student’s t test (p,0.05).
doi:10.1371/journal.pone.0006703.g002
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patients from healthy individuals and OA patients (data not

shown). The diagnostic potential of this phospho-epitope ratio was

assessed by calculating the percentage of patients with a p-AKT/

p-p38 ratio or a p-JNK/p-p38 ratio greater than 1.5. A p-AKT/p-

p38 ratio .1.5 was observed in 90% (9/10) of ERA patients and

80% (4/5) of RA patients with established disease, in the CD4,

CD8 and CD20 PB cell populations. Notably, this threshold of

.1.5 was only exceeded in one of the 10 (10%) healthy individuals

in their CD20 cells. For the OA cohort, this ratio was exceeded in

one (11%) of the CD4 samples and 2 (22%) of the CD8 and CD20

samples. A p-JNK/p-p38 ratio .1.5 was observed in PB CD4,

CD8 and CD20 cells in 70% (7/10), 90% (9/10) and 50% (5/10)

of ERA patients, respectively. p-JNK/p-p38 ratio .1.5 was

observed in 80% (4/5), 60% (3/5) and 80% (4/5) of RA patients

with established disease in their PB CD4, CD8 and CD20 cells,

respectively. p-JNK/p-p38 ratio .1.5 was observed in 11% (1/9),

22% (2/9) and 22% (2/9) of OA patients in their PB CD4, CD8

and CD20 cells, respectively. None of the healthy individuals had

p-JNK/p-p38 ratios .1.5.

p-H3 and p-AKT levels correlate with physician global
assessment and DAS

In the next series of analyses, with specimens acquired from a

distinct cohort of patients, we examined whether there existed a

correlation between phosphorylation status in defined cell

populations and disease activity. Clinical parameters measuring

disease status (DAS28, physician global assessment (MDGA), CRP

and ESR levels) were compared to phospho-activation levels.

Correlations were observed between phospho-histone (H3) and p-

AKT levels in the CD4+, CD8+ and CD20+ populations in the PB

of ERA patients and their MDGA scores (Figure 5). Moreover, the

extent of phosphorylation of H3 and AKT in the CD4+,CD8+
and CD20+ cells of the PB of ERA patients also directly correlated

with DAS28 (Figure 5).

Effects of drug therapy on PBMC phospho-activation
profile

We next examined the effects of specific disease modifying anti-

rheumatic drugs (DMARDs) on the phosphorylation status of 12

phospho-epitopes in ERA patients. As a first screen, patients were

grouped according to whether they were receiving a particular

DMARD or not, regardless of whether a patient was on

monotherapy or not. All patients in the drug study cohort were

on some form of drug therapy (refer to Table S1). The effects of

the non-steroidal anti-inflammatory drugs (NSAID), methotrexate

(MTX), sulphasalazine (SSZ), plaquenil (HCQ) and leflunomide

(LEF), systemic steroids (predominantly prednisone), TNF inhib-

itors (Enbrel or Humira), and intra-articular (IA) steroids, were

assessed. Notably, TNF inhibitors, LEF, systemic steroids and

MTX therapy resulted in decreased activation of multiple

Figure 3. Distinct phosphorylation signatures between ERA and OA PBMCs. PBMCs from patients with ERA (n = 10, closed circles) and OA
(n = 9, open circles) were analyzed by multiparameter phospho-FACS, gating on CD3+CD4+, CD3+CD8+ and CD20+ cell populations, as indicated.
Scatterplots of the MFI for 15 phospho-specific epitopes are shown. Significant differences were calculated by Student’s t test (p,0.05).
doi:10.1371/journal.pone.0006703.g003
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phospho-eptiopes (Figure 6). Significant differences in MFI values

were observed in the PBMC of patients on LEF (Figure 6, Figure

S2) or systemic corticosteroids (Figure 6, Figure S3), compared to

those patients not taking these specific DMARDs. Notably, 3 of

the 5 patients on LEF were also receiving Enbrel. Interestingly, the

phospho-activation signatures for each drug were not identical and

patients on LEF exhibited reductions in p-STAT6 in their CD20+
B cells and reduced p-PLC-c in their CD4+ and CD8+ T cells,

while patients on systemic steroids showed decreases in p-BTK

and p-JNK in their CD4+ cells, p-ERK, p-p38 and p-STAT3 in

their CD20+ cells, and p-STAT4 in their CD4+ and CD8+ cells.

Patients on TNF inhibitors (Enbrel or Humira) exhibited

significant reductions in levels of p-AKT, p-BTK, p-ERK, p-

JNK, p-p38, p-PLCc, pSTAT1, p-STAT3, p-STAT5 and p-

STAT6 in their CD4+ cells (Figure 6, Figure S4). Reductions in

MFI values for p-AKT, p-p38, p-JNK, p-PLCc, and p-STAT5

were also observed in their CD8+ cells and reductions in p-p38

were observed in their CD20+ cells.

There were no significant differences in the MFI values between

patients prescribed NSAIDS (Figure 6, Figure S5), HCQ (Figure 6,

Figure S6) or sulphasalazine (SSZ) (Figure 6, Figure S7) for any of

the 12 phospho-epitopes in any of the cell types. Patients receiving

IA steroids showed significant reductions in p-H3 in their CD4+,

CD8+ and CD20+ cells (Figure 6, Figure S8). MTX therapy

reduced p-STAT1 MFI values in CD20+ cells (p = 0.045) (data not

shown). Given the effects of LEF and systemic steroid therapy on

the activation profile of PBMCs, we re-examined the effects of

MTX therapy on phosphorylation status, removing patients on

LEF or systemic steroid therapy from these analyses. Our analysis

revealed significant reductions in the phosphorylation of AKT and

H3 in the PBMC CD4+ cells (Figure S9) but no change in the

reduction in p-STAT1 observed in the CD20+ cells. However,

reductions in CD20+ cell p-AKT and p-H3 and CD8 cell p-AKT

were revealed.

In a final analysis of these data, we investigated the utility of

phosphoflow measurements as correlates of patient responsiveness

to therapy. The majority of patients in this study were responding

to therapy, as shown by their decreases in DAS (21.7860.42,

n = 23). Changes in DAS were assessed by subtracting the DAS at

the time of sampling with the baseline DAS at their first clinic visit.

Of note, some patients were only sampled at their baseline visit

and, as such, a delta DAS could not be calculated. Given that anti-

TNF therapy affected phospho-signaling effectors to the greatest

extent and 3 of the 4 patients on anti-TNF therapy started therapy

after their first clinic visit, we selected the data from this cohort for

analysis. Patients receiving anti-TNF therapy had an overall

decrease in the total tender joint count (TJC), swollen joint count

(SJC) and DAS28 (Figure 7A). We observe a high degree of

correlation between the DAS and MFI values for p-AKT

(Figure 7C) and p-H3 (Figure 7B). These preliminary data suggest

that phosphoflow analysis of a limited number of signaling

effectors may be reflective of drug responsiveness, at least in the

context of anti-TNF therapy, the subject of our ongoing

investigations.

Discussion

RA is a complex, polygenic autoimmune disease that progresses

over decades and involves many different cell types, including both

resident and recruited cells. Early diagnosis of RA is difficult since

there is no single test, but a combination of predictive indices,

incorporating clinical parameters, radiographic evidence of joint

destruction and the presence of anti-CCP and RF antibodies. The

identification of specific activating events that play a role in the

pathogenesis and/or progression in RA would be invaluable for

both diagnosis and monitoring responsiveness to therapy. Herein,

we describe the use of phospho-flow analysis to quantitatively

analyze multiple phospho-epitopes as indicators of PB lymphocyte

activation.

Lymphocyte infiltration in the RA synovium is observed as

either a diffuse inflammatory infiltrate or as clusters of lymphoid

follicular aggregates. In some patients, these aggregates exhibit

germinal centre-like activity. T cells in affected RA joints show

signs of prior activation, are hyporesponsive to antigenic

stimulation [28] yet resistant to apoptosis [29,30]. While we did

not compare the level of activation of joint T cells to other

inflammatory conditions, our data support previous studies that

Table 1. Elevated phosphorylation of signaling effectors in
ERA and OA PB CD4+, CD8+ and CD20+ populations.

Disease Phospho-signaling effector CD4+* CD8+* CD20+*

ERA p-AKT 90% 80% 70%

ERA p-BTK 70% 70% 50%

ERA p-CBL 70% 70% 60%

ERA p-H3 50% 50% 40%

ERA p-JNK 90% 80% 70%

ERA p-PLCc 70% 60% 60%

ERA p-STAT1 80% 70% 70%

ERA p-STAT3 70% 70% 70%

ERA p-STAT4 0% 60% 0%

ERA p-STAT6 70% 70% 60%

ERA p-ZAP70 70% 70% 70%

OA p-BTK 0% 44% 0%

OA p-JNK 0% 0% 44%

OA p-STAT1 0% 44% 0%

OA p-STAT3 44% 44% 0%

OA p-STAT4 0% 44% 0%

OA p-STAT6 44% 44% 0%

*Percentage of patients with MFI values $10% above the maximum level
recorded in the healthy individual cohort is denoted.

doi:10.1371/journal.pone.0006703.t001

Table 2. ERA PB phospho-signaling is distinguished from OA
PB in the CD4+ and CD20+ cell populations.

Phospho-signaling effector CD4+* CD8+* CD20+*

p-AKT 50% 0% 40%

p-BTK 50% 0% 40%

p-CBL 60% 0% 40%

p-JNK 50% 0% 0%

p-PLCc 60% 0% 40%

p-STAT1 50% 0% 40%

p-STAT3 40% 0% 0%

p-STAT6 40% 0% 40%

p-ZAP70 50% 0% 40%

*Percentage of ERA patients with MFI values $10% above the maximum level
recorded in the OA patient cohort is denoted.

doi:10.1371/journal.pone.0006703.t002
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Figure 4. Quantitative differences in phospho MFI values distinguish ERA. The data from Figure 3 are plotted to (A) compare the CD8 MFI
range/CD4 MFI range for each of p-AKT, p-CBL, p-H3, p-PLCc and p-ZAP70 and (B) to compare the p-AKT/p-p38 and p-JNK/p-p38 ratios, between ERA
(n = 10) and OA (n = 9) patients, in the indicated cell populations. Significant differences were determined by ANOVA followed by Tukey’s multiple
comparison (p,0.05).
doi:10.1371/journal.pone.0006703.g004
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MAPKs are activated in OA and RA joint tissue [31]. TNF and

IL-1, cytokines implicated in disease development, induce

activation of these signaling effectors [32]. In addition to p38

and JNK MAPK activation, we observed AKT and STAT

activation in CD3+ lymphocytes. AKT promotes cell survival, and

MAPKs and STATs are associated with induction of cytokine

gene expression, from which we infer that these RA PB

lymphocytes may actively participate in the inflammatory

response. Whether lymphocyte activation also occurs in the

circulation, prior to arrival in the joint, is the subject of these

investigations. PB sampling is less invasive than sampling affected

joints, and here we show a similar activation profile in ERA

PBMCs, from which we infer that lymphocyte activation may

precede joint infiltration. While additional validation studies are

still required, PB lymphocyte activation may be a reliable

indicator/predictor of joint inflammation.

Notably, there were no significant differences in phosphoryla-

tion profiles between ERA and established RA PBMCs. The initial

stages of autoimmunity involve a breakdown of B and T cell

tolerance and in RA this is manifested by measurable levels of

serum anti-CCP and/or anti RF antibodies, which are detected

years before the onset of articular symptoms [33]. For individuals

to have an ERA diagnosis they must satisfy ACR criteria, by which

time the mechanisms driving RA are already well established.

Since the early RA joint cytokine profile is unique (Th2 skewed)

[33], retrospective analysis of inflammatory arthropathies at earlier

stages may provide insights into the dynamic changes in PBMCs at

the onset of autoimmune disease.

Given the critical roles of CD4+ T cells and CD20+ B cells in

autoimmune disease pathology, monitoring dynamic changes in

these cell populations may provide insights into disease progres-

sion. The 15 signaling effectors employed in this study were

specifically chosen as they are critical signaling nodes activated by

multiple pathways and as such are likely candidates as indicators of

activation in multiple cell populations. Specific signaling effectors

(AKT, CBL, JNK, PLC-c and STAT1) were significantly

activated in the PBMC of ERA patients compared with healthy

individuals. The MFI values of a subset of these effectors, p-AKT,

p-CBL and p-JNK, were consistently higher in all three cell

populations in ERA patient PBMCs compared to OA patient

Figure 5. The extent of phosphorylation of H3 and AKT correlates with the MDGA score and DAS28 in ERA PBMC. Dot plots of (A)
MDGA vs p-H3 MFI values (n = 32) and (B) MDGA vs p-AKT MFI values (n = 32) in the CD4, CD8 and CD20 cell populations of ERA patient PBMC.
doi:10.1371/journal.pone.0006703.g005
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PBMCs. Notably, PB CD4+ cells exhibited the largest number of

significantly elevated phospho-signaling effectors (Figure 3), un-

derscoring the importance of these cells in autoimmunity.

Additionally, a higher percentage of ERA patients showed

phospho-activation in their PB CD20+ cells, consistent with B

cell hyperreactivity distinguishing RA from OA [11,12]. However,

given the variability across the OA and ERA samples, no single

phospho-epitope emerged as a unique diagnostic. Further studies

examining the activation status of specific cellular subsets such as

CD4+Th17 cells, which are elevated in the circulation of RA

patients [34,35], may be indicative of disease stage and activity.

While single phospho-epitopes were not diagnostic, p-AKT:p-p38

ratios and p-JNK:p-p38 ratios .1.5 distinguished between ERA

and OA patients (Figure 4B, C). These ratios may be easily

adapted into part of a clinical screening regime for the diagnosis of

RA.

Our analysis included an examination of correlates between

measures of disease activity and severity, or disease status, and

levels of phosphorylation of signaling effectors in the different PB

cell compartments. We identified correlations between the extent

of phosphoryation of AKT and H3 in the CD4+, CD8+ and

CD20+ PB cells of ERA patients and their MDGA score and

DAS. AKT is a signaling effector associated with cell survival, cell

proliferation and cytokine production. Both TNF and IL-17

induce signaling cascades that involve AKT activation. H3

phosphorylation is associated with gene transcription and cell

division [36] and the correlation with MDGA score or DAS may

point toward expansion of these cell populations.

Currently, factors that are predictive of ‘severity to be’ or

responsiveness to particular therapeutic regimens remain, in the

main, indicators of likelihood/probability, based on aggregate not

individualized data. Many factors have been reported to predict

disease progression, responsiveness to therapy or remission,

including antibody levels to citrullinated peptides [37,38] and

citrullinated fibrinogen [39], low baseline serum soluble IL-2

receptor levels [40], early response to DMARD treatment [41,42],

the active joint count [43] or urinary levels of C-terminal

crosslinking telopeptide of type 1 (CTX-I) and type II (CTX-II)

[44]. Generally, RA patients with longer disease duration do not

respond as well to treatment compared with patients with early

disease, and female sex, prior DMARD use and disease activity

[45]. In this context, molecular markers that are accurately

predictive in an individual of high risk of rapid progression as well

as responsiveness to a particular drug therapy are still required.

Early aggressive treatment of RA is associated with beneficial

patient outcomes and there is an accumulating consensus that

Figure 6. Drug therapy affects the phosphorylation levels of signaling effectors in ERA PBMC. Hierarchical clustering heatmap showing
the level of statistical significance, as a p value, for the difference in MFI values for each indicated phospho-signaling effector comparing patients on
therapy versus patients not on therapy. Statistical differences were calculated by Student’s t test.
doi:10.1371/journal.pone.0006703.g006
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there is a relatively narrow window of opportunity within which

aggressive treatment of RA can produce permanent remission

[46]. Early MTX treatment slows disease progression and is the

first drug of choice for RA [47,48]. However, not all patients are

responsive to MTX and approximately 50% of patients are

refractory to anti-TNF therapy [49]. Current clinical practice

involves monitoring therapeutic improvements over several

months, whereas phospho-flow analysis represents a rapid

alternative. Specifically, medication-induced changes in signature

signaling phospho-epitope profiles are rapid. Although in our

study cohort the majority of patients were on multiple medications

(Table S1), data analysis distinguished the contributions of LEF,

corticosteroids, MTX and anti-TNF therapy as signature

reductions in phosphorylation profiles.

LEF, MTX and corticosteroids are broad immunosuppressive

agents that reduce pain and swelling of affected joints, reduce

cytokine production and limit radiological damage

[50,51,52,53,54,55]. In addition, LEF blocks T and B cell

proliferation and activation [56,57,58], inhibits TNF dependent

NF-kB signaling, reduces matrix metalloproteinase expression and

inflammatory cytokine production [51,59,60,61,62]. Consistent

with published data [63], we provide evidence that LEF reduces p-

STAT6 levels in CD20+ B cells, which may direct reductions in

antibody production. Interestingly, prednisone reduced p-STAT3

levels, and recent data suggest that steroid treatment causes

reductions in IL-17 production [64]. Cognizant that STAT3

activation is critical for the development of IL-17 producing T cells

[65,66], it is intriguing to speculate that LEF and prednisone

Figure 7. Phosphorylation levels correlate with changes in DAS28. (A) Changes in tender joint count (TJC), swollen joint count (SJC) and
DAS28 between the time of sampling and baseline scores are recorded for TNF inhibitors (TNFi) (n = 5, Enbrel or Humira), LEF (n = 6) and systemic
steroids (n = 5). Values are the mean6SE. MFI values for (B) p-H3 (n = 4) and (C) p-AKT (n = 4) are plotted relative to changes in DAS in the PB CD4, CD8
and CD20 cell compartments, as indicated.
doi:10.1371/journal.pone.0006703.g007
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therapy may suppress inflammation via inhibiting the phosphor-

ylation-activation of STAT3. Additionally, LEF inhibits Th17

generation through inhibition of p-STAT6 [67] and we also

observed reductions in p-STAT6 levels in patients on these

medications. Notably, p-STAT4 levels were dramatically reduced

in both the CD4+ and CD8+ T cells in patients on steroid therapy.

Certainly, STAT4 has been associated with an increased risk of

RA and mice lacking STAT4 are resistant to experimental

arthritis [68]. STAT4 expression in joints of patients with ERA has

been reported [69] and here we show that prednisone may

function in part by blocking STAT4 activation.

Despite its widespread use as a therapy for RA, the mechanisms

of action of MTX are complex and not entirely characterized [55].

MTX inhibits dihydrofolate reductase and limits cell proliferation

[55]. Therefore, we had anticipated that patients on MTX therapy

would exhibit reductions in multiple phospho-signaling effectors,

as was the case. Significant reductions in p-AKT and p-H3 MFI

values correlated with disease scores. MTX reduces JAK/STAT

activation within the joints [70]. Notably, MTX treatment did

reduce the levels of phosphorylation of AKT and STAT1.

Results from more than a decade of clinical trials has provided

compelling evidence that TNF inhibitors reduce disease activity

and delay joint damage [71]. TNF activates multiple kinases (p38,

ERK, JNK) and will induce the expression of other pro-

inflammatory cytokines that, in turn, invoke pro-inflammatory

signaling events associated with kinase activation. Therefore, the

substantive therapeutic effects of anti-TNF therapy are a

consequence of both direct inhibition of TNF and a blockade of

TNF-inducible other pro-inflammatory cytokines. TNF blockade

leads to more profound anti-inflammatory outcomes than

conventional DMARDs [72] and herein we show that anti-TNF

therapy reduced phosphorylation levels of signaling effectors to a

greater extent than other DMARDs. Notably the anti-TNF

therapy was predominantly initiated during the course of this

study, therefore, it is possible that the potency of this drug and

sampling close to initiation of therapy gave the most significant

effects.

Viewed altogether, these data demonstrate the utility of multi-

parameter phospho-flow analysis for monitoring the activation

status of discrete PB cell populations in ERA. Quantitative

examination of the extent of phosphorylation of critical signaling

effectors has the potential to be diagnostic for RA. Moreover, we

provide preliminary evidence that reductions in the extent of

phosphorylation of these biomarkers may predict responsiveness to

drug therapy. Our results suggest that longitudinal sampling of

patients undergoing therapy may result in phospho-signatures that

not only correlate with drug responsiveness but also may predict

patient responsiveness to a specific class of drug. Our ongoing

studies are directed to extending these observations in a larger

prospective cohort of ERA patients.

Materials and Methods

Patients
Sample collection involved confirmation of the diagnosis of RA

and OA using clinical, serologic and radiological data. Informed

written consent was obtained from all study participants and

institutional approval was granted by the Mount Sinai Hospital,

St. Michael’s Hospital and Sunnybrook and Women’s College

Health Sciences Centre ethics committees (Toronto, ON). Early

RA was defined as patients within the first year following the onset

of symptoms with a minimum of 3 swollen joints. Both ERA and

established RA patients were diagnosed according to the

American College of Rheumatology 1987 revised criteria [15].

The study included a total of 38 ERA patients, 10 late RA

patients, 19 OA patients and 10 control, healthy individuals (non-

RA, non-OA). The average age of patients in this study was 44.1

years for ERA (range 17–73) and 57.0 years for late RA (range 36–

72) with a median disease duration of ,1 year for early RA and 10

years for late RA. Clinical parameters were recorded at the time of

sample collection and are summarized in Table 3. Multiple

samples were collected from some ERA patients and almost all

patients in this study were receiving medication (Table S1).

Synovial tissue
RA synovial tissue (ST) samples (n = 3) were collected from

patients with erosive, end-stage RA at the time of joint

replacement surgery. All ST specimens were immediately

transferred to research personnel for processing.

Blood collection
Human PB was collected into heparinized vacutainer tubes and

PBMCs were isolated by Ficoll gradient centrifugation at 800 g for

20 minutes. The PBMC layer was washed, counted, resuspended

in 90% human serum (Irvine Scientific, Irvine, CA) and 10%

DMSO (Sigma, St Louis, MO) and frozen in liquid nitrogen to

maintain cellular activation levels. Blood samples from control,

healthy adults (University Health Network, Toronto) were handled

and processed in parallel.

Cell surface and intracellular phospho-specific flow
cytometry

For flow cytometric analysis, human PBMCs were thawed at

37uC, washed twice and incubated for 1 hour. PBMC were then

fixed in 2% paraformaldehyde at 37uC for 10 minutes. Cells were

counted, pelleted and resuspended at 16107/ml in FACS buffer.

Cells were washed and permeabilized with 90% ice-cold methanol

for 15 min: PBMCs were stained with directly conjugated

antibodies against CD4 (RPA-T4), CD8 (RPA-T8), CD20 (L27)

and phospho-epitopes (Becton-Dickinson; San Jose, CA, unless

otherwise specified) as previously described [22](Table S2).

Intracellular stains consisted of phospho-specific proteins for p-

AKT (Biosource, pS473), p-BTK (pY551), p-PLC-c (pY783), p-cbl

(pY700), p-H3 (Cell Signaling Technology, pSer10), p-JNK

(Biosource, pTpY183/185), p-p38 (pT180/Y202), p-p44/42

(pT201/Y202), p-lck (pY505), p-ZAP70 (pY319), p-STAT1

(pY701), p-STAT3 (pY705), p-STAT4 (pY693), p-STAT5

(pS727) and p-STAT6 (pY641). Cells were washed twice and

100,000-500,000 cells were acquired on an LSRII FACS machine

operated at Stanford University (12 color, BD Biosciences)

acquired with DiVa software (Beckton Dickinson) and analyzed

with Flojo (Treestar). Data were acquired on an initial set of

samples (controls n = 10, ERA n = 10, RA n = 5, OA n = 9) and a

second and larger cohort of samples (ERA n = 40, RA n = 10, OA

n = 10) was used to assess correlations and drug related effects.

Synovial lymphocyte isolation and BD PowerBlot analysis
CD3+ T cells from ST from affected RA joints were isolated by

enzymatic digestion with collagenase I, II, IV (3 mg/g tissue) and

DNase (2 mg/g tissue) for 0.5–2 hours at 37uC, depending on the

sample size. Single cell suspensions were collected after straining

the digest through a 70 mm filter. T cells were purified by negative

selection, using 0.10 StemSep magnetic columns and antibodies

against CD32, CD19, CD56, CD66b, glycophorin A, 5E11 and

dextran. Contaminating macrophages were removed by 2 hour

incubation on tissue culture plastic. CD3+ T cell lysates were

collected in lysis buffer (10 mM Tris,pH 7.4, 1 mM sodium
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orthovanadate, 1% SDS), sonicated and frozen at 280uC. Protein

samples (200 mg) were resolved by electrophoresis on a 4–15%

gradient SDS-polyacrylamide gel and transferred onto an

Immobilon-P membrane (Millipore) and analyzed as previously

described [73]. Samples were analyzed by a customized

phosphoprotein BD array using the average of duplicate (n = 2)

or triplicate (n = 1) readings. 57 proteins were assessed in these

arrays.

Statistical analysis
Results are expressed as the mean6SE, unless otherwise

indicated. Populations were compared with Student’s t-test with

no assumption of equal variance, unless otherwise noted. P-values

less than 0.05 were considered statistically significant. Correlation

coefficients and associated p-values were computed using linear

regression. ANOVA was performed on samples with multiple

groups followed by Tukey’s Multiple Comparison test. Statistical

tests were performed using either the R environment for statistical

computing (www.r-project.org) or Prism (GraphPad Software, San

Diego CA).

Supporting Information

Figure S1 PBMC activation patterns are similar in RA and

ERA. PBMCs from patients with RA (n = 5, open circles) and

ERA (n = 10, closed circles) were analyzed by multiparameter

phospho-FACS, gating on CD3+CD4+, CD3+CD8+ and CD20+
cell populations, as indicated. Scatterplots of the MFI for 15

phospho-specific epitopes are shown. No significant differences in

MFI values were identified, calculated by Student’s t test (p,0.05).

Found at: doi:10.1371/journal.pone.0006703.s001 (2.37 MB TIF)

Figure S2 LEF affects the phosphorylation status of ERA

PBMCs. PB MFI values for each of the indicated phospho-

epitopes are plotted to compare ERA patients on LEF (n = 6

except for p-AKT, p-BTK and p-H3 where n = 4; open circles)

versus those not receiving this DMARD (n = 31 except for p-JNK,

p-p38 and p-STAT3 where n = 30 and p-AKT, p-BTK and p-H3

where n = 19; closed circles). Data are shown for each of the

indicated cell populations. Significant differences were calculated

by Student’s t test (p,0.05).

Found at: doi:10.1371/journal.pone.0006703.s002 (1.02 MB TIF)

Figure S3 Systemic steroids affect the phosphorylation status of

ERA PBMCs. PB MFI values for each of the indicated phospho-

epitopes are plotted to compare ERA patients on systemic steroids

(n = 9 except for p-AKT, p-BTK and p-H3 where n = 6; open

circles) versus those not (n = 28 except for p-JNK, p-p38 and p-

STAT3 where n = 27 and p-AKT, p-BTK and p-H3 where

n = 17; closed circles). Data are shown for each of the indicated

cell populations. Significant differences were calculated by

Student’s t test (p,0.05).

Found at: doi:10.1371/journal.pone.0006703.s003 (1.12 MB TIF)

Figure S4 TNF inhibitors lower the activation status of ERA

PBMCs. PB MFI values for each of the indicated phospho-

epitopes are plotted to compare ERA patients on TNF inhibitors

(n = 5 except for p-AKT, p-BTK, p-JNK, p-p38, p-H3 and p-

STAT3 where n = 4; Enbrel or Humira, open circles) versus those

not receiving anti-TNF therapy (n = 32, except for p-AKT, p-BTK

and p-H3 where n = 19; closed circles). Data are shown for each of

the indicated CD4+ cell populations. Significant differences were

calculated by Student’s t test (p,0.05).

Found at: doi:10.1371/journal.pone.0006703.s004 (1.18 MB TIF)

Figure S5 NSAID therapy does not affect phosphorylation-

activation in ERA PBMCs. PB MFI values for each of the indicated

phospho-epitopes are plotted to compare ERA patients on NSAIDs

(n = 20 except for p-JNK, p-p38 and p-STAT3 where n = 18 and p-

AKT, p-BTK and pH3 where n = 12; open circles) versus those not

(n = 17 except for p-AKT, p-BTK and p-H3 where n = 11; closed

circles). Data are shown for each of the indicated cell populations.

NSAIDS included ibuprophen, naprosyn, Arthrotec, Diclonefac,

Bextra, Celebrex, Mobicox, Meloxicam and Vioxx. Significant

differences were calculated by Student’s t test (p,0.05).

Table 3. Patient demographic and clinical characteristics

Control (n = 10) ERA (n = 44#) RA (n = 10) OA (n = 19)

Age (years) 33.168.2 44.1614.7 57.0610.7 71.469.9

Sex (M/F) 4/6 3/41 1/9 8/11

Anti-RF+ pos/neg ND 4/31 6/2 0/16

Anti-CCP+ ND ND 9/25 ND

Mean TJC ND 7.967.4 (n = 49) ND ND

Mean SJC ND 6.367.1 (n = 49) ND ND

Mean HAQ score ND 0.660.65 (n = 48) 1.73660.33 (n = 6) ND

Mean MDGA score ND 3.862.5 (n = 49) 7.6062.77 (n = 4) ND

Mean ESR (mm/hr) ND 17.6624.1 (n = 46) 30.2615.5 (n = 6) 16.8613.4 (n = 14)

CRP (mg/L) ND 11.9632.6 (n = 42) 16.9618.1 (n = 8) 4.362. 8 (n = 17)

WBC (6109/L) ND 7.162.3 (n = 46) 7.6062.76 7.9162.05

% on corticosteroids ND 20% (n = 40) 37.5% (n = 8) 0% (n = 11)

% on MTX ND 45% (n = 40) 66.7 (n = 9) 0% (n = 11)

RF , rheumatoid factor- negative result is ,20 IU/ml; CCP , anti-cyclic citrullinated peptide antibody positive; TJC , tender joint count; SJC , swollen joint count;
HAQ , Health Assessment Questionnaire; MDGA , physician’s global assessment, ESR , erythrocyte sedimentation rate; CRP , C Reactive protein; WBC , white blood
cell count; corticosteroids included prednisone and florinef;
#, 5 patients were sampled on 2 separate occasions.
ND , not determined.
*data are shown as mean6SD.
doi:10.1371/journal.pone.0006703.t003

PBMC Phospho-Analysis in RA

PLoS ONE | www.plosone.org 11 August 2009 | Volume 4 | Issue 8 | e6703



Found at: doi:10.1371/journal.pone.0006703.s005 (2.43 MB TIF)

Figure S6 The effects of Plaquenil therapy on phospho-signaling

in ERA PBMCs. PB MFI values for each of the indicated

phospho-epitopes are plotted to compare ERA patients on

plaquenil (n = 22 except for p-AKT, p-BTK and p-H3 where

n = 14; open circles) versus those not (n = 15 except for p-JNK, p-

p38 and p-STAT3 where n = 14 and p-AKT, p-BTK and p-H3

where n = 9; closed circles). Data are shown for each of the

indicated cell populations. Significant differences were calculated

by Student’s t test (p,0.05).

Found at: doi:10.1371/journal.pone.0006703.s006 (2.41 MB TIF)

Figure S7 The effects of Sulphasalazine therapy on phospho-

signaling in ERA PBMCs. PB MFI values for each of the indicated

phospho-epitopes are plotted to compare ERA patients on

sulfasalazine (n = 9 except for p-AKT, p-BTK and p-H3 where

n = 4; open circles) versus those not (n = 28 except for p-JNK, p-

p38 and p-STAT3 where n = 27 and p-AKT, p-BTK and p-H3

where n = 19; closed circles). Data are shown for each of the

indicated cell populations. Significant differences were calculated

by Student’s t test (p,0.05).

Found at: doi:10.1371/journal.pone.0006703.s007 (2.32 MB TIF)

Figure S8 The effects of IA steroid therapy on phospho-

signaling in ERA PBMCs. PB MFI values for each of the indicated

phospho-epitopes are plotted to compare ERA patients on intra-

articular (IA) steroids (n = 17 except for p-JNK, p-p38 and p-

STAT3 where n = 16 and p-AKT, p-BTK and p-H3 where

n = 11; open circles) versus those not (n = 20 except for p-AKT, p-

BTK and p-H3 where n = 12; closed circles). IA steroids included

DepoMD, Kenalg1 and dexamethasone. Data are shown for each

of the indicated cell populations. Significant differences were

calculated by Student’s t test (p,0.05).

Found at: doi:10.1371/journal.pone.0006703.s008 (2.33 MB TIF)

Figure S9 Methotrexate therapy decreases phospho-signaling in

ERA PBMCs. PB MFI values for each of the indicated phospho-

epitopes are plotted to compare ERA patients on MTX (no LEF

or systemic steroids) (n = 15 except for p-JNK, p-p38 and p-

STAT3 where n = 13 and p-AKT, p-BTK and p-H3 where n = 8;

open circles) versus those not (n = 12 except for p-AKT, p-BTK

and p-H3 where n = 9; closed circles). Data are shown for each of

the indicated cell populations. Significant differences were

calculated by Student’s t test (p,0.05).

Found at: doi:10.1371/journal.pone.0006703.s009 (2.42 MB TIF)

Table S1 Patient medication

Found at: doi:10.1371/journal.pone.0006703.s010 (0.08 MB

DOC)

Table S2 Staining panel for phospho-specific profiling of PB

leukocyte subsets. Phospho-specific stains are shown in bold.

Found at: doi:10.1371/journal.pone.0006703.s011 (0.03 MB

DOC)
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