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An estimated 3.9 billion individuals in 128 nations (about 40% of global population) are at
risk of acquiring dengue virus infection. About 390 million cases of dengue are reported
each year with higher prevalence in the developing world. A recent modeling-based report
suggested that half of the population across the globe is at risk of dengue virus infection. In
any given dengue outbreak, a percentage of infected population develops severe clinical
manifestations, and this remains one of the “unsolved conundrums in dengue
pathogenesis”. Although, host immunity and virus serotypes are known to modulate
the infection, there are still certain underlying factors that play important roles in
modulating dengue pathogenesis. Advanced genomics-based technologies have led to
identification of regulatory roles of non-coding RNAs. Accumulating evidence strongly
suggests that viruses and their hosts employ non-coding RNAs to modulate the outcome
of infection in their own favor. The foremost ones seem to be the cellular microRNAs
(miRNAs). Being the post-transcriptional regulators, miRNAs can be regarded as direct
switches capable of turning “on” or “off” the viral replication process. Recently, role of long
non-coding RNAs (lncRNAs) in modulating viral infections via interferon dependent or
independent signaling has been recognized. Hence, we attempt to identify the “under-
dog”, the non-coding RNA regulators of dengue virus infection. Such essential knowledge
will enhance the understanding of dengue virus infection in holistic manner, by exposing
the specific molecular targets for development of novel prophylactic, therapeutic or
diagnostic strategies.
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INTRODUCTION

Dengue, a mosquito-borne viral disease, is prominent in tropical and sub-tropical regions across the
world. It is caused by the dengue virus (DENV) that circulates in the form of four serotypes, DENV-
1 to 4. In the past decades, the incidence of dengue has strikingly increased, such that almost half of
the global population remains at risk of this infection. The annual estimates for DENV infections are
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between 100 and 400 million (WHO, 2020). As it is with any
other communicable disease, community involvement remains
the most sustainable control measure along with the effective
vector control efforts. Furthermore, in conjunction to the non-
pharmacological control measures, understanding of the biology
of dengue is of utmost importance; in order to continue
development of novel therapeutic and prophylactic strategies.
While the RNAi- mediated regulation of genes has been known
for quite a while now; the back-end control of gene regulation
has been of much interest recently. For instance, the role of long
non-coding RNAs (lncRNAs) (that themselves act as precursors
to miRNAs) in modulation of important immune responses is
being investigated. Also, the extent of viral non-coding RNAs in
modulation of host innate immunity is also being understood.
The present review is an attempt to comprehend the role of non-
coding RNAs in modulation of hosts’ innate immune defense
during DENV infection.
OVERVIEW OF DENGUE VIRUS
STRUCTURE AND INFECTION

DENV has been placed in the Flaviviridae family under the
genus Flavivirus and circulates worldwide (endemic in >100
countries) in the form of four serotypes, all of which are
assumed to have been originated and later on independently
evolved from the strains circulating in the Asian-Oceanic region
(Wang et al., 2000). The virus is spherical and enveloped
exhibiting the icosahedral symmetry, a lipid bilayer and a
nucleocapsid core coating the positive-sense single-stranded
RNA (ssRNA) genome (Kuhn et al., 2002). The viral genome
(about 10,700 bp) codes for a single precursor poly-protein
(approx. 3,411 amino acids long) from which the other
functional viral proteins (three structural and seven non-
structural) are processed. Of the three structural proteins, viz.,
capsid, precursor membrane, and envelope, the envelope
glycoprotein remains the focus of interaction with the
neutralizing antibodies as it is involved in receptor attachment
and fusion facilitating viral entry into the host cells (Chambers
et al., 1990). The precursor membrane protein along with the
envelope protein forms a trimeric protrusion in immature
virions’ surface (Zhang Y. et al., 2003). The capsid protein
attached with the viral RNA genome is located beneath the
outer protein coat and the lipid bilayer (Zhang W. et al., 2003).
The non-structural proteins, viz., NS1, NS2a, NS2b, NS3, NS4a,
NS4b, and NS5, have found to be primarily related to evasion of
host’s immune responses and viral replication (Uno and
Ross, 2018).

DENV can infect a variety of cell types, like, dendritic cells
(DCs), endothelial cells, fibroblasts, keratinocytes, macrophage,
mast cells, and monocytes (Garcia et al., 2017), and hence is
known to utilize a diverse range of host surface receptors [like,
heparan sulfate- lectins, DC-SIGN, mannose receptor of
macrophages, lipopolysaccharide (LPS) receptor CD14, Heat-
shock proteins 70 and 90, endoplasmic reticulum chaperonin
GRP78, TIM-1, AXL, Claudin-1 proteins, etc.] to enter into the
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host cell (Cruz-Oliveira et al., 2015). Among the known target
cell types, DENV antigens are expressed on cell surfaces of
lymphocytes, monocytes and macrophages, as revealed by
human post mortem studies. An important characteristic
feature of DENV infection is that the DCs are the direct
targets of profound infection by DENV, while in other viral
hemorrhagic fever cases, endothelial cells are the direct targets.
In studies involving human dengue cases, it has been observed
that the endothelial cells of lungs and spleen express viral
proteins at a relatively lower frequency, but definitely not the
viral RNA (Srikiatkhachorn and Kelley, 2014). The DENV
envelope glycoprotein interacts with one of such available host
cell receptors to enable its entry via clathrin-mediated
endocytosis; following which a decline in endosomal pH
occurs leading to a conformational change in the virion, fusion
of the membranes, and eventual release of the viral genome into
the cytoplasm (Heinz and Allison, 2000).

Owing to the positive sense orientation, the viral RNA
genome, once inside the host cell cytoplasm, gets readily
translated into polyprotein by the host ribosome (Polacek
et al., 2009). This follows cleavage of the polyprotein by both
DENV and host proteases into functional viral proteins. The
progeny virion assembly takes place in the golgi apparatus where
an inefficient process, i.e., cleavage of precursor membrane
protein by host furin protease happens (Welsch et al., 2009;
Junjhon et al., 2010). The process is considered inefficient as it
generates immature and partially mature virions along with the
infectious mature virions that finally exit the host cell
via exocytosis.
INNATE IMMUNE RESPONSES
TO DENGUE VIRUS INVASION

The DENV initially propagates in skin cells (keratinocytes and
Langerhans cells) (Garcia et al., 2017) inducing the innate arm of
the immune system. DCs, macrophages, and monocytes are
quick to respond by recognition of pathogen-associated
molecular patterns via pattern recognition receptors (PRRs)
(Akira and Takeda, 2004; Loo and Gale, 2011), viz .,
cytoplasmic retinoic acid-inducible gene I (RIG-I) and
melanoma differentiation-associated protein 5 (MDA5), along
with endosomal Toll-like receptor 3 (TLR3) and TLR7 (Figure 1)
(Wang et al., 2006; Nasirudeen et al., 2011). This, in turn,
stimulates type I interferon responses, secretion of cytokines
and chemokines, eventually establishing an antiviral state. The
RIG-I and MDA5 [both of which belong to RIG-I like receptors
(RLRs)], upon identification of the DENV RNA in the cytoplasm
translocate to mitochondrial membrane, and cause stimulation
of mitochondrial antiviral signaling (MAVS) protein, leading to
activation of TANK-binding kinase 1 (TBK1), IkB kinase- ϵ
(IKKϵ), phosphorylating IFN regulatory factors (IRF3), and
IRF7. These molecules translocate into the infected cell’s
nucleus and trigger production of type I IFNs (Seth et al.,
2005). The TLR responses work a little differently; in a sense
that the double stranded and single stranded RNA molecules of
November 2020 | Volume 10 | Article 588168
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DENV are identified in endosomes and DC endosomes by TLR3
and TLR7, respectively (Baum and Garcıá-Sastre, 2010). The
TLR3 functions in sync with the RLRs in establishing an antiviral
state against the viral invasion (Nasirudeen et al., 2011). The
activated TLR3 induces IFN-a/b-stimulating-genes (ISGs) and
chemokines via interaction of phosphorylated TRIF (TIR-
domain-containing adapter inducing IFNb), TRAF3 (TNF-
receptor-associated factor 3) and TBK1/IKKϵ (Akira and
Takeda, 2004). On the other hand, TLR7 stimulates secretion
of pro-inflammatory cytokines via the MyD88 (myeloid
differentiation primary response gene 88) dependent signaling.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
The pathway involves TRAF6-mediated activation of nuclear
factor-kB (NF-kB) (Wang et al., 2006). In another series of
responses, the STING (stimulator of IFN gene) pathway gets
activated by the cyclic GMP-AMP synthase (cGAS) PRR. It is
important to note that the STING pathway recognizes the
cytoplasmic DNA (Sun et al., 2017). During infection by the
DENV, the STING pathway gets activated due to the release of
mitochondrial DNA (mtDNA) into the cytoplasm, following
DENV-led damage of the mitochondria (Aguirre et al., 2017),
eventually causing production of type I IFNs. Under in vitro
conditions, the presence of mtDNA has been shown to stimulate
FIGURE 1 | Initial establishment of anti-viral state via innate immune responses to DENV infection. As soon as the DENV invades host cells, the TLRs (blue panel,
left) and RLRs (pink panel) recognize the viral RNA and induce a series of signals to establish a state of emergency. As described in the text, the series of signaling
lead to mitochondrial damage and release of the organelle DNA (blue panel, right), furthering type I interferon responses. This antiviral state in the initial host cells is
able to extend up to the adjoining cells via IFN signaling. Various non-coding RNAs (as described in the text) regulate different targets in the innate immune
responses (demonstrated above) including the complement system pathway (not included in the above figure).
November 2020 | Volume 10 | Article 588168
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another endosomal PRR, the TLR9, which enables identification
of DNA harboring non-methylated CpG motifs in human DCs
(Lai et al., 2018).

Furthermore, innate immune responses have been shown to
regulate severity of DENV infection. A study involving human
challenge experiments revealed the role of sustained induction of
IFN-gamma in acute DENV infections (Gunther et al., 2011).
Similarly, the C-type lectin domain family 5, member A
(CLEC5A) protein has been shown to regulate cytokine storm
in dengue-infected mice model (Chen et al., 2008; Sung et al.,
2019). Single cell RNA-seq of dengue-infected patients revealed
that MX1 and IFIT1 were highly upregulated in DENV patients
before the development of severe disease (Zanini et al., 2018).

The establishment of this initial antiviral state and the
subsequent type I IFN responses somehow protect the other
monocytes from the DENV threat (Diamond et al., 2000). This is
attained by activation of the JAK/STAT (Janus kinase/signal
transducer and activator of transcription) pathway and secretion
of ISGs in adjoining cells, in order to maintain and enhance the
antiviral state (Morrison and Garcıá-Sastre, 2014).

The DENV infection also attracts reaction from the
complement system. As the name suggests, the mannose-
binding-lectin (MBL), which is considered as an important
soluble PRR of the innate immunity, binds to the mannose-
harboring glycans on the DENV. This leads to activation of the
MBL pathway that ultimately leads to neutralization of the
DENV (Avirutnan et al., 2011) and inflammation (Fujita
et al., 2004).
ROLE OF NON-CODING RNAs IN INNATE
IMMUNE RESPONSES TO DENV
INFECTION

Acting as Antivirals
Apart from the traditional innate immunity-led defense against
the DENV infection, host or viral non-coding RNAs are also
shown to project protection. During viral infection, the host
miRNA along with the RNA-induced silencing complex (RISC)
identifies and degrades the viral RNA (Jeang, 2012). An in vitro
study demonstrated that the DENV infection leads to
suppression of the host RNAi agents, viz., Dicer, Drosha,
Ago1, Ago2; and that an inhibition of these RNAi factors led
to elevated DENV titer in the human hepatocellular carcinoma
“Huh7” cells. The researchers found that the transmembrane
domain 3 (TMD3) of the non-structural 4b protein caused this
suppression of RNAi during infection by any of the four DENV
serotypes (Kakumani et al., 2013). Similarly, the role of hsa-mir-
126-5p in negative regulation of DENV infection was also
studied (Kakumani et al., 2016). In a study, it was shown that
transfection of miR-126-5p (an miRNA mimic of has-126-5p) in
Huh-7 cells led to increase in hsa-126-5p levels by 3.41 fold and a
simultaneous 70% decline in vRNA levels after 24 h of virus
infection (Kakumani et al., 2016). Different miRNAs, viz., let-c,
miRNA-30e*, and miRNA-126-5p, are reportedly modulated
during DENV infection. MicroRNAs also identify or be
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
identified by the TLRs or the RLRs (RIG-I and MDA5),
eventually modulating the innate immunity to DENV infection
(Urcuqui-Inchima et al., 2017). In a microarray expression
analysis, 89 dysregulated miRNAs were found to be associated
with 499 potential targets during treatment of critical DENV
infection. Among the top-hit targets, DDX3X (DEAD-Box
Helicase 3, X-Linked) and PTEN (Phosphatase and Tensin
Homolog) were speculated to have important roles in DENV
infection. While, the DDX3X is an important regulator of cell
proliferation and is able to induce IFN promoter branches during
DENV-infected cells, indicating its antiviral effect being
modulated by respective miRNA (Shahen et al., 2018), PTEN
is known to exhibit antiviral effect against dengue (Wagstaff et al.,
2012). Likewise, miR-30e* is also known to exert antiviral impact
by furthering the production of IFN-b via the NF-kB pathway
during dengue (Zhu et al., 2014). A small RNA-seq analysis
revealed differential expression of five miRNAs in DENV-
infected and -exposed but non-infected human primary
macrophages. The DENV-non-infected macrophages expressed
elevated levels of miR-3614-5p, which acted as an antiviral agent
by targeting a DENV pro-viral protein, adenosine deaminase
acting on RNA 1 (ADAR1) (Diosa-Toro et al., 2017).

In another interesting analysis, it was found that over-
expression of hsa-miR-133a negatively regulates replication of
all four serotypes of DENV (Castillo et al., 2016) in Vero cells,
probably via the polypyrimidine tract binding protein (PTB).
The PTB is known to have role in IRES-independent translation
of viral/cellular RNA. In case of dengue, PTB binds to the 3′-
UTR of the viral genome and furthers the viral RNA replication,
probably by acting as a RNA helicase (De Nova-Ocampo et al.,
2002). The miR-133a was speculated to target PTB specifically
during the initial hours of DENV infection in the Vero cells. As a
counter mechanism, all four serotypes of DENV suppress the
endogenous levels of miR-133a so as to allow high expression of
PTB leading to viral replication during about 12 h of infection
(Castillo et al., 2016), pointing towards negative regulation of
DENV by miR-133a. Such an interplay highlights important role
of non-coding RNA mediated modulation of dengue.

Overexpression of some of the other non-coding RNAs, viz.,
miR-548g-3p (Wen et al., 2015), miR-484 and miR-744
(Castrillón-Betancur and Urcuqui-Inchima, 2017), inhibit
replication of all the four DENV serotypes. MiR-548g-3p
interferes with the expression of viral proteins as well. The
miR-548g-3p targets the 5′-UTR of DENV genome, specifically
at the stem loop A promoter region and leads to suppression of
virus propagation in an interferon-independent manner (Wen
et al., 2015).

Acting as Pro-Virals
The best known pro-viral miRNA, which is highly expressed in
monocytes during dengue, is the miR-146a (Wu et al., 2013).
MiR-146a is a known regulator of innate immunity,
inflammatory responses and viral replication (Li et al., 2010).
Wu and colleagues hypothesized that the miR-146a elevates
replication of DENV serotype-2 by decreasing the host IFN-b
production via targeting tumor necrosis factor receptor (TNFR)–
associated factor 6 (TRAF6) (Wu et al., 2013). However, an
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overexpression of the miR-146a substantially inhibited DENV-2
via autophagy (Pu et al., 2017). It was also found that an
antagonist, LNA-antagomir-146a was able to suppress the
miR-146a effect and restore the host IFN activity (important
host antiviral defence mechanism) against the virus. In a later
study, the serum levels of miR-146a seemed to be reduced along
with a negative correlation with serum AST/ALT levels in
dengue subjects. This indicated a possible role of miR-146a in
liver inflammation (Ouyang et al., 2016). Similarly, miR-21 is
also a known inhibitor of pro-inflammatory response (Sheedy,
2015) and hence its expression is upregulated during dengue
Ouyang et al., 2016). The miR-21 also augments DENV-2
replication in HepG2 cells (Kanokudom et al., 2017). The miR-
21 is thought to target NS1 protein of DENV-2 (Wong et al.,
2020), which is known to evade the complement innate immune
responses by blocking the classical pathway C3 convertase
(Avirutnan et al., 2010), and also escape the MBL-mediated
neutralization (Thiemmeca et al., 2016).

Apart from the host factors, viral non-structural 3 (NS3)
protein is also known to regulate biogenesis and function of host
miRNAs in human embryonic kidney (HEK) 293T cells.
Amazingly, the negative regulation of host miRNAs exerted by
the DENV NS3 was found to be stage-specific to enable up-
regulation of the viral host factors, viz., up-regulation of TAZ
(tafazzin) and SYNGR1 (synaptogyrin 1), facilitating DENV
replication (Kakumani et al., 2015).

A high throughput RNA sequencing analysis revealed a
significant up- or down-regulation of various lncRNAs in L-02
liver cells post DENV infection. Upon analysis of the lncRNA-
mRNA co-expression networks, 68 and 50 interacting nodes
were identified by infection of DENV serotype 1 and 2,
respectively. The differentially expressed lncRNAs were
observed to be potential precursors to mature miRNAs, viz.,
hsa-mir-29b-2, -29c, -22, -1268a, and -3648, and were found to
be associated with various biological processes in host cells during
DENV infection, such as, biosynthesis, nucleic acid related
processes, estrogen signaling, cytoskeleton reorganization,
stimulation of apoptosis, to point a few (Wang et al., 2017). In
another genome-wide profiling analysis of mRNA and lncRNA
expression during dengue and dengue haemorrhagic fever (DHF),
215 and 225 lncRNAs were differentially expressed in dengue and
DHF, respectively. Upon, functional analysis, MAGED1, STAT1,
and IL12A genes were found to be significantly dysregulated.
MAGED1 has been linked to severe dengue (Silva et al., 2013),
STAT1 is known to supplement protective antiviral interferon
responses in presence of schisandrin A against DENV replication
(Yu et al., 2017), and IL2A stimulates IFN‐g production and
differentiation of Th1 and Th2 cells (Lamont and Adorini, 1996).
The role of lncRNA in dengue disease progression has also been
studied. RNA sequencing was used to investigate and compare the
expression profiles of various lncRNAs and protein-coding genes in
samples collected from dengue patients exhibiting different extent of
severity and in samples from patients presenting with other febrile
illnesses. Nuclear Enriched Abundant Transcript 1 (NEAT1), which
is a non-coding RNA, and the coding gene Interferon alpha-
inducible protein 27 (IFI27) were highly co-expressed and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
negatively associated with the degree of dengue severity (Pandey
et al., 2017). NEAT1 is an important regulator of innate immunity,
as it affects the transcriptional regulation of several anti-viral genes
(Ahmed and Liu, 2018). This might explain NEAT1 as a
differentiating bio-marker of severe dengue from dengue infection
(Pandey et al., 2017). In another study, the transcript levels of long
intergenic non-coding RNA (lincRNA) in DENV2 infected
mosquitos showed 32% decrease in lincRNA post infection in
Aedes aegypti whereas majority of lincRNAs were over-expressed.
The transcription levels of 72 lincRNAs were up-regulated post
infection. Supporting the role of certain lincRNA through RNAi
mediated silencing of lincRNA_1317 in Aa20 cells and then infected
by DENV2 increased the viral replication and infection progression
proving that this lincRNA is important for anti-viral response, it was
also over expressed in infected mosquitos rather than non-infected
ones (Etebari et al., 2016).

Another set of interesting non-coding RNAs are the circular
RNAs (circRNAs) that lack free 5′ and 3′ ends and have a closed
loop instead. CircRNAs are referred to as transcriptional
products that are developmentally regulated at tissue or cell
type levels (Barrett and Salzman, 2016). The exact role of
circRNAs is not clear at present (Barrett and Salzman, 2016).
With respect to human diseases, it has been shown that the levels
of certain circRNA vary as per the disease profile. For instance,
expression of hsa_circ_0015962 and miR-133b were reportedly
elevated in post-treatment group than the pre-treatment group
of dengue fever patients. The treatment, here, refers to
administration of pain relievers, intra-venous fluids and critical
care at hospital to severe dengue patients. Expression of
hsa_circ_0006459 and miR-4683 was found to be lower in the
post-treatment group than in the pre-treatment group.
Furthermore, it was demonstrated that the hsa_circ_0015962
binds and negatively modulates the expression of miR-4683,
while the hsa_circ_0006459 targets and negatively regulates miR-
133b (He et al., 2019).

In addition to the non-coding RNAs expressed by host, some
are expressed by viruses also. During replication of flaviviruses,
the uncapped genomes are digested by the host 5′ to 3′
exoribonuclease, however, the process gets stopped when a
pseudoknot RNA structure is encountered in the 3′ UTR
region. This results in formation of about 0.3 to 0.5 kb sized
sub-genomic flavivirus RNA (sfRNA). Elevated levels of sfRNA
lead to inhibition of TRIM25 gene and can deactivate RNA
binding proteins which are crucial for innate immunity. Reduced
guide RNA (gRNA) levels may cause lower stimulation of RIG-I/
MDA5, which are the initial drivers of innate IFN responses.
Briefly, the DENV-2 clade (PR-2B) sfRNA interacts with
TRIM25 (which is an E3 ubiquitin ligase and also an RNA-
binding protein), averting ubiquitin-specific peptidase 15
(USP15) to deubiquitinylate TRIM25. This, in turn, stops
TRIM25 to polyubiquitinate RIG-I causing a drop in IFN
production. This can ultimately render several host cells
susceptible to DENV causing viremia (Manokaran et al., 2015).
The available literature indicates that the higher sfRNA
production and also the structure or sequence of the sfRNA
may have important implications on epidemiological fitness of
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DENV-2. For instance, the 1994 dengue outbreak in Puerto Rico
can be understood in terms of the sfRNA-gRNA ratios. Higher
levels of the sfRNA and the decreased levels of gRNA lead to
inhibition of TRIM25 and suppressed trigger of RIG-I/MDA5
responses, respectively. And it is quite well-known that the early
interferon responses are important to combat establishment of
the viral infection and halt the mosquito-borne transmission.

Further, DENV also encodes functional viral small RNAs
(vsRNAs). One such vsRNA, DENV-vsRNA-5, was found to act
similar to miRNA and exhibited important role in
“autoregulation” of virus replication. DENV-vsRNA-5 targets
the virus nonstructural protein 1 (NS1) gene and suppresses
DENV-1, -2, and -4 replication in mosquito cells (Hussain and
Asgari, 2014). This is an interesting finding of virus
autoregulation mechanisms and may be of interest for further
exploration and use of small RNAs as antiviral agents.
DIFFERENTIATION OF MILD VS. SEVERE
DENGUE

Severe dengue is reported to be strongly linked with “cytokine
storm”, a condition when the pro- and anti-inflammatory
mediators get imbalanced. SOCS family of proteins have been
known to negatively regulate various signaling pathways. SOCS1,
a controller of several cytokines, is negatively regulated by miR-
150 during Dengue Haemorrhagic Fever (DHF) (Chen et al.,
2014). Chen and colleagues observed that whereas miR-150 was
highly induced in DHF patients, levels of SOCS1 were reduced in
the same thereby pointing toward the reciprocal interplay among
SOCS1 and miR-150. Another study further confirmed these
findings and observed enhanced levels of miR-150 in severe
dengue patients (Hapugaswatta et al., 2020). SOCS1 was further
identified in patients with acute dengue infections (Hoang et al.,
2010). The reports suggest that SOCS-1 protein is dysregulated
in dengue patients and might be one of the contributing factors
toward cytokine storm during dengue pathogenesis. Decreased
expression of miR-106b, miR-20a, and miR-30b during DENV-2
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
is also thought to elevate production of pro-inflammatory
cytokines (Qi et al., 2013). MiR-let-7e possibly regulates IL-6
and CCL3, while miR-451 and miR-4279 are deemed as
modulators of CCL5 and CXCL1 expression. Low miR-106b
expression might lead to increased secretion of CCL5, which is
one of the important host factors during viral replication,
especially DENV2 infection. Also, the chemokine CCL5 is
rapidly produced by mast cells when activated by the DENV-
antibody complexes (Brown et al., 2012) and also related to
DENV- triggered hepatic dysfunction (Conceicao et al., 2010).

Some interesting studies have been aimed at deciphering the
role of non-coding RNAs in distinguishing mild dengue with
severe dengue and the related complications. One such
interesting study involved comparison of miRNA profiling in
blood specimens of dengue and influenza patients. The two
categories of diseased cases were taken to enable identification
of unique miRNA signatures of dengue. As speculated, of the 106
dysregulated miRNAs associated with acute dengue, 14 miRNAs
displayed similar expression profiles in both the diseases, while
12 were unique to acute dengue, i.e., within 0-4 days of the
illness. Upon functional analysis, these 12 miRNAs (hsa-miR-
450b-5p, -491-5p, -499a-3p, -512-5p, -615-5p, -624-5p, -892b,
-1204, -1225-5p, -3121-3p, -4259, and -4327) were found to
regulate the P13K/AKT survival pathway. Among these, hsa-
miR-1204, 491-5p, and 512-5p seemed to have important roles in
apoptosis, P13K/AKT pathway and indirect modulation [via
NOD2 (nucleotide-binding oligomerization domain containing
2) gene] of NF-kB, JNK, and MAPK pathways, interleukins, and
cytokines, respectively. Moreover, 17 miRNAs were also
identified that specified complications arising from dengue, for
instance, liver complications, abdominal pain, and capillary leak
excluding shock (Figure 2) (Tambyah et al., 2016). The miRNAs
hsa-miR-24-1-5p, miR-512-5p, and miR-4640-3p were
significantly varied in expression profiles between dengue fever
(DF) and dengue with liver complications (DFL) patients. Also,
the hsa-miR-383 showed 6.3 fold upregulated levels in DF than
in the dengue fever with clinical fluid accumulation (DHF)
subjects. The expression of miRNAs, viz., hsa-miR-624-5p,
FIGURE 2 | Differentially expressed miRNAs in mild vs. severe dengue conditions.
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miR-890 and miR-3158-5p, varied among the severe dengue
DFL and DHF categories also. An interesting finding was the
expression of hsa-miR-15a-3p, which was highly (48 fold; p <
0.0005) downregulated in DF subjects, but only mildly (approx.
5-fold) downregulated severe dengue (DFL and DHF) patients.
These observations are crucial indicators that the miRNAs and
their extent of dysregulation can be important differentiators of
mild and severe dengue (Tambyah et al., 2016).

The previously discussed antiviral miR-744 (Castrillón-Betancur
and Urcuqui-Inchima, 2017) may also be a differentiating marker of
mild vs. severe dengue, as it targets an important inflammation
regulatory protein, TGF-b1 (Martin et al., 2011). TGF-b1 gene
polymorphism (−509 CC genotype) is known genetic marker for
DHF susceptibility and high viral load (Chen et al., 2009).

A recently published report utilized NGS based approaches to
identify circulating miRNAs among DENV infected patients.
The study could successfully correlate the dysregulation of
several miRNAs among mild and severe dengue patients.
(Saini et al., 2020). Specifically, the expression profile of hsa-
miR-122-5p in plasma specimens was found to be an important
differentiator of dengue infection stage. The miRNA could also
demarcate between dengue-negative subjects from other
febrile illnesses.
CONCLUSION

The endemic state of dengue in many tropical and sub-tropical
nations imposes a serious risk for the other similar climate areas.
The symptoms, generally, start surfacing after 4–5 days of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
incubation period. Since its origin, still there is no effective
treatment or vaccine for dengue. Hence, modulation of the
molecular regulators, like the various dysregulated non-coding
RNAs seem to be lucrative therapeutic option. Further
investigations in this area would definitely garner confidence
and effective practical use of this approach.
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