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Introduction
Aulus Cornelius Celsus (c. 25 BC–AD 50) described tooth 
removal procedures for the first time in his “De Medicina” 
with an instruction: “it is to be shook; which must be continued 
till it move easily” (Celsus 1814). In modern textbooks, 
descriptions of these complex procedures have not changed 
significantly (Stegenga 2013). Being one of the oldest and 
most commonly performed surgical procedures worldwide, the 
lack of scientific progress in this field is surprising. Scientific 
attempts to increase our understanding of these procedures are 
relatively rare, heterogeneous, and mostly focused on extrac-
tion forces (Ahel et al. 2006; Cicciù et al. 2013; Dietrich et al. 
2020; Sugahara et al. 2021). Analyzing different aspects of 
tooth removal, especially in clinical situations, requires mea-
surements of subtle movements and high forces in a confined 
space (intraorally), which might explain the knowledge gap in 
this field (van Riet et al. 2020).

Through a collaboration between computer scientists, 
mechanical engineers, and oral- and maxillofacial (OMF) sur-
geons, a setup was designed to measure different aspects of 
tooth removal procedures (van Riet et al. 2020). With the use 
of compliant robotics, data were gathered on (rotational) forces 
and movements in all their dimensions and directions, in high 
detail, and at a high frequency. While individual parts of data 
can be explained and understood with traditional statistical 
methods, analyzing their combination is complex. Machine 

learning can be particularly useful to understand and analyze 
complex or large data sets with many variables, in which it has 
the potential to detect relationships. It can be considered essen-
tial to make use of the data as a whole. A classification model 
is an example of machine learning technology that consists of 
an algorithm capable of predicting which tooth was removed 
based on a variety of complex data. It could aid in finding 
which variables are most relevant in tooth removal procedures 
and to evaluate how procedures differ between certain teeth. 
This can be of use for, among others, the development of 
evidence-based education material.
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Abstract
Surprisingly little is known about tooth removal procedures. This might be due to the difficulty of gaining reliable data on these procedures. 
To improve our understanding of these procedures, machine learning techniques were used to design a multiclass classification model of 
tooth removal based on force, torque, and movement data recorded during tooth removal. A measurement setup consisting of, among 
others, robot technology was used to gather high-quality data on forces, torques, and movement in clinically relevant dimensions. Fresh-
frozen cadavers were used to match the clinical situation as closely as possible. Clinically interpretable variables or “features” were 
engineered and feature selection took place to process the data. A Gaussian naive Bayes model was trained to classify tooth removal 
procedures. Data of 110 successful tooth removal experiments were available to train the model. Out of 75 clinically designed features, 
33 were selected for the classification model. The overall accuracy of the classification model in 4 random subsamples of data was 86% 
in the training set and 54% in the test set. In 95% and 88%, respectively, the model correctly classified the (upper or lower) jaw and 
either the right class or a class of neighboring teeth. This article discusses the design and performance of a multiclass classification model 
for tooth removal. Despite the relatively small data set, the quality of the data was sufficient to develop a first model with reasonable 
performance. The results of the feature engineering, selection process, and the classification model itself can be considered a strong 
first step toward a better understanding of these complex procedures. It has the potential to aid in the development of evidence-based 
educational material and clinical guidelines in the near future.
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The goal of this project was to build and validate a first and 
exploratory classification model for tooth removal based on 
force, torque, and movement data. By evaluating which vari-
able (or “feature”) is selected by the algorithm, a unique insight 
in this ancient procedure is presented. This article describes 
our methods of data collection using robot technology, the fea-
ture design process, and the model’s performance.

Materials and Methods

Data Collection

An ex vivo measurement campaign was designed to collect rel-
evant data. Seven fresh-frozen cadavers were obtained from 
the clinical anatomy and embryology section of the Department 
of Medical Biology of the Amsterdam University Medical 
Center (Amsterdam UMC). The donation process was in 
accordance with Dutch legislation and the regulations of the 
medical ethical committee of the Amsterdam UMC. Extractions 
were performed by 3 senior oral and maxillofacial surgeons. 
An extensive measurement setup was used, as described in 
more detail in previous work (van Riet et al. 2020). An over-
view of the setup is presented in Figure 1. In short, data on 
position, orientation, and movements were gained through a 
compliant robot arm (LBR iiwa 7 R800; KUKA) passively fol-
lowing the movements of an OMF surgeon (frequency 100 Hz). 
A 6-axis force/torque (FT) sensor (ATI Industrial Automation 
16-bit Delta transducer) was used to register forces and torques 
at 20 Hz. An open-source framework was used for integration 

of the components (Robot Operating System [ROS]). A custom 
graphical user interface (GUI) was designed to allow for the 
addition of metadata on the experiments itself (e.g., reason in 
case of any failed measurements) and on the clinical status of 
the teeth (e.g., restorative and periodontal state). In total, the 
setup gathers 13-dimensional time series for each individual 
tooth removal procedure. Six-dimensional time series from the 
force/torque sensor consist of 3 dimensions (“XYZ”) for both 
forces and torques. A further 7-dimensional time series is gath-
ered from the robot arm—3 dimensions for the position of the 
end-effector (“XYZ”) and a 4-dimensional representation of 
the orientation of the end-effector in quaternions (Challis 
2020). For data analysis, Python was used (Python Language 
Reference, version 3.9; Python Software Foundation) (van 
Rossum and Drake 1995) and the Scikit-learn 1.0.1 module 
(Pedregosa et al. 2011). A calibration step was performed just 
prior to each experiment to determine the position and orienta-
tion of each tooth (van Riet et al. 2020). Reporting guidelines 
were used to structure this report (Luo et al. 2016; Schwendicke 
et al. 2021).

Preprocessing the Data

Because each measurement started and stopped manually, some 
meaningless data were gathered just prior and after each experi-
ment. Raw data were therefore manually trimmed, using the 
custom user interface, directly after each experiment. Using 
data from the calibration step, raw data from the force/torque 
sensor and robot arm were mathematically transformed from 
their own reference frames to the clinically relevant tooth frame 
(van Riet et al. 2020). This results in 1 unified reference frame 
in which, for example, a positive value on the X-axis in force 
and movement data are both in a buccal direction. A negative 
value on the X-axis means a force or movement in the lingual 
direction. This also holds for the Y-axis (mesial/distal or proxi-
mal/distal along the dental arch curve) and Z-axis (intrusion/
extrusion). Time-series data were filtered for noise reduction 
purposes with a low-pass Butterworth filter (Challis and Kitney 
1983). Data of the force/torque sensor (20 Hz) were upsampled 
to match the frequency of the movement data (100 Hz) using a 
standard fast Fourier transformation (Yoganathan et al. 1976).

Feature Design and Selection

Based on the existing force/torque and movement data, addi-
tional variables—so-called features—can be computed. These 
features can be best compared to the (independent) “variables” 
we know from traditional statistics. They were designed in mul-
tiple brainstorming sessions between computer scientists and 
OMF surgeons. An effort was made to design clinically inter-
pretable features (e.g., rotational velocity or peak forces/torques 
in every direction). For a complete overview of all features, see 
Appendix Table 1. Each of these features has its own predictive 
power to distinguish between different classes of teeth.

Teeth were grouped together as “classes” to optimize model 
performance for a small data set. To ease the clinical 

Figure 1. Overview of the setup with a 3-dimensional printed upper 
jaw in situ. (1) Passive robot arm, (2) forceps holding device, (3) video 
camera, (4) upper jaw holding device (the lower jaw holding device not 
shown in this figure), (5) 6-axis force/torque sensor, (6) bolts to change 
vertical position, and (7) bolts to change horizontal position.
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interpretability of this model, 4 classes were chosen as an output 
for the model. These classes were the same for both the upper 
(U) and the lower (L) jaw: incisors (U1/U2, L1/L2), cuspids 
(U3, L3), bicuspids (U4/U5, L4/L5), and molars (U6/U7, 
L6/L7).

The goal of feature selection is to determine what features 
should be included in order to optimally classify tooth removal 
procedures with a minimum set of features (Bursac et al. 2008; 
Brick et al. 2017). Several approaches are available to select 
the most important features, of which “regularization” is one 
(Bishop 2006). A model including a regularization term trades 
off simplicity and performance by weighting different features. 
The model is simplified by discarding uninformative features 
at the cost of a reduction in classification accuracy. This way, 
only features with high importance will remain. For this study, 
logistic regression with L2 (or “ridge regression”) regulariza-
tion was used. L2 regularization was chosen over L1 (or “lasso 
regression”) because it is more suitable to avoid overfitting of 
a model. In contrast to L1 regularization, features are not 
removed from the model in L2, but it tends to reduce extreme 
weights, leading to a more even distribution of the weight of 
the features. The actual selection is then performed by apply-
ing a threshold for feature importance, which, in our study, was 
chosen to be the mean of the overall feature importance 
(Pedregosa et al. 2011).

Designing a Classification Model

Because features can differ in terms of scale, standardization 
(i.e., variance scaling) of the features was performed to even 
out their scales. In the standardization process, every feature is 
scaled down to a mean of zero and a standard deviation of 1. It 
prevents the algorithm mistakenly giving importance to fea-
tures that have larger scales.

As a classification algorithm, Gaussian naive Bayes (GNB) 
was used. It is a probabilistic machine learning algorithm that 
can be used for a variety of classification tasks. Our data set 
has limited size and high variance, with an approximately 
Gaussian (or normal) distribution. Naive Bayes classifiers are 
well known for their performance on problems with a small 
amount of training data (Zhang 2004), while logistic regres-
sion models—used for feature selection in this article—are 
more prone to overfitting for such problems. Accuracy, preci-
sion, recall, and F1 score were calculated for each tooth class 
to evaluate the model performance. To reduce the risk of selec-
tion bias and to more accurately estimate the model’s predic-
tive performance, a stratified 4-fold cross-validation was 
performed. In this cross-validation, 4 random subsamples of 
data are used to calculate the performance metrics with the 
same class proportions (stratified) due to the small sample size.

Data Availability

Data required to reproduce these findings are available to 
download from https://www.doi.org (digital object identifier: 
10.4121/19665990).

Results

Clinical Characteristics

A total of 127 experiments were performed on 7 fresh-frozen 
Caucasian specimens. In 110 (86.6%), experiment data were 
successfully recorded. A heterogeneous group of teeth in terms 
of restorative and periodontal states was included (Appendix 
Table 2).

Feature Design

In total, 75 features were designed, of which 33 remained after 
regularization. An overview of these selected features is given 
in Table 1. The relationship between 2 strong prediction fea-
tures, the sum of delivered torques and average torques on all 
3 axes, is shown in Figure 2. It is an example of how these 
features can be used to distinguish different classes of teeth. 
While the sum of torques in all directions can be high for both 
upper and lower jaw bicuspids and molars, it seems that aver-
age torques in the lower jaw are higher in the dorsal area com-
pared to the upper jaw. Also, in both upper and lower jaw 
incisors, average torques did not reach above 6 Nm.

Model Performance

A summary of the performance of the model is given in Table 
2. On average, the accuracy was 86% in the training set and 
54% in the test set (unseen data). The data are presented in 2 
confusion matrices, which show the cumulative results of the 4 
subsamples (Fig. 3). In the test set (unseen data), in 104 out of 
110 experiments (95%), the correct jaw (upper/lower) was 
classified. Also, 97 experiments (88%) were either correctly 
classified or as a neighboring class.

Figure 2. Plot of all 110 datapoints showing the relationship between 
2 features, the AUC of the torque magnitude (sum of torques on all 3 
axes combined) and average torques (on all 3 axes combined). AUC, 
area under the curve; L, lower; Nm, Newton meter; Nms, Newton 
meter second; U, upper.
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Discussion

The goal of this project was to build a classification model for 
tooth removal. The measurement campaign was described in 
short as well as the process of feature design. A classification 
model, which is capable of predicting tooth classes based on 
force and movement data, was presented.

The overall accuracy of the model, after cross-validation in 
4 subsamples of data, was 86% in the training set and 54% in 
the test set (unseen data). The model correctly predicts the 
(upper or lower) jaw in 95% of the experiments. In 88%, it pre-
dicts either the correct class or a class of neighboring teeth. This 
means that, based on variables derived from complex force and 
movement data, the algorithm is capable of determining to 
which “tooth class” a measurement belongs to, with reasonable 
performance. These results seem reasonable, given the hetero-
geneity in the data due to surgeon and patient factors in 

combination with a relatively small data set to train the model 
on. Another factor that might explain the relative low accuracy 
and precision might be an incorrect class selection. If tooth 
removal strategies are similar for certain classes, for example, 
bicuspids and cuspids in the lower jaw, the model’s perfor-
mance will decrease. It could be valuable, in future research and 
for educational purposes, to let the model optimize the class 
selection instead (i.e., perform clustering). An important find-
ing in this study is that the collected data are of sufficient qual-
ity to use for modern learning techniques. Further data collection 
is necessary to allow for the use of clinical metadata and to 
further increase the models’ performance and generalizability.

The feature design and selection processes are an essential 
part of building a classification model. The evaluation of which 
features are most relevant for the algorithm to classify an 
experiment is an important first step to improve our fundamen-
tal understanding of these complex procedures. While a 

Table 1. An Overview of Selected Features.

Force and Torque Data Features Axis Direction Number (n = 17)

Sum (AUC) of forces (Ns) X + Y + Z All 4
X-axis (+) Buccal
Y-axis (–) Distal
Z-axis (–) Extrusion

Average forces (N) X + Y + Z All 2
Y-axis (+) Mesial

Sum (AUC) of torques (Nms) X + Y + Z All 4
Y-axis (+) Buccoversion
Z-axis (+) Mesiobuccal rotation
Z-axis (–) Mesiopalatal-lingual rotation

Average torques (Nm) X + Y + Z All 4
X-axis (+) Mesial angulation
Y-axis (+) Buccoversion
Z-axis (+) Mesiopalatal-lingual rotation

Peak forces (N) X + Y + Z All 1
Peak torque (Nm) X + Y + Z All 1
Percentage of amount of force, relative to the sum of all 

3 axes (%)
Z-axis Intrusion/extrusion 1

Rotational Data Features Axis Direction Number (n = 16)

Percentage of amount of rotation, relative to the sum of 
all 3 axes

Y-axis Bucco-palato/linguoversion 2
Z-axis Mesiopalatal-lingual rotation

Maximum rotations (deg) Y-axis (+) Buccoversion 2
Z-axis (–) Mesiopalatal-lingual rotation

Average rotations (deg) Y-axis (+) Buccoversion 4
Y-axis (–) Linguoversion
Z-axis (+) Mesiobuccal rotation
Z-axis (–) Mesiopalatal-lingual rotation

Variation of rotation on a single axis (deg) Z-axis Mesiobuccal/mesiopalatal-lingual rotation 1
Maximum rotational velocity (deg/s) Y-axis (+) Buccoversion 4

Y-axis (–) Linguoversion
Z-axis (+) Mesiobuccal rotation
Z-axis (–) Mesiopalatal/lingual rotation

Variation of rotational velocity on a single axis (deg/s) X-axis Mesial-distal angulation 3
Y-axis Bucco-palato/linguoversion
Z-axis Mesiobuccal-mesiopalatal/lingual rotation

X + Y + Z represents the sum of all axes. In case of rotational data (torques and all rotational data features), a rotation around the mentioned axis 
takes place.
(+), only positive values on specified axis; (–), only negative values on specified axis; AUC, area under the curve; deg, degree; deg/s, degrees per second; 
N, Newton; Nms, Newton meter second; Ns, Newton second; X-axis, buccolingual; Y-axis, mesiodistal; Z-axis, longitudinal axis.
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detailed discussion on the relevance of each feature falls out-
side the scope of this article, a few key findings are highlighted 
here. In terms of force and torque data, in each group of fea-
tures, the sum of forces and torques on all 3 axes combined was 
selected. This means that the sum of all forces and torques in 
an experiment is descriptive for classification purposes, rather 
than forces in individual directions. When looking at rotational 
and velocity data, features containing rotation around the 
Y-axis (buccoversion and/or palato/linguoversion) and around 
the axis of the tooth (Z-axis) were selected most frequently. 
This is in contrast to rotation around the X-axis (mesial and/or 
distal angulation), which was selected only once. These find-
ings seem to correlate well with our clinical experience and 
seem in accordance with the limited available textbook instruc-
tions that mostly focus on rotations or movements around the 
longitudinal axis and buccolingual axis of a tooth (Stegenga 
2013). Some of the selected features, on the other hand, are less 
well understood—for example, the selection of an average 
torque feature (mesial angulation) that does not match with an 
unselected rotational feature in the same direction. It might 
have to do with the position of the teeth; for example, a more 

mesial angulation is expected in dorsally located teeth, espe-
cially if a neighboring (mesial) tooth is absent. The latter has 
not been taken into account, and these findings need additional 
analysis in future work.

Due to the pioneering character of this study, no direct com-
parison is possible with previous literature. The available sci-
entific literature on tooth removal procedures is surprisingly 
scarce and limited to the evaluation of exerted forces using a 
variety of methodologies and heterogeneous outcomes (Ahel 
et al. 2006; Chiba et al. 1980; Dietrich et al. 2020; Lehtinen 
and Ojala 1980; Sugahara et al. 2021). When this project 
started, many uncertainties in terms of achievability existed 
(van Riet et al. 2020). One of the most important downsides to 
our data set and, therefore, our model is that the data were col-
lected ex vivo. While the participating, experienced, oral- and 
maxillofacial surgeons considered the fresh-frozen material as 
clinically representative, it is unknown in what way the freez-
ing process influences the biomechanical properties of tooth 
removal. This should be taken into account when interpreting 
our results. Due to the uncertainties that coincide with the 
development of a novel measurement setup, we aimed for 100 

Figure 3. Confusion matrix in which the cumulative predictions of the 4-fold cross-validation are presented. The training set, containing 330 teeth, is 
shown on the left side and the test set containing 110 on the right side. The center diagonal represents correctly predicted labels. L, lower; U, upper.

Table 2. Performance Metrics of the Classification Model for Both Training and Test Sets.

Characteristic Subsample 1, % Subsample 2, % Subsample 3, % Subsample 4, % Average, %

Training set n = 82 n = 82 n = 83 n = 83  
 Accuracy 84 88 86 86 86
 Precision 87 90 88 87 88
 Recall 84 88 86 86 86
 F1 score 85 88 86 86 86
Test set n = 28 n = 28 n = 27 n = 27  
 Accuracy 64 54 56 44 54
 Precision 84 61 65 44 55
 Recall 64 54 56 44 54
 F1 score 71 53 57 47 57
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successful experiments on fresh-frozen material. This should 
be considered a small data set, and its size has a strong effect 
on the strength of our model. For example, recorded metadata 
such as periodontal health, root length, or type of surgeon 
could not be incorporated in this model, nor could differences 
in outcome be evaluated. Also, radiological metadata were 
unavailable, which could contain relevant variables, such as 
bone density, which is preferable to incorporate in future 
research initiatives.

With currently available technology, it will be very chal-
lenging to gain the same quality of data in a clinical situation. 
Efforts should nevertheless be made to correlate results found 
in fresh-frozen cadavers to the clinical situation. Moreover, a 
translation should be made between this theoretical model and 
clinical use. Two possibilities are discussed. First, improved 
(evidence-based) preclinical educational methods can be 
developed. Previous scientific efforts also had educational rea-
sons at heart (Lehtinen and Ojala 1986; Sugahara et al. 2021). 
The authors are planning to enhance the measurement setup to 
a much simpler version that is to be used for dental training. 
Using a force/torque sensor, students are able to receive direct 
feedback on their performance while practicing on plastic or 
cadaver models. Results of this study can be used to decide 
which feedback (or which feature) is most relevant during 
removal of specific teeth, to optimize force-based learning 
methods (Hardon et al. 2018). Data from this study might also, 
in the near future, be useful in the development of virtual learn-
ing methods in an evidence-based manner. Second, it could be 
evaluated if metadata, after enlarging the database, can be used 
to develop a clinically relevant classification for expected 
tooth removal complexity. This, potentially, could help the cli-
nician to decide whether referral for an extraction is deemed 
necessary, based on their own competences.

Concluding, this article discussed the design and perfor-
mance of a multiclass classification model for tooth removal. 
Despite the relatively small data set, the quality of the data was 
sufficient to develop a first model with reasonable performance. 
The results presented in this article can be considered a strong 
first step toward an improved understanding of these complex 
procedures. This improved understanding could potentially aid 
in the development of evidence-based educational material and 
clinical guidelines for tooth removal in the near future.
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