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Abstract: Background: Incidence of pelvic ring fractures has increased over the past four decades, es-
pecially after low-impact trauma—classified as fragility fractures of the pelvis (FFP). To date, there is
a lack of biomechanical evidence for the superiority of one existing fixation technique over another.
An FFP type IIc was simulated in 50 artificial pelvises, assigned to 5 study groups: Sacroiliac (SI)
screw, SI screw plus supra-acetabular external fixator, SI screw plus plate, SI screw plus retrograde
transpubic screw, or S1/S2 ala–ilium screws. The specimens were tested under progressively increas-
ing cyclic loading. Axial stiffness and cycles to failure were analysed. Displacement at the fracture
sites was evaluated, having been continuously captured via motion tracking. Results: Fixation with
SI screw plus plate and SI screw plus retrograde transpubic screw led to higher stability than the
other tested techniques. The S1/S2 ala–ilium screws were more stable than the SI screw or the SI
screw plus external fixator. Conclusions: In cases with displaced fractures, open reduction and plate
fixation provides the highest stability, whereas in cases where minimally invasive techniques are
applicable, a retrograde transpubic screw or S1/S2 ala–ilium screws can be considered as successful
alternative treatment options.

Keywords: pelvic ring fracture; external fixator; retrograde transpubic screw; S1/S2 ala–ilium screws;
biomechanics

1. Introduction

Incidence of pelvic ring fractures has increased over the past four decades, as has
the number of related operative treatments, particularly in the older population [1–4].
In young patients, these fractures are mainly caused by high-impact trauma, whereas in
older patients they can result from low-energy falls [5,6]. The AO/OTA classification relies
on the Tile classification, and distinguishes between stable, partially stable, and unstable
pelvic fractures. By contrast, fractures in fragile pelvic bones without a high-impact
injury mechanism—ranging between low-energy trauma and physiological stress—are
defined as fragility fractures of the pelvis (FFP) [7]. The most frequently observed FFP
types are type IIb—having a non-displaced sacral fracture with anterior disruption—and
type IIc—representing non-displaced sacral, sacroiliac, or iliac fractures with anterior
disruption [7]. Fractures of the superior pubic ramus, with simultaneous disruption of
the posterior pelvic ring, result in an unstable pelvic ring. The main treatment goals in
these patients are pain reduction and rapid return to mobility [5,8]. Currently, little is
known about the necessity of addressing concomitant fractures of the anterior and/or
posterior pelvic ring [9] in FFP type II injuries, nor which surgical technique results in
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the most stable solution. Different fixation methods have been described, being applied
alone or in combination, including the use of a sacroiliac (SI) screw—addressing only the
posterior pelvic ring—as well as an external fixator, transpubic screw, or a plate, in order
to stabilise the anterior pelvic ring, with each method having its own advantages and
disadvantages [8,10] (Figure 1).
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Figure 1. Fixation failure in a 66-year-old patient 3 months after osteosynthesis of a pelvic ring
fracture with a vertical fracture of the sacrum ((FFP) type IIc). The anterior ring was addressed with
an external fixator, whereas the posterior pelvic ring was addressed with an SI screw.

To date, there is a lack of evidence for the superiority of one existing technique over
another [8]. Therefore, the aim of the present study was to investigate the biomechanical
competence of five fixation techniques for FFP type II pelvic injuries. It was hypothesised
that plate fixation of the anterior pelvic ring would be biomechanically superior to both
supplemental external and transpubic screw fixations, as well as to use of standalone S1/S2
ala–ilium screws.

2. Materials and Methods

An FFP type II was simulated at the right side of 50 artificial pelvises (osteoporotic
bone model #LS4060, Synbone, Zizers, Switzerland), as presented in Figure 2. The anterior
pelvic ring fractures lines were created via vertical osteotomies of the superior and inferior
pubic ramus, located 2 cm laterally to the pubic tubercle (Figure 2).

The injury of the posterior pelvic ring was simulated by a paraforaminal transverse
osteotomy of the os sacrum through the midline between the medial osseous frontier of
the SI joint and the lateral osseous frontier of the first anterior sacral foramen in zone 1,
according to the work of Denis et al. [11] (Figure A1). All osteotomies were set using the
same saw cut template. The pelvises were assigned to 5 groups, consisting of 10 specimens
each, for application of the following fixation methods (Figure 3): one SI screw (group 1,
SI screw group), one SI screw plus a supra-acetabular external fixator (group 2, external
fixator group), one SI screw plus a plate fixation of the superior pubic ramus (group 3,
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plate group), one SI screw plus one retrograde transpubic screw (group 4 transpubic screw
group), and the S1/S2 ala–ilium screws (group 5, S1/S2-ala-ilum group).
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Figure 2. Anterior view of an artificial pelvis with anterior and posterior osteotomies simulating type
II fragility fracture of the pelvis, and optical markers for motion tracking during biomechanical testing.
The pubic symphysis and the contralateral (left) sacroiliac joint are bonded with coarse-threaded
screws for specimen standardization and stiffening.
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(1) plus supra-acetabular external fixator (2); (C) group 3: SI screw (1) plus plate fixation (3); (D) group 4: SI screw (1) plus
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Fracture reduction and fixation in the study groups was performed as follows:
In groups 1–4 predrilling for the SI screw insertion was performed with a 5.0 mm

drill bit using a customised polymethylmethacrylate (PMMA, Beracryl, Suter-Kunststoffe
AG, Fraubrunnen, Switzerland) aiming guide. A cannulated, fully threaded 7.5 × 90 mm
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titanium SI screw (Axomed GmbH, Freiburg, Germany) was inserted for fixation of the
posterior ring. In addition, a 5.0 mm supra-acetabular external fixator (DePuy Synthes,
Zuchwil, Switzerland,) was applied in group 2 to address the anterior fracture, using a
standardised customised PMMA guide to predrill the entry points of the 5.0 mm Schanz
screws with a 3.5 mm drill bit. The Schanz screws were inserted over the entire length
of their thread. The anterior fracture in group 3 was addressed with a 4.5 mm 10-hole
dynamic compression plate (DCP) made of stainless steel (DePuy Synthes) and precisely
precontoured to the shape of the bone to ensure optimal implant fit. The plate position was
standardised for each specimen (Figure A7), and 5 cortical 4.5 mm titanium screws were
used for its fixation. The lateral screws were implanted supra-acetabular. The fracture of the
anterior ring in group 4 was fixed with a 4.5 × 70 mm titanium retrograde transpubic screw
(Axomed GmbH). Predrilling was performed with a 3.5 mm drill bit using a customised
PMMA guide. In group 5—with no implementation of SI screw fixation—predrilling for the
S1 pedicle screw insertion in the first sacral vertebral body was performed with a 5.0 mm
drill bit, while predrilling for the S2 ala–ilium screw in the second sacral vertebral ala was
performed with a 6.0 mm drill bit [12,13]. Fixation was achieved by inserting a 7.2 × 35 mm
S1 pedicle screw and an 8.2 × 100 mm S2 ala–ilium screw, both made of titanium and
connected with a 5.5 mm titanium rod (Silony Medical Europe GmbH, Bremen, Germany).
Screw channels were set using a customised PMMA guide (Figures A2–A6).

In all groups, the pubic symphysis of each specimen was bonded with coarse-threaded
screws for standardisation and stiffening (Figure 2) [14]. Instrumentation of all specimens
was performed by the first and third authors with a radiological control after each main
procedure step. Using an electronic torque screwdriver (PB 8320 A 0.4–2.5, PB Swiss Tools,
Wasen/Bern, Switzerland), a standardised torque for screw tightening was set at 1.5 Nm for
the SI screws, DCP screws, and S1/S2 ala–ilium screws, and at 0.5 Nm for the retrograde
transpubic screw. Optical markers were glued onto the medial and lateral aspects of the
fracture site of each sacrum and superior ramus, as well as at the right SI joint for motion
tracking (Figure 2).

2.1. Biomechanical Testing

Biomechanical testing was performed on a servo-hydraulic material testing system
(858 Bionix MTS Systems Corp., Eden Prairie, MN, USA) equipped with a 4 kN load
cell in a setup simulating a one-legged stance position with applied load at the right
hemipelvis (Figure 4) [15–17]. Standardisation of the hip joint loading mechanics was
performed by using a unipolar hemiarthroplasty, attached to a PMMA-potted acetabular
cup, the latter being press-fit fixed to the specimen. Proximally, each central body of the
sacrum was fixed through a PMMA cast to an L-shaped profile featuring a radiolucent
posterior section made of cotton laminates (Canevasite, HBW 2088, Amsler & Frey AG,
Schinznach-Dorf, Switzerland) via two screws plus washers applied through the first row
of its neuroforamina, thus allowing for anteroposterior radiographic imaging. The L-frame
was connected to the load cell and the machine actuator via a hinge joint, enabling free
rotation around the longitudinal anatomical axis. The specimens were aligned to the
machine axis so that an axial compression force was applied through the centre of the S1
vertebral body [15]. Distally, the hemiarthroplasty was rigidly constrained to the machine
base via a socket brace.

The loading protocol comprised an initial quasi-static ramp from an unloaded con-
dition at 0 N to a 50 N preload. Subsequently, the specimens were tested until construct
failure, applying progressively increasing cyclic loading with a physiological load profile
of the cycles at 1 Hz. Starting from 50 N, the peak load of each cycle increased at a rate of
0.01 N/cycle, whereas the valley load was maintained at a constant level of 10 N. Test stop
criterion was set to 30 mm displacement of the machine actuator.
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specimen, including optical tracking markers (6).

2.2. Data Acquisition and Analysis

Axial stiffness was calculated from the ascending slope of the ramped load–displace-
ment curve between 20 and 40 N. Machine data in terms of axial load and displacement
were obtained from the controllers at 64 Hz. Interfragmentary displacements at the fracture
sites were continuously captured via motion tracking at 50 Hz using an ARAMIS SRX cam-
era system (ARAMIS, GOM GmbH, Braunschweig, Germany) and optical markers glued to
the specimens. Interfragmentary rotations around the three principal axes–corresponding
to the anatomical axes–were analysed [15]. Interfragmentary displacements at the ante-
rior and posterior pelvic ring fracture sites (Figure A9; distance 4 and distance 6) were
calculated after 500 cycles–being too big for capturing by the system cameras after higher
number of cycles in groups 1 and 2. Cycles to failure, failure load and mode of failure of all
specimens were evaluated with regard to the test stop criterion.

Statistical analysis among the parameters of interest was performed using IBM SPSS
Statistics (v.23, IBM, Armonk, NY, USA). Normality of data distribution was checked with
Shapiro–Wilk test. Univariate analysis of variance (ANOVA) with Bonferroni post-hoc tests
for multiple comparisons and Kruskal–Wallis test with Bonferroni correction for multiple
comparisons were applied to detect significant differences among the study groups in case
of normality and non-normality of data distribution, respectively. Level of significance was
set at 0.05 for all statistical tests.

3. Results

Outcome measures of the investigated parameters of interest in the study groups
are summarised in Tables 1 and 2. Results from the multiple comparisons are listed in
Appendix A (Tables A1–A4). Axial stiffness and cycles to failure demonstrated normal data
distribution, whereas displacements at the fracture sites were not normally distributed.
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3.1. Axial Stiffness

Greatest initial axial stiffness was observed in the S1/S2 ala–ilium group (18.76 ± 5.77 N/mm),
compared to all other groups (p < 0.01) (Table 1, Figure 5). Axial stiffness in the transpubic
screw group (9.10 ± 2.44 N/mm) was significantly greater compared to the SI screw group
(3.79 ± 1.60 N/mm) (p < 0.01). Axial stiffness in the plate group (8.18 2.81 ± N/mm) was
greater compared to the SI screw group 1 (3.79 ± 1.60 N/mm); however, this difference was
not significant (p = 0.06). No further significant differences regarding axial stiffness were
detected (p > 0.71).
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3.2. Cycles to Failure

Cycles to failure were greatest in the plate group (7647 cycles) and in the transpubic
screw group (8237 cycles) compared to all other groups (p < 0.01) (Table 1, Figure 6).
Furthermore, cycles to failure were significantly higher in the S1/S2 ala–ilium group
(3863 cycles) compared to the SI screw group (856 cycles) (p < 0.01) and compared to the
external fixator group (1879) (p = 0.03). No significant differences regarding cycles to failure
were detected between the SI screw group (856 cycles) and the external fixator (1879 cycles)
groups (p > 0.999).

Table 1. Outcome measures for axial stiffness and cycles to failure.

Groups 1–5 Initial Axial Stiffness [N/mm] Cycles to Failure

SI screw (1); mean (SD) 3.79 (1.60) 856 (470)

SI screw plus supra-acetabular external fixator (2); mean (SD) 6.52 (2.11) 1879 (1027)

SI screw plus plate fixation (3); mean (SD) 8.18 (2.81) 7647 (2248)

SI screw plus a retrograde transpubic screw (4); mean (SD) 9.10 (2.44) 8237 (1399)

S1/S2 ala–ilium screw fixation (5); mean (SD) 18.76 (5.77) 3863 (1476)
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3.3. Fracture Displacement

The plate group, the transpubic screw group, and the S1/S2 ala–ilium group had
significantly less displacement at the anterior fracture sites compared to the SI screw group
and the external fixator group (p ≤ 0.01) (Table 2).

Table 2. Outcome measures for displacement at the fracture sites, shown in terms of median and interquartile range (IQR).

Groups 1–5 Anterior Displacement at
500 Cycles [cm]

Posterior Displacement at
500 Cycles [cm]

SI screw (1); median (IQR) 5.74 (1.43–8.14) 0.41 (0.16–0.67)

SI screw plus supra-acetabular external fixator (2); median (IQR) 4.33 (2.42–6.27) 0.30 (0.16–0.43)

SI screw plus plate fixation (3); median (IQR) 0.01 (0.00–0.02) 0.00 (0.00–0.11)

SI screw plus a retrograde transpubic screw (4); median (IQR) 0.01 (0.00–0.01) 0.00 (0.00–0.04)

S1/S2 ala–ilium screw fixation (5); median (IQR) 0.00 (0.00–0.15) 0.00 (0.00–0.01)

Regarding the displacement at the posterior fracture site, the plate group and the
transpubic screw group had significantly less displacement compared to the SI screw group
(p ≤ 0.04). Furthermore, the S1/S2 ala–ilium group had significantly less displacement at
the posterior fracture site compared to the SI screw group and the external fixator group
(p ≤ 0.01).

The failure mode for all specimens of the SI screw group and the external fixator group
was similar (Figure 7), as follows: the machine transducer reached 30 mm displacement
with failure of the anterior and posterior pelvic ring. The failure mode for all specimens
of the plate group and the transpubic screw group was also comparable (Figure 7), as fol-
lows: the machine transducer reached 30 mm displacement with failure of the posterior
pelvic ring. The failure mode for all specimens of the S1/S2 ala–ilium group was similar,
with failure of the anterior and posterior pelvic ring and the machine transducer reaching
30 mm displacement. No implant breakage or screw loosening were observed.
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4. Discussion

In the current study, the techniques using SI screw plus plate fixation and SI screw
plus retrograde transpubic screw achieved greatest overall stability. Thus, the hypothesis
that supplemental plate fixation of the anterior pelvic ring would be superior to both the
supplemental external fixation and the standalone S1/S2 ala–ilium screws was confirmed.
However, no significant differences were found between the SI screw plus plate fixation
and SI screw plus retrograde transpubic screw techniques. The S1/S2 ala–ilium screws
achieved the greatest initial axial stiffness of all of the tested techniques, and were superior
both to the SI screw alone and to the SI screw plus supra-acetabular external fixator.

In general, non-operative treatment of FFPs is considered to be associated with fewer
complications than operative treatment [18], though it is reported that the two-year survival
rate is significantly higher in older patients with surgically fixated pelvic fractures [19].
The choice of treatment for an FFP depends on the possibility of mobilising the patient [8].
Re-establishing mobility with as little additionally morbidity as possible, as well as shorter
duration of the surgical procedures, are both crucially important [8]. It has been shown
that the percutaneous SI screw insertion is a safe and effective surgical procedure for
stabilisation of the posterior pelvic ring [20]. However, there is insufficient evidence in the
literature for the superiority of one of existing fixation technique over another [8], and it
remains unclear whether simultaneous stabilisation of the anterior pelvic ring should be
performed in anterior and posterior pelvic ring injuries [9], although this is recommended
from a clinical point of view [10].

The present study demonstrated that the simultaneous stabilisation of the anterior
and posterior pelvic ring increased the overall pelvic ring stability, and that anterior plating
or the use of a retrograde transpubic screw led to substantially less displacement of the
anterior pelvic ring, and therefore to higher stability compared with all of the other tested
techniques. These findings are consistent with the results of previous biomechanical studies.
In human cadaveric type C pelvis fractures, internal fixation (sacral bars, SI plates, screws, etc.)
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in addition to external fixation led to significantly greater stability [21]. For cadaveric sacral
fractures, Stocks et al. [22] demonstrated that anterior plating in combination with posterior
rods was significantly more stable than sacral rods with an anterior Hoffmann frame. Further
evidence showing the biomechanical importance of simultaneous stabilisation is brought by
the fact that the S1/S2 ala–ilium screws lost more overall fixation strength over time than both
of the methods with concomitant internal fixation of the anterior pelvic ring. This result is in
agreement with a previous biomechanical study showing the significant increase of overall
stability when an anterior plate is used simultaneously with a lumbopelvic fixation [23].

No significant differences between anterior plating and retrograde transpubic screw
were found in the present study. This result is consistent with the biomechanical results of
the previous study of Simonian et al. [24]. In cadaveric specimens, plating and retrograde
transpubic screws were biomechanically comparable in addressing simulated APC-II pelvic
ring injuries. In a further biomechanical study, using synthetic pelvic bone models and
simulating type C pelvic ring fracture, the fixation with retrograde transpubic screw was
also biomechanically equivalent to the plate fixation [14].

The greatest initial axial stiffness in the present study was achieved using S1/S2
ala–ilium screws. Previous biomechanical studies testing lumbosacral fixation methods
reported comparable results. Cunningham et al. [25] tested different fixation methods on
reported porcine lumbosacral spines, showing that the iliac screw construct was the most
restrictive with respect to the motion at the lumbosacral joint. Jazini et al. [23] performed a
biomechanical study on the role of lumbopelvic fixation in sacral fractures in cadaveric spec-
imens. Lumbopelvic fixation in combination with a transiliac–transsacral screw resulted in
the least amount of motion [23]. However, the used S1/S2 ala–ilium screws technique in
this study was restricted to sacral fixation, without including the lumbar spine, as described
elsewhere [12]. The S1/S2 ala–ilium screws were significantly superior in terms of cycles
to failure, corresponding failure load, and initial axial stiffness compared to the posterior
SI screw alone and to the SI screw plus supra-acetabular external fixator. In displaced un-
stable pelvic ring injuries, external fixation fails to provide sufficient posterior compressive
force [26,27]. Gardner et al. [28] demonstrated in their biomechanical study simulating a
symphyseal and unilateral sacroiliac joint disruption in synthetic pelvises that a standard
two-bar external fixation did not apply any compression across the sacroiliac joint. In a
clinical study, the minimally invasive S2 ala–ilium screw fixation has been described as a
successful treatment option for pelvic trauma [12]. This technique might be a successful
treatment option for FFP type IIc. Further clinical data approving the biomechanical data
are missing. However, the treatment of geriatric pelvic ring fractures with a percutaneous
SI screw and external fixator for the anterior ring is clinically recommended [10,19,29].

From a clinical point of view, some authors prefer less invasive techniques when
treating elderly patients with FFPs, including using transpubic screws [8]. Surgical treat-
ment complications are mainly approach-related, and occur in up to 30% of cases [10].
Therefore, minimising the surgical approach reduces the rate of complications [8,10]. In the
presence of dislocated anterior pelvic ring fractures, open approaches and reduction are
necessary. However, anatomical reduction in the elderly is considered to be unnecessary,
and manipulation with a short screw can be performed [30,31]. Furthermore, most superior
pubic ramus fractures can be treated minimally invasively using a retrograde transpubic
screw [32]. Our results demonstrating the biomechanical equality of plating and retro-
grade screw fixation may contribute to this discussion, and hopefully facilitate clinical
decision making.

The most notable limitation of this biomechanical study is the use of synthetic bones
without soft tissue, muscles, and in particular ligaments, which may have resulted in
outcomes differing from those compared to human cadaveric pelvises [33–35]. Simulating
an FFP type II via an osteotomy of the anterior and posterior pelvic ring as described
above most closely corresponds to an FFP type IIc. However, the fractures set via a saw
cut are different from fractures resulting from low-energy trauma. Pre-testing showed the
necessity of bonding the symphysis in order to increase the stability of the models [14].
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The curved rod of the external fixator [36] was necessary in order to ensure compatibility
with motion tracking. Fracture displacements were measured after 500 cycles only—being
too big for capturing by the system cameras after higher number of cycles in groups 1 and 2.
However, synthetic bones have less inter-specimen variability compared with their organic
counterparts, thus reducing the heterogeneity in size and bone quality [28]. Another
strength of this study is the large number of tested specimens (Figure A8). Furthermore,
a high reliability of the conducted procedures was achieved using standardised methods,
such as individually customised PMMA guides for osteotomy setting and implantation
(Figures A1–A8).

However, a further biomechanical study using human cadaveric specimens is needed
in order to confirm the results of the present study. Furthermore, clinical studies comparing
the examined techniques might validate the results of the present study.

All in all, the present biomechanical study showed that the minimally invasive tech-
niques were as stiff and stable during dynamic testing as the more invasive plating tech-
nique, and could help in find the optimal choice for the treatment of FFP.

5. Conclusions

In the present model, the simultaneous fixations of the anterior and posterior pelvic
ring provided higher overall stability. The use of external fixator increased the overall
stability to some extent. The SI screw plus plate fixation and the SI screw plus retrograde
transpubic screw led to higher stability than the other tested techniques. The S1/S2
ala–ilium screws were more stable than both the SI screw alone and the SI screw plus
external fixator. The results of the present study could help find the optimal choice for
treatment of FFP type II, showing excellent biomechanical competence of the minimally
invasive techniques. In cases with displaced fractures, open reduction and fixation with a
plate provides the highest stability, whereas in cases where minimally invasive techniques
are applicable, the retrograde transpubic screw and the S1/S2 ala–ilium screws can be
considered as successful alternative treatment options.
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Figure A7. Plate positioning in group 3 was marked on each separate specimen to ensure a homoge-
neous implant position. Optical markers were glued on the medial and lateral aspects of the fracture
site of each sacrum and superior ramus, as well as at the right SI joint for motion tracking.
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Figure A9. Interfragmentary displacements at the fracture sites were continuously captured via
motion tracking at 50 Hz using the ARAMIS SRX camera system.

Table A1. Results from the multiple comparisons between the group pairs for cycles to failure. The
mean differences in cycles to failure between the group pairs are listed together with the standard
deviations. The level of significance was set at 0.05 and the p-values are listed in the last table column.

Multiple Comparisons Cycles to Failure

Group Group Mean SD p

1

2 −1023 636 1.00

3 −6792 654 0.00

4 7381 636 0.00

5 −3007 636 0.00

2

1 102 636 1.00

3 −5768 654 0.00

4 −6358 636 0.00

5 −1984 636 0.03
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Table A1. Cont.

Multiple Comparisons Cycles to Failure

Group Group Mean SD p

3

1 6792 654 0.00

2 5768 654 0.00

4 −590 654 0.00

5 3785 654 0.00

4

1 7381 636 0.00

2 6358 636 0.00

3 590 654 1.00

5 4374 636 0.00

5

1 3007 636 0.00

2 1984 636 0.03

3 −3785 654 0.00

4 −4374 636 0.00

Table A2. Results from the multiple comparisons between the group pairs for axial stiffness. The
mean differences in axial stiffness between the group pairs are listed together with the standard
deviations. The level of significance was set at 0.05 and the p-values are listed in the last table column.

Multiple Comparisons Axial Stiffness [N/mm]

Group Group Mean SD p

1

2 −2.73 1.48 0.71

3 −4.40 1.52 0.06

4 −5.33 1.48 0.01

5 −14.97 1.48 0.00

2

1 2.73 1.48 0.71

3 −1.66 1.52 1.00

4 −2.60 1.48 0.86

5 −12.24 1.48 0.00

3

1 4.39 1.52 0.06

2 1.66 1.52 1.00

4 −0.94 1.52 1.00

5 −10.58 1.52 0.00

4

1 5.33 1.48 0.01

2 2.60 1.48 0.86

3 0.94 1.52 1.00

5 −9.65 1.48 0.00

5

1 14.97 1.48 0.00

2 12.24 1.48 0.00

3 10.58 1.52 0.00

4 9.65 1.48 0.00
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Table A3. Results from the multiple comparisons between the group pairs for the mean differences
in anterior displacement. The level of significance was set at 0.05 and the p-values are listed in the
last table column.

Multiple Comparisons Anterior Displacement [cm]

Groups Displacement p

4-3 0.08 1.00
4-5 −0.40 1.00
4-1 18.70 0.03
4-2 21.50 0.01
3-5 −0.32 1.00
3-1 18.62 0.05
3-2 21.42 0.01
5-1 18.30 0.04
5-2 21.10 0.01
1-2 −2.80 1.00

Table A4. Results from the multiple comparisons between the group pairs for the mean differences
in posterior displacement. The level of significance was set at 0.05 and the p-values are listed in the
last table column.

Multiple Comparisons Posterior Displacement

Groups Displacement [cm] p

5-3 4.67 1.00
5-4 5.00 1.00
5-2 21.10 0.01
5-1 23.60 0.00
3-4 −0.33 1.00
3-2 16.43 0.12
3-1 18.93 0.04
4-2 16.10 0.12
4-1 18.60 0.04
2-1 2.50 1.00
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