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Abstract: We introduce a “Rheo-chip” prototypical rheometer which is able to characterise model
fluids under oscillatory flow at frequencies f up to 80 Hz and nominal strain up to 350, with sample
consumption of less than 1 mL, and with minimum inertial effects. Experiments carried out with
deionized (DI) water demonstrate that the amplitude of the measured pressure drop ∆PM falls below
the Newtonian prediction at f ≥ 3 Hz. By introducing a simple model which assumes a linear
dependence between the back force and the dead volume within the fluid chambers, the frequency
response of both ∆PM and of the phase delay could be modeled more efficiently. Such effects need to
be taken into account when using this type of technology for characterising the frequency response
of non-Newtonian fluids.

Keywords: microfluidic rheometry; high frequency characterisation; LAOS

1. Introduction

Characterising the mechanical response of low-viscosity (µ = 10−3–0.1 Pa·s) complex
fluids at high frequencies is of great utility for understanding a wide number of industrial
processes. In drop-on-demand inkjet printing, droplets are generated or deposited at
frequencies f on the order of KHz [1]. The presence of high molecular weight polymer
additives in the dilute or semi-dilute unentangled regime results in a longest relaxation
time λ on the order of 0.1–1 ms [2–6], such that the characteristic Deborah number of the
inkjet process is De = λω ≤ 25, where ω = 2π f . Over such range of f, the viscoelasticity of
the polymer solution has a profound impact on the printing process because it suppresses
the formation of small satellite droplets, and causes the onset of long-lived filaments [7].
Understanding the high-frequency behaviour of complex fluids is also important for the
biopharmaceutical industry. Dense solutions of proteins of medical use, such as monoclonal
antibodies, create sample-spanning networks under attractive conditions, which in turn
give rise to nonlinear rheological behaviour [8–11]. The elastic modulus of such protein
solutions measured at frequencies on the order of kHz has been demonstrated to correlate
well with the strength of the protein–protein attractive interactions [12–14].

Due to inertial effects, conventional rotational rheometers can characterise the vis-
coelastic response of low-viscosity fluids only in the limit of low frequencies. For example,
in the case of a cone and plate or plate-plate geometry with radius R1 = 30 mm, the Reynolds
number Re = γωR2

1/ν where ν = 10−6–10−4 m2/s and γ ≈ 0.01, is on the order of unity
for f on the order of a few Hz. To overcome this problem, the Piezoelastic Axial Vibrator
(PAV) has been developed [15]. By applying a squeeze flow to the tested sample, the PAV is
able to produce a viscoelastic characterisation of complex fluids up to 103 Hz, while the
required sample volume is ≈100 µL. However, the PAV also involves the presence of a
fluid/air interface, which is disadvantageous as it might induce the formation of aggregates
if amphiphilic molecules (i.e., proteins) are dissolved in the sample fluid. From this view-
point, the use of microfluidic channels with plasma-treated internal surfaces eliminates
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the presence of an open interface, while the amount of required fluid can in principle be
reduced up to a few nanolitres.

Additionally, microfluidics offer the possibility of studying the viscoelastic behaviour
of low-viscosity complex fluids over a range of frequencies approximately one order
of magnitude higher than what is achievable by rotational rheometers. For oscillatory
flows through straight ducts and with zero mean speed, the relative importance of in-
ertial effects with respect to viscous forces is quantified by the Womersley number [16],
Wo = DH

√
ω/ν . For Wo >> 1, inertial effects dominate the flow. In the case of mi-

crofluidic channels, where DH is on the order of 100 µm, Wo is low or moderate up to
f = 100 Hz, approximately [17].

Another advantage is represented by the maximum amplitude of the imposed strain.
Most of the solutions previously adopted in the literature to generate an oscillatory flow
rely on the use of piezo actuators which pump fluids through a reservoir by means of a
membrane, and then through the microchannel. Since the membrane radius is usually
R ≈ 5 mm, a strain amplitude γ = R2dM/D3

H ≈ 103 for a membrane displacement
amplitude dM = 50 µm can in theory be achieved. Because these values of γ are well above
the maximum obtainable by conventional rotational rheometers, we see that microfluidics
offer allow studying low-viscosity fluids under Large Amplitude Oscillatory Strain (LAOS)
flows over an essentially unexplored region of the f − γ diagram [18].

In the recent years, several authors have studied the high frequency behavour of
microfluidic devices obtained by combining piezo actuators and membranes with straight
channels [17], fluid chambers [19] or cross-slot flow geometries [20]. At the best of our
knowledge, methods specifically aimed at studying high-frequency LAOS of complex fluids
have not yet been proposed. In this work, we present a microfluidic prototype which aims
at characterising low-viscosity complex fluids under oscillatory shear flow over a range of
f = 0.05–80 Hz, and nominal strain 20 ≤ γ ≤350. The technology is hereby validated using
a Newtonian fluid, in order to evaluate the optimum window of f and γ that could be used
for rheometric purposes.

2. “Rheo-Chip” Setup for Oscillatory Flow Measurements in Microfluidics

In this work, we use a prototype based on the “Rheo-chip” technology [21,22] specifi-
cally developed for performing rheometric measurements in oscillatory flow. The core part
of the device is a polymethil metaacrylate (PMMA) microfluidic chip made by standard
soft lithography methods (Epigem LTD, Redcar, UK). A schematic detail of the device is
given in Figures 1 and 2. The microchip features a straight channel with a rectangular
cross section (w = 800 µm, h = 50 µm) along which two pressure sensors PS1 and PS2
(range 0–30 psi, from Honeywell, Charlotte, NC, USA) are placed to read the pressure drop
∆P = P0 − P1 along a distance L = 30 mm. The chip also comprises two fluid chambers,
which serve for hosting two thin aluminum membranes (thickness = 0.25 mm) which are
used to drive the motion of the sample. Each one of the two fluid chambers comprises
sidewise extra inlets and outlets which are used to completely fill the chambers with sample
before the experiments are run (see the caption of Figure 1). Both the pressure sensors
were located at a distance LP = 25 mm from the fluid chambers, which excludes entry
effects on the measured ∆P (LP/h >>1). The total sample volume, obtained by summing
the volume of the two chambers with that of the microfluidic channel, is approximately
0.5 mL. The microchips were treated with oxygen plasma to make the internal surface
hydrophilic. The aluminum membranes were connected to two PI 841.30 piezoelectric
actuators (Physik Instrumente GmbH, Eschbach, Germany) equipped with strain gauges
for measuring the actuator displacement. The actuators have a travel range = 52 µm,
a resonant frequency = 10 kHz with no load, and a resolution of the displacement of ap-
proximately 5.2 µm per applied volt. The piezo actuators were coupled with a PI E-500
10:1 voltage amplifier. The amplifier, the strain gauges from the piezos and the pressure
sensors were then connected to a NI-cRIO controller (National Instruments, Austin, TX,
USA). It generates signals with a maximum amplitude of 1 V and a sampling rate much
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larger than the frequency, and acquires the actuators’ displacement and the pressure drop
signals. The voltage signals sent from the controller to the amplifier are two sine waves
in anti-phase with each other, so that the corresponding displacements of the A1 and A2
actuators can be written as d1(t) = dM sin(ωt) and d2(t) = dM sin(ωt + π), that is, the two
actuators worked in a “push-and-pull” modality.

Before connecting the actuators to the microfluidic chips, it is important to test their
performance when no back force is applied. In Figure 3, the dM of the A1 actuator at
a fixed amplitude of the applied voltage (0.1 V), is plotted versus f. The measurements
were performed with both the strain gauge and a PI ECS75 capacitive sensor, and a close
agreement between the two techniques was found. dM is linear versus f up to 80 Hz
ca., and then it quickly decays with f for larger values of the imposed frequency. All the
experiments presented in this work were carried out with DI water at 25 ◦C (µ = 10−3 Pa·s,
ρ = 103 Kg/m3, ν = µ/ρ = 10−6 m2/s).

Figure 1. A 3D model of the Rheo-chip prototype for oscillatory flow. The microfluidic chip, labeled
as MC in the Figure, is connected to the two piezo actuators A1 and A2 by means of the membranes
M1 and M2. Before the experiments, the microchip is flipped by 90 degrees, and the test fluid is
loaded from a container into the fluid chambers 1 and 2 by means of the metallic tips T1 and T2
and the syringes S3 and S4. After that, the valves V3, V4, V5 and V6 are closed. To perform the
experiments, the syringe S1 is also loaded with the test fluid, and then the fluid is pushed through
the microchannel. Before the experiment starts, the valves V1 and V2 are also closed. During the
experiments, the PS1 and PS2 sensors measure the P0 and P1 gauge pressures respectively, so that
∆P = P0 − P1 is obtained.
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Figure 2. The details of one of the two fluid chambers.

Figure 3. The amplitude of displacement of the A1 actuator as measured by the strain gauge (black)
and by the ECS75 sensor (red) for an applied voltage of 0.1 V is plotted as a function of f. In the inset,
the experimental setup of the ECS75 coupled with the piezo is shown: here, 1 is the actuator, 2 is the
membrane, 3 is the ECS75 sensor, and 4 is the sensor holder.

3. Results and Discussion
3.1. Strain Dependence of Pressure Drop at Low Frequency

In Figure 4a, the pressure drops of DI water are plotted versus t for one actuation
cycle at 1 Hz, and for three different amplitudes of the imposed displacement. We estimate
that the Womersley number Wo = h

√
ω/ν ≈ 0.1 at such f. The phase angle φexp. is

approximately 90 degrees, which is expected for Newtonian fluids.
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The measured ∆PM and φexp. are compared with the theoretical prediction given
by Morris and Forster [17]. They derived an approximate expression for the impedance
Z̃N = ∆̃P/Q̃ of oscillatory flows through rectangular ducts as

Z̃N = RN + iωIN, (1)

where the resistance

RN =
3µL

4wh3α4

(
1− 192α

π5K

)
, (2)

with α = w/h, is given by the steady state flow prediction due to White [23], and the
inertance

IN =
ρL
αh2 (3)

takes the flow inertia into account. In the case of α = 1, the simplified expression of Z̃ ob-
tained from Equations (1)–(3), resulted in being very close to the exact form obtained by solv-
ing the Navier–Stokes equations for oscillatory flow through straight ducts up to Wo ≈ 102.
Based on such model, the theoretical ∆PM,t is here computed as ∆PM,t =

∣∣∣Z̃N

∣∣∣QM, where
QM = hwAexp.2π f , Aexp. = kdM, and k is a fitting parameter. As shown in Figure 4a,
the best fit of the ∆PM data at 1 Hz is obtained for k = 166.3, while φexp. resulted to be

slightly below the theoretical φN = arg
(

∆̃P
)

. The inset of the Figure also shows the signal
to noise ratio S/N, which is computed as

S/N =
|∆PM|

σ
, (4)

where σ is the standard deviation of the residual of the fitting of the ∆P versus t data
with a simple sinusoidal wave. We obtain 10 ≤ S/N ≤ 60 for the data shown here, which
demonstrates that the measured signal is always well above the sensitivity of the pressure
sensors. Additionally, we also estimate an experimental amplitude of the fluid strain as
γexp. = 2Aexp./h and compare it with the theoretical one, γt = 2At/h in Figure 5. At is
hereby calculated assuming that the portion of the membrane covering the fluid displaces
in a piston-like manner, i.e., At = πdMD2

c /4hw . We obtain that γexp. is very close to γt.

3.2. The Frequency Dependence of Pressure Drop Measurements Is Not Captured by the
Newtonian Prediction

Having demonstrated that the measurements at low frequency closely resemble the
Newtonian prediction, we now turn to the f dependence of the pressure drop. The ∆P ver-
sus t data are plotted in Figure 6, together with the corresponding d1(t) of the A1 actuator
as measured by the strain gauge sensor, for 1 Hz≤ f ≤ 80 Hz and dM = 50.7µm. While the
measured ∆P retains a sinusoidal form throughout the entire range of imposed f , it is inter-
esting to notice that its amplitude ∆PM levels up for f ≥ 10 Hz, while φexp. tends to reduce
as f is increased. A critical comparison of the experimental data with predictions derived
from Newtonian theory is helpful to better understand the frequency response of the sys-
tem under study. In Figure 7, the non-dimensionalised impedance, Z′exp. = Zexp.4αh4/(µL)
where Zexp. = ∆PM/QM, and φexp. are plotted versus Wo, and compared to the analytical

predictions given by Equations (1)–(3), over a range of 0.05 Hz ≤ f ≤ 80 Hz, corresponding
to 0.01≤Wo ≤ 1.5. The experimental data fall below the analytical predictions at Wo ≥ 0.2,
which corresponds to f = 3 Hz, approximately.
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Figure 4. (a) the time dependence of the measured pressure drop ∆P(t) (continuous lines) for three
different sinusoidal displacement curves d1(t) of the A1 actuator (the displacement amplitude dM is
given in the legend). (b) the amplitude of the measured pressure drop, ∆PM, and the phase delay,
φexp., plotted as a function of dM together with the Newtonian prediction for rectangular ducts (see
Equations (1)–(3)). The ∆PM and φexp. data were obtained by fitting at least three consecutive cycles
of ∆P(t) with a sinusoidal curve by means of the Levenberg–Marquardt algorithm provided by
OriginPro. In the inset, the signal-to-noise ratio S/N is also shown as a function of dM.
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Figure 5. The theoretical (γt) and the experimental (γexp.) strains at f = 1 Hz plotted versus dM.
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Figure 6. The measured ∆P(t) at dM = 50.75 µm, plotted versus t together with the corresponding
d1(t) at f = 1 Hz (a), 10 Hz (b), 40 Hz (c), and 80 Hz (d).
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Figure 7. The experimentally measured non-dimensionalised compliance, Z′exp. = Zexp.4wh3/(µL),
and the phase φexp. between ∆P(t) and d1(t) are plotted versus the Womersley number Wo.
The continuous and dashed lines represent the non-dimensionalised modulus of the complex
impedance, |Z̃′N|, and the phase φN obtained from the theoretical prediction for Newtonian flu-
ids (See Equations (1)–(3)).

3.3. Membrane Compliance Accounts for the Observed Frequency Dependence of Pressure Drop

In order to model the observed dependence of ∆PM and φexp. on f , we take a similar
approach to that of Vedel et al. [19]. Therefore, we hypothesize that the pressure field
generated by the water flow deforms the actuator membranes, so that a dead volume Vd(t)
is formed. At a first approximation, we assume that a linear relationship exists between
Vd(t) and the measured pressure drop across the microchannel, that is,

Vd(t) = C∆P(t), (5)

where C is a characteristic compliance. Therefore, the volume occupied by the fluid in the
chamber 1, V1,real , can be written as

V1,real(t) =
πD2

c
4

[H − d1(t)] + C∆P(t). (6)

From Equation (6), we obtain a relationship between Qreal(t) = − dVreal
dt and

Q(t) = πD2
c

4
d[d1(t)]

dt . In the complex domain,

Q̃real = Q̃− iωC∆̃P. (7)

Because Q̃real = ∆̃P/Z̃N , the new relationship between ∆̃P and Q̃ becomes

∆̃P =
Q̃

1
Z̃N

+ iωC
, (8)

and a real impedance Z̃real is then defined as
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Z̃real =
∆̃P
Q̃

=
Z̃N

Z̃N + iωCZ̃N
. (9)

In Figure 8, Zexp. and φexp. are compared to the prediction from Equation (9), where C
is the only fitting parameter. The best fit is obtained for C ≈ 0.8× 10−14 m3/Pa, which is
about one order of magnitude smaller than the value obtained by Vedel et al.
(C ≈ 2× 10−13 m3/Pa) for a similar system made with a more deformable rubber mem-
brane. The model reproduces well the measured decay of the impedance and of phase up
to Wo ≈ 1. At Wo ≥ 1, we see that Z′exp. <

∣∣∣Z̃′real

∣∣∣, which is most likely due to the onset of
inertial effects.
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Figure 8. The experimental data are here compared with the prediction for the real impedance, Z̃real,
obtained from Equation (9). The data and the theoretical predictions are non-dimensionalised in the
same way as in Figure 7.

4. Conclusions

We have tested a “Rheo-chip” prototypical rheometer for characterising oscillatory
flow of model fluids over a range of frequencies 0.05 Hz ≤ f ≤ 80 Hz, corresponding to a
range of the Womersley number 0.03 ≤Wo ≤1.5, nominal strain 20 ≤ γ ≤ 350, and with
sample consumption of less than 1 mL, by means of Newtonian flow. Compared to
conventional (rotational) rheometers, such novel technique enables exploring a wider range
of both frequency and strain, with minimum inertial effects, while sample consumption is
reduced and interfacial effects are also avoided. While the measured amplitude of the shear
strain at 1 Hz, γexp., resulted in being very close to the nominal strain γt, the measured
impedance Zexp. was close to the Newtonian prediction only up to Wo ≈ 0.2 (corresponding
to f ≈ 3 Hz), after which the experimental data fell below the theoretical curves. We
attribute such results to the deformability of the membranes used to couple the microfluidic
chip with the piezo actuators. By introducing a simple model which assumes a linear
dependence between ∆P and the dead volume within the fluid chambers, the frequency
response of both the amplitude of the pressure drop ∆PM and of the phase angle could be
modeled more efficiently.

We are aware of the fact that our simplified model is only a first-order approximation
of the complex relationship between the imposed flow rate and the measured pressure
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response. A more realistic approach needs to predict how the pressure field modifies the
profile of the membrane [20]. From this viewpoint, the use of Discrete Fluidic Modeling
(DFM) [24,25] would sensibly improve the accuracy of the prediction. DFM would be
particularly useful for modeling the behaviour of non-Newtonian fluids under microfluidic
oscillatory flow. This is because the presence of a viscoelastic component of the stress
tensor is expected to further complicate the relationship between the membrane profile
and the pressure field, resulting in a highly non-trivial dependence of ∆PM on f at a
fixed γ. Additionally, it is well known that, for several non-Newtonian fluids, the shear
stress versus time curve under the LAOS regime is much different from a sine wave [26],
which introduces a further complication to the development of a reliable model of the
“Rheo-chip” system.

The effects observed in this work for a Newtonian fluid constitute a limitation of the
technology described here, and need to be taken into account in future works using a similar
approach for characterising the frequency response of complex fluids in microfluidics.
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List of Symbols

α width/depth channel aspect ratio
∆P Pressure drop
∆PM,t Theoretical amplitude of the pressure drop
∆PM Amplitude of the pressure drop
γ Strain
γexp. Experimental amplitude of fluid strain
γt Theoretical amplitude of fluid strain
λ Longest relaxation time
µ Shear viscosity
ν Kinematic viscosity
ω Angular frequency
φexp. Phase angle between the pressure drop and the A1 actuator displacement
φreal Real phase delay
φN Newtonian phase delay
ρ Fluid density
σ Standard deviation of the residual of the sinusoidal fitting of ∆P(t)
∼ Complex quantity
Aexp. Effective amplitude of fluid displacement within the microchannel
At Theoretical amplitude of fluid displacement
C Membrane compliance
d1 Displacement of Actuator 1
d2 Displacement of Actuator 2
Dc Diameter of fluid chamber
DH Hydraulic diameter
dM Membrane diameter



Micromachines 2022, 13, 256 11 of 12

h Channel depth
IN Newtonian inertance

K Σ+∞
n=1,3,5...

tanh
(

nπ
2αi

)
n5

L Distance between pressure sensors
LP Distance between the pressure sensor and the fluid chamber
P0 Gauge pressure measured by PS1 sensor
P1 Gauge pressure measured by PS2 sensor
Q Flow rate
Qreal Real flow rate
QM Amplitude of the flow rate
R Membrane radius
R1 Plate radius
RN Newtonian resistance
t Time
V1,real Real fluid volume occupied in chamber 1
Vd Dead volume of fluid
w Channel width
Wo Womersley number
Z′exp. Non-dimensionalised, experimentally measured impedance
Z′real Non-dimensionalised, real impedance
Zexp. Experimentally measured impedance
Zreal Real flow impedance
ZN Newtonian impedance
f Frequency
De Deborah number
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