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Abstract: Noble metal nanoparticles (NP) such as gold (AuNPs) and silver nanoparticles (AgNPs) can
produce ultrasensitive surface-enhanced Raman scattering (SERS) signals owing to their plasmonic
properties. AuNPs have been widely investigated for their biocompatibility and potential to be used
in clinical diagnostics and therapeutics or combined for theranostics. In this work, labeled AuNPs
in suspension were characterized in terms of size dependency of their localized surface plasmon
resonance (LSPR), dynamic light scattering (DLS), and SERS activity. The study was conducted
using a set of four Raman labels or reporters, i.e., small molecules with large scattering cross-
section and a thiol moiety for chemisorption on the AuNP, namely 4-mercaptobenzoic acid (4-MBA),
2-naphthalenethiol (2-NT), 4-acetamidothiophenol (4-AATP), and biphenyl-4-thiol (BPT), to investi-
gate their viability for SERS tagging of spherical AuNPs of different size in the range 5 nm to 100 nm.
The results showed that, when using 785 nm laser excitation, the SERS signal increases with the
increasing size of AuNP up to 60 or 80 nm. The signal is highest for BPT labelled 80 nm AuNPs
followed by 4-AATP labeled 60 nm AuNPs, making BPT and 4-AATP the preferred candidates for
Raman labelling of spherical gold within the range of 5 nm to 100 nm in diameter.

Keywords: SERS; gold nanoparticles; Raman; absorption; surface plasmons; reporter; vibrational
spectroscopy; imaging

1. Introduction

Gold nanoparticles (AuNPs) are noble metal particles with variable optical character-
istics, making them unique nanostructures for sensing, imaging, and medication targeting.
Gold is one of the few noble metals with an optical property due to its high interaction
with electromagnetic radiation in the visible part of the spectrum. It absorbs and scatters
light simultaneously as it interacts with it. The amplified oscillation of the metal’s electron
system occurs because the frequency of the absorbed light overlaps with the oscillation
frequency of the electrons [1]. As a result, surface plasmons produce an electromagnetic
field on the nanostructured metal surface. The dispersed light may be captured for imag-
ing purposes while the absorbed light is converted to heat by surface plasmons. Surface
plasmon generation and the quantity of light scattered are greatly influenced by particle
size, shape, aggregation state, composition, and the dielectric constant of the surrounding
medium. Carbon materials play an important role in surrounding the magnetic nanoparti-
cles due to their electric properties, chemical/thermal stability, abundant resources, and
facile manipulation [2]. UV/visible spectroscopy can readily monitor the surface plasmon
resonance (SPR) wavelength.

The exotic optical properties and intriguing morphologies of organic nanoparticle clus-
ters have attracted wide attention [3]. Raman spectroscopy provides label-free chemically
specific information about biological samples under characteristic vibrational modes in
molecules for a wide range of biomedical research applications [4]. However, the Raman
scattering effect is fragile, and this accounts for low-intensity Raman signals in most cases.
Surface-enhanced Raman scattering (SERS) can overcome the drawback of reduced sensi-
tivity by exploiting the plasmon resonance at noble metal surfaces [5]. SERS spectroscopy
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relies on enhancing Raman scattering signals from molecules near active nanostructures.
The mechanism relevant to SERS is the surface enhancement of the electromagnetic field at
the interface between the SERS active substrate (e.g., a noble metal such as gold or silver)
and a molecule of interest through resonant excitation of surface plasmons of the metal.

When combined with a given nanomaterial, Raman spectroscopy is more effective
in detecting and mapping cancer cell models [6]. For many years, scientists in multiple
research areas of physics, chemistry, material science, and life sciences have applied the
surface-enhanced Raman scattering (SERS) technique to detect specific molecules present
in small concentrations in biological media. SERS has several advantages over traditional
vibrational spectroscopy techniques as it has enhanced molecular sensitivity, selectivity,
and accuracy. Sensitivity in SERS spectroscopy is improved by amplifying Raman signals of
biomolecules in the vicinity of active surfaces such as silver, gold, or nanostructures (nanofi-
bres, nanowires, nanowhiskers, nanorods, and nanostars). The marked signal enhancement
of the order of 104–1010 that originates from the localized surface plasmon resonance (LSPR)
can allow single-molecule detection of species near the nanomaterial’s active surface. There-
fore, specific Raman signatures with strong sensitivity can effectively be disentangled from
the much weaker spectrum of other non-proximal molecules. SERS-based techniques
have been used in affordable, field-transferable, qualitative, and quantitative detection of
biomarkers [7,8]. In prostate tumor cells, nanoparticles have been deployed to enable a
viable SERS-based method for differentiating tumor and regular cell lines [9].

According to Szekeres and Kneipp, [10] the formation of nanoaggregates which can
significantly augment the SERS detection, can be impaired due to multilayer protein
adsorption (protein “corona”) and high viscosity on the surface of the nanoparticles for
providing high SERS response when estimating cellular protein concentrations. In this
regard, further positioning and development of intracellular aggregates can produce high
SERS signals in live cells. Gold nanoparticles (AuNPs) become optimal when their size is
around 50 nm in diameter due to their critical surface concentration or area. Furthermore,
minimum toxicity has been shown for AuNPs of 50 nm size with biomolecules at biological
concentrations [11]. Therefore, introducing a minimum amount of gold can be suitable
for detecting essential biomolecules at biological concentrations when using SERS with
the lowest possible toxicity [12]. Precisely, the advantages of SERS-active nanoparticles
include providing higher sensitivity, unparalleled multiplexing abilities, and accurate signal
specificity compared to conventional imaging models [13].

AuNPs employed in in-vitro cell investigations are typically synthesized using wet-
synthesis techniques in the 2–100 nm size range [14,15]. Typically, a reducing agent such as
trisodium citrate or sodium borohydride is used. It is critical to utilize a nontoxic reducing
agent because the objective is to use them in living cell research. To generate rod-shaped
AuNPs, cetyltrimethylammonium bromide (CTAB) is utilized, although it is hazardous
to the living cell [16]. AuNPs are employed in various ways, including as-synthesized
and following surface modification. Surface modification aims to lower toxicity, attach
functional groups or coatings for targeting or distribution, or both [17,18]. Since AuNPs are
permitted to interact with living cells by being added to cell culture, the surface chemistry,
size, and shape of the AuNPs and their absorption mechanism should all be carefully
studied for a minimal harmful impact on cells.

Previous works have investigated the LSPR and SERS activity of AuNPs in a similar
range of sizes as studied here, using rhodamine 6G [19], malachite green isothiocyanate [20],
or oxalate salt [21], but crucially not with sets of different Raman labels to single out optimal
candidates (s) for SERS tagging. The present study is aimed to characterize colloidal AuNPs
of different sizes and with various Raman labels or reporters using transmission electron
microscopy (TEM), UV-visible absorbance, dynamic light scattering (DLS), and Raman
micro-spectroscopy. Results are discussed, and a selection is dedicated to the AuNP
candidates to be used in further SERS applications regarding nanotheranostics.
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2. Materials and Methods
2.1. Labeled Gold Nanoparticles

All compounds, additives, and solvents which include 5, 10, 15, 40, 60, 80, and 100 mm
diameter bare spherical gold nanoparticles (NanoXact, nanoComposix, 0.05 mg/mL in aque-
ous 2 mM sodium citrate), 4-mercaptobenzoic acid (4-MBA) (Sigma-Aldrich,
99% pure) (St. Louis, MO, USA), 2-naphthalenethiol (2-NT) (Sigma-Aldrich, 99% pure),
4-acetamidothiophenol (4-AATP) (Sigma-Aldrich, 95% pure), biphenyl-4-thiol (BPT) (Sigma-
Aldrich, 97% pure), and ethanol (Sigma-Aldrich, ≥99.5% pure) were used as received.
Distilled water was obtained in our laboratory (ELGA Vision 250).

In this study, each Raman label’s 100 mM stock solution was prepared by adding
15.4 mg, 16 mg, 16.7 mg, or 18.6 mg of 4-MBA, 2-NT, 4-AATP, or BPT, respectively, to 1 mL
ethanol. Each solution was mixed in a Vortex Varimix shaker (SciQuip) and diluted 1:99 in
ethanol to make up a 1 mM label solution. Then 100 µL of label solution was added to 1 mL
AuNPs to a final label concentration of 9.1 × 10−5 M. The labeled AuNP solution was then
centrifuged using a Hettich Mikro 22 centrifuge for 10 to 30 min, after shaking by hand
for 5 min and vortexing for 1 min. The supernatant was then carefully removed, and the
pellet was re-suspended in distilled water. Table 1 lists the centrifugation speeds used with
all NP solutions; higher speeds were required to mix smaller AuNP solutions to obtain a
pellet effectively.

Table 1. Centrifugation rate and time used in the preparation of labeled gold nanoparticle solutions.

AuNP Size
(nm)

4-MBA 2-NT 4-AATP BPT

Speed (rpm) Time (min) Speed (rpm) Time (min) Speed (rpm) Time (min) Speed (rpm) Time (min)

5 10 K 10 4 K 10 4 K 10 10 K 30
10 4 K 10 4 K 10 4 K 10 10 K 30
15 4 K 10 4 K 10 4 K 10 10 K 30
40 3 K 10 3 K 10 3 K 10 4 K 30
60 3 K 10 3 K 10 3 K 10 4 K 30
80 3 K 10 3 K 10 3 K 10 4 K 30
100 3 K 10 3 K 10 3 K 10 4 K 30

Each solution was then transferred into a 2 mL Eppendorf tube (Figure 1) and stored
for approximately 12 h at 4 ◦C in darkness before characterization.

2.2. TEM, UV-Vis, and DLS Analysis

The size and morphology of labeled AuNP samples were investigated using trans-
mission electron microscopy (TEM) with a TEM-JEOL 2100 instrument at an operating
voltage of 200 kV. Before the measurements, 2 drops of each solution were deposited onto a
200 mesh holey C-coated copper grid and left to dry in an oven at 80 ◦C for 4 h.

A volume of 1 mL AuNP solution was transferred into a quartz cuvette with a 1 cm
path length. A UV-visible absorbance spectrum was acquired using a Thermo Scientific
Evolution Array UV-visible spectrophotometer (Thermo Fisher Scientific) (Waltham, MA,
USA). Spectra were obtained in the range 185–1100 nm, with 30 scans and 1000 ms inte-
gration time. The wavelength of maximum absorbance and shape of the localized surface
plasmon resonance (LPSR) were analyzed using OriginPro software.

A Malvern Zetasizer Ultra running DTS software and 4 mW He−Ne fv at 633 nm was
used for performing DLS measurements. A constant temperature of 25 ◦C was adjusted
for the analysis at 173◦ and 90◦ scattering angles. A zeta potential cell was used for
measuring zeta potential, whereas size was measured through disposable cuvettes of 1 cm
path length. Data were collected in three phases and presented in the form of median and
average values.
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Figure 1. Solutions of AuNPs labeled with (a) 4-MBA, (b) 2-NT, (c) 4-AATP, (d) BPT, and (e) unlabeled
AuNPs. Numbers indicate the particle size. Dark solutions in (b–d) denote aggregation for small-
sized NPs, 15 nm and 5 nm.

2.3. Raman Micro-Spectroscopy

The AuNP solutions were transferred onto a quartz Hellma 96-well microplate (vol-
ume of each well is 300 µL), and measurements were conducted using a Renishaw inVia
Raman microscope. The system comprises two NIR diode lasers (785 nm and 830 nm),
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various objectives (5×, 10×, 20×, and 50×), and three diffraction gratings (300, 600, and
1200 L/mm). A motorized xyz stage was used to control and change the sample position.
Spectra were acquired at room temperature (21 ± 2 ◦C) using both 785 nm and 830 nm
excitations, the 600 L/mm grating and 50× objective (NA 0.75) in the range 283–2493
cm−1 at full laser power (20–30 mW at the sample), with 10 s acquisition time and 16
accumulations per spectrum. As a concentration gradient is expected for the solution in
each well, depth-resolved Raman measurements were conducted (along the z-axis) starting
from the surface and then down 100, 200, 300, 400, 500, and 600 µm into the solution. The
most significant signals were observed for 600 µm depth, and hence these spectra were
retained for analysis. WiRE 4.1 software was used for data acquisition and handling.

3. Results

It can be seen that the AuNPs are spherical, and the label produces some gray shad-
owing on the nanoparticle surface (Figure 2).
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Figure 3a illustrate the UV-visible absorbance spectra of the bare AuNP solutions
showing the LSPR shifts with increasing NP size, as expected for these solutions. Figure 3b
is a plot of the LSPR maximum wavelength versus AuNP size for all the answers in this
study, which shows that Raman intensity increase with the increase in the size of AuNPs.
Compared to 4-MBA and 4-AATP, 2-NT and BPT labeling generate the highest redshift
(14 nm) in LSPR. More significant shifts were seen between 5–15 nm due to aggregation of
2-NT, 4-AATP, and BPT tagged AuNPs.
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Figure 3. (a) UV-visible absorbance spectra of colloidal AuNPs of different sizes ranging between
5 nm and 100 nm. (b) The localized surface plasmon resonance maximum wavelength vs. AuNP size
plot for all the solutions.

For mono-disperse colloids, UV-Vis spectroscopy measurements were also carried
out. FV The geometric size of the NPs was determined using AATP and BPT deposited
on the surface, ensuring that the findings from these two approaches are comparable.
In the instance of the DLS approach, the hydrodynamic size was measured. The ball
model, which has the same diffusion coefficient as a measured NP, was used to classify this
size. The size of the measured NPs can differ from that of the AATP or BPT procedures.
In general, each offered measuring method demonstrates that the studied colloids only
include monodisperse particles.
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Figure 4 illustrate the results of DLS measurements of all AuNP solutions. The
measured particle sizes essentially reproduce the nominal sizes of AuNPs. The mean
diameter of 5 nm AuNps+4-MBA was measured to be 150 nm. In contrast, the particle
sizes are more significant in the presence of a label, especially with 2-NT and BPT labels
that have two benzene rings. Considering the AuNPs+4-MBA, the sample is transparent
at a size of 5 nm as observed through the naked eye. However, there is the chance of a
decreased concentration of gold nanoparticles because of a certain degree of aggregation in
some of the samples.
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It has been observed that the signal from small particles decreases when the volume
of more considerable particles increases. This is an outcome of the fact that the competence
of a particle for scattering light is proportional to its diameter to the sixth power. The peak
coming from 10 nm AuNPs disappears entirely in the colloid at 95% of the content of these
particles. The intensity of light scattered by larger particles (40 nm or 100 nm AuNPs)
covers the signal from smaller ones (5 nm AuNPs). In particular, such an outcome wrongly
suggests that merely monodisperse particles 40 nm (or 100 nm) in size are present in the
colloid. The nanoparticles possess unique chemical and physical properties based on their
size and surface area. The size determines their optical properties that impart different
colors based on the absorption taking place in visible light. This is the reason why DLS
value increased and then decreased for AuNPs when the size increased from 5 nm to 15 nm.

The gold nanoparticles’ surface charge (zeta potential) before and after adding Raman
reporters was negative, and the highest charge was observed for 60 nm AuNPs labeled
with 4-MBA (−61 mV), as shown in Figure 5. It should be noted that the size distribution
was closest to the size by the number of the nanoparticles. The Z average of the AuNPs
was increased through surface charge, which indicates that DLS-derived AuNPs were
successfully attached to the AuNP surface. Zeta potential measurement help to determine
the stability of gold nanoparticles. It is demonstrated that the interaction of nanoparticles is
affected by effective surface charge, along with the capillary wall and other nanoparticles.
The mobility of nanoparticles is affected by these interactions.

Figures 6–8 present the Raman spectra of labeled AuNP solutions prepared using
different NP sizes and measured at two wavelengths, 785 nm and 830 nm. For comparison,
the spectrum of the pure label (powder) is also shown. Note that there was no Raman signal
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arising from the AuNPs themselves when reporters were not added spectrum (i.e., NPs
blank spectrum). It has been observed that the increase in the maximum absorption
wavelength is based on the increasing larger size AuNPs percentage volume. Finally, when
only particles with a size of 830 nm are present in the solution, the highest absorption peak is
converted to a wavelength of 785 nm. A larger NPs size necessitates such a change. Because
it is impossible to see peaks separately from respective populations in these colloids, the
maximum location of adsorption of a polydisperse colloid does not provide information
about the nanoparticle size.
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2-NT, (green) 4-AATP, and (black) BPT for different NP sizes. Error bars: standard deviation.

To assess the SERS signals for each individual label, the two dominant vibrational
lines corresponding to the C–H rocking (1080 cm−1) and in-plane stretching of the benzene
rings (1380 and 1586 cm−1) were selected [22].

As it can be seen from Figures 6–8, weak or no signal was observed for labeled AuNPs
of sizes smaller than 15 nm. The large signal sometimes observed for 5 nm nanoparticles
labeled with 2-NT or 4-AATP could be due to aggregation [23]. Conversely, the signal was
strong for AuNPs of size comprised between 40 nm and 100 nm, as shown in Figure 9.

Excitation at 785 nm was found to produce larger signals than those obtained with
830 nm excitation, as it is expected from the wavelength dependence of the scattering
intensity [24]. The largest signal was found for BPT labeled 80 nm AuNPs (2.6 × 106)
followed by 4-AATP labeled 60 nm AuNPs (2.2 × 106) using the 785 nm laser, suggesting
that BPT and 4-AATP are the best candidates for Raman labelling of spherical AuNPs with
sizes in the range 5 nm to 100 nm.
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Figure 6. Raman spectra of 4-MBA labeled AuNP solutions measured at (a) 785 nm and (b) 830 nm; Ra-
man spectra of 2-NT labeled AuNP solutions measured at (c) 785 nm and (d) 830 nm. Dashed lines de-
note the two most prominent signals of 4-MBA at 1078 and 1588 cm−1. Shading: standard deviation.
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Figure 9. Plot of the intensity (height) of the two main peaks at (a) lower and (b) higher wavenumbers
for labeled AuNP solutions vs. NP size at 785 nm and 830 nm excitation.

4. Discussion

This study investigated the physical and spectroscopic properties of commercial spher-
ical gold nanoparticles with diameters ranging between 5 nm and 100 nm in an aqueous
solution with four different Raman reporters, 4-MBA, 2-NT, 4-AATP, and BPT chemisorbed
on the nanoparticles’ surface. The effect of size is very important for nanoparticle-based
SERS active substrates. Therefore, it is essential to select the appropriate NP size and the
matching excitation wavelength to excite the localized surface plasmon resonance (LSPR)
and obtain the best signal from SERS. Results from UV-visible spectrophotometry showed
that 2-NT and BPT labelling produce the largest redshift in LSPR. The surface charge (zeta
potential) derived from DLS for the gold nanoparticles before and after adding Raman
reporters was negative.

Based on the work of Cyrankiewicz et al. [25] and Haiss et al. [26], the gold nanopar-
ticles’ size and form were determined using the SEM method. The average size of gold
nanoparticles with spherical form was determined to be 17, 30, 40, 50, 60, and 80 nm,
respectively. Gold NPs with a diameter of 50 nm had the highest standard deviation. The
SERS activity and UV-Vis absorption of gold nanoparticles were shown to be stable for at
least one month.

The SERS spectra of 4-ATP and 4-NTP were collected using gold NPs of various sizes.
The concentration of gold, the number of gold NPs, or the surface area of the gold NPs
were all held constant to determine the ideal size of the gold NPs that gives the largest
enhancement factor. This phenomenon may be explained by the fact that surface area rises
as the size of gold NPs grow while the total number of NPs remains constant, resulting
in increased SERS intensity. However, when the overall surface area of gold NPs or the
concentration of gold were held constant, fascinating occurrences were observed.
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More interestingly, the relationships for 4-ATP and 4-NTP were shown to be the same.
This suggests that such findings may not be extremely sensitive to the target molecules’
chemical structure. Instead, the findings might be applied to different adsorbates. When
the surface area or concentration is important, gold NPs with a size of roughly 50 nm are
ideal. Furthermore, gold nanoparticles with a size of roughly 50 nm have a low cytotoxic
effect on biological samples. This conclusion is critical when SERS is used to identify
crucial biomolecules in biological samples so that the least amount of gold is injected
into the biological system to obtain the lowest toxicity while also achieving the maximum
SERS sensitivity.

SERS labels based on noble-metal nanoparticles loaded with Raman-active compounds
are promising candidates for ultrasensitive multiplexed assays and in vitro/in vivo imag-
ing due to the surface-enhanced Raman scattering effect. Understanding how to optimize
the brightness of such labels, on the other hand, is critical for their broad adoption. It is
investigated the effective differential Raman scattering cross-section of SERS labels consist-
ing of pegylated gold nanoparticles loaded with various Raman active chemicals (Raman
reporters). It has been discovered that using the right Raman reporter and nanoparticle
size may increase the differential Raman scattering cross-section by several orders of mag-
nitude [27]. The experimental results are explained by taking into account the molecular
cross-section for resonant Raman scattering and the local electromagnetic enhancement
factor in the vicinity of gold nanoparticles. These findings may be used to drive the devel-
opment of SERS labels with improved performance and as a baseline for comparing the
absolute value of the SERS labels based on metal nanoparticles.

Results obtained from Raman measurements on AuNPs with 4-MBA labeling were
compared with previous findings on gold nanotips by Gao et al. [28]. The authors have
observed the highest SERS signals for tips with 40 nm apex diameter using 4-MBA as the
probe molecule and an intensity decrease for tips with 60 and 80 nm. The discrepancy
with our data for 4-MBA, which show the strongest signal intensity for gold spheres with
80 nm diameter (Figure 9), is plausibly caused by a difference in curvature and associated
molecular packing on the gold substrates.

Even though AgNPs were utilized as SERS substrates in the work, Nabiev et al. [29]
published the first report on single-cell SERS investigation on live cells in 1991. It was
feasible to distinguish between doxorubicin’s interactions with the cytoplasm and the
nucleus. Kneipp et al. [30] used AuNPs as SERS substrates in single living-cell SERS over a
decade after this first publication in 2002. Then, until 2010, research concentrated on diverse
AuNP applications in single-cell SERS. High-throughput analysis, multiplexed imaging of
various biomarkers, theranostic applications, and time-resolved cellular dynamic changes
are all hot topics in single-cell SERS right now.

Bare AuNPs can be used to obtain general cellular response signals without organelle-
specific targeting. Kuku et al. [31] evaluated the cytotoxic response of cells incubated
with different nanomaterials using SERS utilizing 50 nm citrate-reduced spherical AuNPs
as SERS substrates in recent research. In the SERS spectra, cell-type, and nanomaterial
dose-dependent responses could be plotted. Xu et al. [32] studied the AuNP-AuNR self-
assembled structures for possible detection of small molecules such as nitric oxide, glucose,
polyamines, and NADPH/NADP+ in HeLa cells in proof-of-concept research. According
to the authors, the proposed method may simultaneously identify tiny compounds in a
live cell. They claim that the AuNP–AuNR nanostructures may be used as a substitute for
immunoassay-based detection of small molecules when one is not available.

Photobleaching, spectrum overlap of various dyes, and chemical instability are all
issues with conventional fluorescence-based tags. SERS tags coated with cell-surface
biomarkers are regarded as solutions. For example, a SERS tag was created by coating
the core of AuNPs (15 nm) with poly adenine to establish a uniform nanogap of 1 nm,
which was subsequently decorated with the Raman reporters 4,40-dipyridyl (44DP) and
5,50-dithiobis(2-nitrobenzoicacid) (DTNB) [33]. After that, varying thicknesses of Au shell
were applied to the Au core, resulting in NPs with diameters ranging from 40 to 100 nm
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(Au@Au core-shell). The Au@Au core-shell NPs with the largest improved signal were
those with a diameter of 76 nm. The 76 nm Au@Au core-shell NPs were then functionalized
with hyaluronic acid (HA) to make them bind to an overexpressed HA receptor biomarker
on the cell surface of human colon cancer cells, CD44 protein.

An improved electroporation method was used to circumvent the endolysosomal route
as well as the targeting moieties in another AuNP delivery strategy. In this approach, CA46
Burkitt’s lymphoma cells were given Au–Ag core-shell NPs with a Raman reporter, 4-MBA,
on the gold core. It was feasible to identify and visualize the distribution of lipids and
phenylalanine in the cytoplasm, similar to the small-molecule detection studies published
by Xu et al. [32]. As previously stated, the uptake and aggregation of AuNPs in cellular
compartments greatly influences the SERS spectra of single cells. Due to differences in
intracellular absorption efficiency of AuNPs, the creation of a comparable environment
around AuNPs and their aggregates for SERS may not be achievable in each kind of cell [34].
To tackle the issues associated with low repeatability and large variability dependent
on intracellular absorption of AuNPs, El-Said et al. [35] created a sensitive SERS-active
substrate surface by putting or-dered gold nanodots on an indium tin oxide (ITO) surface.
The gold nanodot SERS substrate allowed for cell differentiation, cell cycle phases, and
live/dead cell monitoring without compromising the viability of connected cells during
sample preparation. The substrates can be used to create a continuous system for time-
dependent monitoring in research such as drug development.

5. Conclusions

This study shows promising evidence that indicates the surface charged AuNPs
through the use of four different Raman nanoparticles. The findings have indicated the
absence of a substantial inflammatory activity related to the designed gold nanoparticles,
specifically DLS and UV-IVs AuNPs. Therefore, such NPs serve as essential platforms to be
used for drug delivery or as ligands in cancer treatment, immunotherapeutic approaches,
and chronic infections. Finally, a general challenge in single-cell research, regardless of
the applied technique, is the processing of large data sets. Improved algorithms for data
reduction have been utilized to overcome this challenge. However, more studies are
required to establish a routine analysis of single-cells using SERS. Moreover, future studies
should add cell SERS investigation on live cells for determining inflammatory activity.
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