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ABSTRACT
Diabetic polyneuropathy (DPN) continues to be generally considered as a “microvascular”
complication of diabetes mellitus alongside nephropathy and retinopathy. The microvascu-
lar hypothesis, however, might be tempered by the concept that diabetes directly targets
dorsal root ganglion sensory neurons. This neuron-specific concept, supported by accumu-
lating evidence, might account for important features of DPN, such as its early sensory
neuron degeneration. Diabetic sensory neurons develop neuronal atrophy alongside a
series of messenger ribonucleic acid (RNA) changes related to declines in structural pro-
teins, increases in heat shock protein, increases in the receptor for advanced glycation
end-products, declines in growth factor signaling and other changes. Insulin is recognized
as a potent neurotrophic factor, and insulin ligation enhances neurite outgrowth through
activation of the phosphoinositide 3-kinase–protein kinase B pathway within sensory
neurons and attenuates phenotypic features of experimental DPN. Several interventions,
including glucagon-like peptide-1 agonism, and phosphatase and tensin homolog inhibi-
tion to activate growth signals in sensory neurons, or heat shock protein overexpression,
prevent or reverse neuropathic abnormalities in experimental DPN. Diabetic sensory
neurons show a unique pattern of microRNA alterations, a key element of messenger
RNA silencing. For example, let-7i is widely expressed in sensory neurons, supports their
growth and is depleted in experimental DPN; its replenishment improves features of DPN
models. Finally, impairment of pre-messenger RNA splicing in diabetic sensory neurons
including abnormal nuclear RNA metabolism and structure with loss of survival motor
neuron protein, a neuron survival molecule, and overexpression of CWC22, a splicing
factor, offer further novel insights. The present review addresses these new aspects of
DPN sensory neurodegeneration.

INTRODUCTION
Diabetes mellitus is a serious chronic disease characterized by
hyperglycemia that results from insulin deficiency as a result of
autoimmune-mediated destruction of b-cells of the pancreas,
type 1 diabetes mellitus, or resistance to the actions of insulin,
type 2 diabetes mellitus1,2. The World Health Organization esti-
mated that 422 million people worldwide were living with dia-
betes in 20143. The complications of diabetes mellitus include
retinopathy, nephropathy, atherosclerosis and neuropathy.

Diabetic neuropathies are amongst the most common chronic
complications, targeting approximately 50% of persons with
diabetes4. Diabetic neuropathies develop diverse clinical mani-
festations, such as sensory loss and pain, and put patients at
high risk for foot ulcers, and amputation, an irreversible com-
plication5–7. One-third of patients with neuropathy experience
positive symptoms, including spontaneous pain, paresthesia and
allodynia, and this is often called painful diabetic neuropathy
(PDN)8. Despite the global prevalence and severe complications
of diabetes mellitus, the pathophysiological mechanisms of
diabetic neuropathies have not been elucidated. Beyond strict
control of glucose levels, therapy that can unequivocally arrestReceived 12 January 2018; revised 20 February 2018; accepted 3 March 2018
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or reverse progressive neuropathy is still not available, although
there are important symptomatic options in pain management
(see other reviews of PDN9–11).
Diabetic neuropathies manifest in several different forms,

including sensory, motor, focal/multifocal and autonomic neu-
ropathies1,5,7,12. The most common type is diabetic distal sym-
metric polyneuropathy (DPN), accounting for approximately
75% of diabetic neuropathies6,13–16. Patients with DPN develop
gradual and insidious damage to the distal terminals of sensory
neurons first, with symptoms of tingling, pain or loss of sensa-
tion in their toes. If their diabetes is poorly controlled, DPN
advances with sensory loss involving more proximal extremities
and even the central chest, the terminal portions of the inter-
costal nerves. There is generally involvement of motor nerves
later17,18. Epidermal biopsies of diabetes patients have con-
firmed that loss of sensory axon terminals in the skin of the
distal extremity is greater than that observed at more proximal
sites19. This pattern of disease onset might suggest that sensory
neuronal cell bodies, or perikarya, in dorsal root ganglia (DRG)
are targeted early by several forms of diabetic impairment and
then undergo a “dying back” process of neurodegeneration
(Figure 1). Investigations into DRG pathology in human dia-
betes are lacking, because human DRG biopsies are not ethical
to carry out and because of their rapid degradation during the
post-mortem interval at autopsy20. Nevertheless, several animal
models show neuronal atrophy, not necessarily associated with
neuron dropout despite the loss of foot pad epidermal sensory
axons21–23. Atrophic neurons in DRG also develop a series of
gene expression changes related to structure, neuronal stress
and protection24,25. Taken together, we have emphasized the
hypothesis that direct targeting of DRG by diabetes can account
for the prominent and often early sensory neuron degeneration
that patients with DPN develop6,13,18,25–27.
Diverse pathogenic etiologies, including microvascular-

induced ischemia, the formation of extracellular advanced gly-
cation end-products (AGEs), inflammatory cytokines, increased
aldose reductase activity and oxidative stress, are considered in
the development of DPN. These might target neuronal peri-
karya, axons, Schwann cells and nerve or ganglia microvessels.
The present review begins with a discussion of the microvascu-
lar hypothesis, then addresses selective aspects of sensory neu-
rodegeneration associated with the intracellular insulin signaling
pathway. In addition, we provide new evidence that sensory
neuron degeneration is linked not only to aberrant intracellular
signaling with messenger ribonucleic acid (mRNA) expression
changes, but also with dysregulated mRNA processing mediated
by microRNA (miRNA) post-transcriptional alterations. Under-
standing sensory neuron degeneration in the context of aber-
rant RNA processing might give rise to new therapeutic
strategies.

MICROVASCULAR HYPOTHESIS
DPN has long been described to be a microvascular complica-
tion of diabetes alongside nephropathy and retinopathy12,28–32.

Aberrant changes in endoneurial capillary morphology and vas-
cular reactivity under diabetic conditions might contribute to
the development of diabetic neuropathy through endoneurial
ischemia. Pathological investigations of sural nerve biopsies
from diabetes patients showed capillary basement membrane
thickening, capillary pericyte degeneration and endothelial
hyperplasia in endoneurial microvessels31,33.The presence of
endoneurial microangiopathy appeared to precede the develop-
ment of peripheral neuropathy34. In addition, imaging of
exposed sural nerves in patients with DPN has suggested the
presence of microvascular abnormalities in the epineurial ves-
sels35. A number of experimental DPN models have reported
that both nerve blood flow (NBF) and endoneurial oxygen ten-
sion are reduced in the sciatic nerve, and their conduction
velocities are reduced in proportion to the changes of NBF30,36.
Endothelial cell dysfunction is commonly considered to be a
mainstay in the pathogenesis of diabetic microvascular dis-
eases37,38. For example, endothelium-dependent vasodilation is
impaired in the vasculature of experimental diabetic animals
and humans with diabetes38,39. Diabetes-induced endothelial
dysfunction is attributed to oxidative stress, impaired metabolic
signal transduction pathways, impaired release of vasoactive
molecules and decreased smooth muscle sensitivity32. The
molecular mechanisms of microvascular damage in DPN might
be mediated by intracellular signal transduction pathways in
endothelial cells involving the polyol pathway40–45, protein
kinase C46,47, AGEs48–55, angiotensin II56–59 and abnormal
mitochondrial activity60–65. Therapeutic approaches to improve
vascular dysfunction by targeting these molecules have identi-
fied recovery of measures of DPN in diabetic animal models.
However, the selective involvement of sensory axons, or even

nerve trunks more generally, is difficult to attribute to this
hypothesis. Nerve trunks have an overlapping blood supply
from end arteries that form multiple connections, or anasto-
moses, and only relatively severe ischemia provokes axonal
degeneration. This is dramatically different from ischemia-
prone tissue, such as the brain and spinal cord66,67. Further-
more, DPN can develop in children at early ages (e.g.
3 months) after the development of insulin-dependent diabetes
mellitus without the vascular complications of long-term dia-
betes68. The Zochodne laboratory has also failed to identify
convincing evidence for an initial microvascular trigger for
polyneuropathy using a variety of diabetic experimental models
in the hands of differing investigators. Morphological studies of
the vasa nervorum in DPN models have not identified loss of
vessels or decreased vessel calibers, but instead increased lumi-
nal caliber or angiogenesis69. Although some laboratories have
identified reductions in NBF as mentioned, reductions in NBF
are not observed in all models of diabetes mellitus, and some
long-term models in rats show normal NBF70 (several technical
factors could contribute to these discrepant findings, summa-
rized previously71). Sural nerve serial blood flow measures in
patients with mild diabetic polyneuropathy, studied by laser
Doppler flowmetry, did not decline over a 1-year time-period
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despite a mild ongoing reduction in nerve fiber density,
whereas patients with more severe loss of nerve fibers tended
to have higher rates of blood flow72. To resolve these contradic-
tions, some investigators recently proposed an idea that distur-
bances in capillary flow patterns associated with microvascular
changes, instead of a global reduction of blood flow in the
whole nerve, can reduce the amount of oxygen and glucose to
be extracted by the nerve31. In this hypothesis, there are conse-
quent abnormalities of nerve function and perhaps frank axon

damage. Individual capillary blood flows in the tissue might be
variable, and capillary transit times across a vascular bed have a
certain distribution with the standard deviation referred to as
capillary transit time heterogeneity (CTH). Given this concept,
the development of microangiopathy in DPN has been sug-
gested to correspond to increases in CTH. Mild increases in
CTH, which represents endothelial damage without loss of
function, lead to the reduction of oxygen extraction accompa-
nied by a compensatory increase of tissue blood flow. If CTH
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Figure 1 | Simplified schematic drawing of sensory neurodegeneration during diabetes. AGE, advanced glycation end-product; GAP43,
growth-associated protein 43; GLP-1, glucagon-like peptide-1; HSP27, heat shock protein 27; IGF-1, insulin-like growth factor-1; mRNA, messenger
ribonucleic acid; miRNA, micro ribonucleic acid; PTEN, phosphatase and tensin homolog; RAGE, receptor for advanced glycation end-product.
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further increases with progression of microangiopathy, the
compensatory flow response might be lost because of more
advanced endothelial dysfunction, and the low tissue oxygen
tension could contribute to nerve dysfunction or damage.
Although there remain difficulties in linking microvascular
changes with an initial trigger for DPN, it is likely that
microangiopathy develops in parallel with early functional and
structural changes of the nerve, and both are prominent later
in the development of DPN. Direct targeting of DRG by dia-
betes could account for the apparent selective sensory abnor-
malities that patients with early DPN develop, discussed next.

DIRECT NEURONAL INVOLVEMENT OF DIABETES:
INSULIN, GLUCAGON-LIKE PEPTIDE-1, RECEPTOR FOR
AGE AND HEAT SHOCK PROTEIN 27
DRG contain the cell bodies of primary sensory neurons
responsible for conveying sensory information from the periph-
ery to the spinal cord (Figure 1). Sensory neurons in the DRG
have an attenuated protective neurovascular barrier compared
with the blood–brain or blood–nerve barrier, making them vul-
nerable to toxic circulating agents, unlike peripheral nerve
trunks, the brain and spinal cord73–75. Blood capillaries are
abundant within the DRG, and are more permeable to low and
high molecular weight molecules than the brain or endoneur-
ium74,76,77. In addition, DRGs have higher blood flow with fea-
tures of partial autoregulation, unlike the endoneurium, as well
as lower oxygen tensions78. These physiological features suggest
that DRGs might be susceptible to microangiopathy in diabetes,
leading to sensory neuron damage. In our laboratory, we identi-
fied that DRG blood flow had selective reductions in a rat
model of diabetes mellitus, whereas endoneurial blood flow in
the nerve trunk was preserved79. Despite these physiological dif-
ferences, whether primary reductions in DRG blood flow ren-
der ischemic neuronal damage or are simply secondary
reductions is unclear.
Diabetic sensory neurons have functional and structural alter-

ations both at the level of perikarya in DRGs and of axons in
the distal terminals of the epidermis (Figure 1). Neuronal and
distal axon atrophy accompany functional deficits, such as con-
duction slowing and loss of sensation in long-term experimen-
tal diabetes21,23,26. However, neuronal atrophy does not always
evolve into overt neuron loss22, but is associated with a series
of mRNA changes related to declines in structural proteins,
such as neurofilament and bIII tubulin, increases in heat shock
protein 27 (HSP27) and the receptor for AGE (RAGE), and
declines in growth proteins, such as growth-associated pro-
tein 4324,26,80,81. Some of these changes depend on the DPN
model and species. However, given these findings, we have
examined the alteration of gene expression related to cell sur-
vival and growth in DRG sensory neurons, focusing on long-
term animal models of experimental DPN that might inform
us about chronic human disease.
Insulin receptors (IRs), which display a critical role of glucose

homeostasis, are expressed in sensory neurons82,83, and for

several decades insulin itself has been recognized as a potent
growth or trophic factor for neurons (Figure 2)84. Most DRG
sensory neurons appear to express IRs24. IR signaling, in turn,
utilizes well established growth-related downstream transduc-
tion cascades, such as the phosphoinositide 3-kinase (PI3K)–
protein kinase B (Akt) signaling pathway, including a gain in
plasma membrane levels of glucose uptake transporters85. The
PI3K–Akt pathway is a central pathway involved in cell sur-
vival, growth and proliferation, and its activation leads to
increased axon growth86,87. In summary, IRs undergo autophos-
phorylation by ligand binding, after which they develop tyro-
sine kinase activity, and finally activate through insulin receptor
substrate proteins (IRS-1 and IRS-2). IRS proteins activate the
PI3K–Akt pathway by recruiting and activating PI3K, leading
to the generation of second messenger phosphatidylinositol
(3,4,5)-trisphosphate (PIP3). Membrane-bound PIP3 recruits
and activates 3-phosphoinositide-dependent protein kinase-1,
which phosphorylates and activates Akt. However, the conver-
sion of PIP3 to PIP2 by phosphatase and tensin homolog
(PTEN) reverses this growth pathway and thus antagonizes Akt
signaling88. Activated Akt phosphorylates a large number of
downstream targets related to cell proliferation, growth and sur-
vival, potentially including the mammalian target of rapamycin
signal pathway, the CDK inhibitors p21 and p27, glycogen syn-
thase kinase 3, transcription factors Forkhead box O3, and
proapoptic Bcl-2 family proteins BCL2-associated X protein
and Bcl-2-associated death promoter85,89. Dissociated adult rat
sensory neurons treated with insulin in vitro have enhanced
dose-dependent neurite outgrowth90. In the peripheral nervous
system in vivo, nerve crush injury induces the upregulated
expression of IRs in regenerating axons and cell bodies of
DRG, and systemic or intrathecal insulin administration accel-
erates maturation of regenerating axons distal to a nerve crush
injury91,92.
Given these growth supportive roles of insulin in peripheral

neurons, we have hypothesized that deficiency of insulin–PI3K–
Akt trophic support during insulinopenic diabetes mellitus
influences the development of DPN. For example, direct neu-
ronal or axonal insulin administration, even if insufficient to
alter blood glucose levels, reverses diabetic neuropathic changes
in type 1 diabetes mellitus models that are characterized by the
absence of the insulin ligand82,93–95.
However, in type 2 diabetes mellitus models, even high-

dose insulin might fail to prevent or reverse DPN. For
example, type 2 diabetes mellitus might be characterized by
normal or elevated levels of circulating insulin associated
with “insulin resistance” involving muscle, liver or adipose
tissue. Several laboratories, including our own, have advanced
the concept that neurons might also be susceptible to “in-
sulin resistance” at the level of neurotrophic support96–100.
Grote et al.98 showed that the DRG and sciatic nerve of
ob/ob mice with type 2 diabetes mellitus had blunted Akt
activation with insulin and insulin-like growth factor-1,
including decreased DRG insulin receptor expression and
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upregulation of c-Jun N-terminal kinase activity, a mediator
of insulin resistance in other tissues. Additional work has
noted that insulin resistance in neurons might be linked to
IRS-2 serine phosphorylation99. Our laboratory showed that
high-dose insulin or repeated chronic low-dose insulin
blunted subsequent challenges of insulin to support growth.
Blunted signaling in sensory neurons involved downregulation
of the insulin receptor b-subunit, upregulated glycogen

synthase kinase 3b and downregulated phosphorylated Akt97.
Thus, mechanisms of neuronal insulin resistance in type 2
diabetes mellitus include declines in IR expression, changes
in IRS phosphorylation status and increases in glycogen syn-
thase kinase 3b mRNA levels, all associated with impaired
PI3K–phosphorylated Akt activation. Thus, taken together,
impaired neurotrophic support might indeed contribute to
the development of DPN.
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The direct neurotrophic action of glucagon-like peptide-1
(GLP-1) could offer further options for DPN treatment (Fig-
ure 2). GLP-1 is an incretin peptide, secreted by the intestine
in response to meal ingestion101. The GLP-1 receptors are
highly expressed on islet b-cells, and their actions include
enhancing insulin secretion. The GLP-1 receptors are also
widely expressed in non-islet cells including those of the ner-
vous system102. A GLP-1 agonist, exendin-4, like insulin,
enhanced neurite outgrowth of sensory neurons and attenuated
features of experimental DPN models of both type 1 and
type 2 diabetes mellitus103–105.
Diabetes mellitus is associated with the production of AGEs

resulting from non-enzymatic glycation and oxidation of pro-
teins and lipids. AGEs permanently accumulate in a variety of
tissues and bind to specific receptors including RAGE. RAGE
ligation in turn has been linked to the development of diabetic
complications106,107. AGEs and other ligands, including S100/
calgranulin family of pro-inflammatory molecules and high-
mobility group box 1 protein, trigger several signal transduction
pathways (Figure 2). For example, binding of these ligands to
RAGE results in the persistent activation of the transcription
factor nuclear factor kappa B (NF-jB)108. In sural nerve biop-
sies from patients with DPN, activated NF-jB was colocalized
with interkeukin-6 and RAGE within the vasa nervorum109.
Diabetes-induced activation of NF-jB was blunted in sciatic
nerves of RAGE-null mice, and loss of pain perception in DPN
was prevented in RAGE-null mice109. In addition, diabetic
RAGE-null mice had improved peripheral nerve regeneration,
linked to altered macrophage responses110. Macrophages play
an essential clearance role in the facilitation of regeneration in
nerve.
RAGE ligation might generate diabetic complications through

its impact on microvessels, whereas RAGE is also expressed by
sensory neurons. AGE-RAGE appears important for the sup-
port and growth of neurons. For example, its activation
enhances the outgrowth of adult sensory neurons in vitro
through the NF-jB, c-Jun N-terminal kinase–signal transducer
and activator of transcription–extracellular signal-regulated
kinase pathways111. Similarly, blockade of the ligand–RAGE
axis suppressed nerve regeneration after crush injury in mice112.
In diabetes mellitus, however, its overactivation could contribute
to the DPN phenotype. In our laboratory, RAGE null mice
showed protection from motor and sensory nerve conduction
slowing at 8 weeks after diabetes induction, but the protection
was less significant by 16 weeks113. Given these complexities,
further investigation is required to clarify at what stage activa-
tion of the AGE–RAGE axis is protective or harmful to the
peripheral nervous system during diabetes mellitus.
HSPs are molecular chaperones that mediate the repair or

degradation of denatured proteins after stress114. Expression of
one member of this extensive family, HSP27, is elevated in sen-
sory neurons of experimental DPN models26. HSP27 knock-
down or overexpression are respectively associated with
attenuated or improved regenerative properties after nerve

injury in mice115,116. Overexpression of a human transgene of
HSP27 in type 1 diabetes mellitus mice prevented loss of ther-
mal sensation, mechanical allodynia, epidermal axon loss and
sensory conduction slowing. RAGE, NF-jB and activated cas-
pase-3 were attenuated by the transgene117. Another finding
was that the protective impact by the HSP27 transgene was
greater in female mice than in male mice. While we speculated
on a possible role of estrogen related to HSP27 in that work117,
in more recent work we have identified significant differences
in electrophysiological features of DPN between male and
female mice after diabetes induction113. Therefore, sex differ-
ences might be informative in sorting mechanisms in the
pathogenesis of DPN.

REGENERATION STRATEGIES: SENSORY NEURONS AND
TUMOR SUPPRESSORS
To reverse the neuropathic deficits of DPN, an important strat-
egy might involve activation of intrinsic neurotrophic pathways
including PI3K–Akt signaling. The pathogenesis of DPN
involves degeneration, but also a deficit in regenerative capacity.
The mechanisms of regenerative failure in diabetes might
include an unsupportive microenvironment around axons or
growth cones resulting from ischemia and microangiopathy of
the local injury milieu, impaired macrophage clearance, altered
basement membrane regenerative cues, Schwann cell dysfunc-
tion and lack of growth factors118. Removal of inhibitory extra-
cellular matrix molecules and the addition of growth factors are
potentially important strategies to accomplish regeneration out-
comes. However, most growth factors offer selective support for
only the neuron subclasses that express relevant receptors, such
as TrkA, TrkB, TrkC, gp120, Ret and others. In diabetes, there
is also evidence that specific growth factor receptors are down-
regulated in sensory neurons26. Manipulation of downstream
growth signals, therefore, could be essential to enhance axonal
plasticity and regeneration in the setting of diabetic abnormali-
ties. From this point of view, our laboratory has focused on
manipulating intrinsic “brake” molecules to regulate growth
pathways. Such “brakes” include those within the class of
“tumor suppressors” that help to inhibit oncogenic
growth119,120. PTEN is the first example of this type of thera-
peutic target studied in diabetes mellitus, a molecule that inhi-
bits the PI3K–Akt signaling pathway (Figure 2). PTEN is
mutated in a variety of human tumors121–123. The role of
PTEN in the nervous system at both the central and peripheral
levels has been recently elucidated, and its deletion has been
suggested as a key regenerative strategy124–129. PTEN is
expressed in sensory neurons, prominently in IB4 non-pepti-
dergic sensory neurons that show restrained growth proper-
ties130. In sensory neurons in vitro, PTEN inhibition enhances
neurite outgrowth, and, after nerve transection in rats in vivo,
PTEN inhibition also accelerates the regrowth of axons from
the proximal stump125. Furthermore, in mice with DPN, PTEN
mRNA and protein expression are upregulated in sensory neu-
rons, a surprising finding that identifies a new mechanism of
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regenerative failure in diabetes mellitus. Local DRG PTEN
knockdown after focal nerve injuries in diabetic mice using
non-viral small interfering RNA delivery improved the recovery
of motor compound action potential amplitudes, conduction
velocities of motor and sensory axons, numbers and calibers of
regenerating myelinated axons, and epidermial axon reinnerva-
tion131. These findings indicated that diabetes upregulates a
regenerative “brake” and its release improves axon growth fail-
ure in DPN.

SENSORY NEURODEGENERATION: NEW EPIGENETIC
THERAPEUTIC TARGETS
The term “neurodegeneration” describes a form of gradual neu-
ral deterioration in part characterized by progressive neuroax-
onal atrophy and dysfunction. Neurodegeneration categorizes
disorders of the nervous system including Alzheimer’s disease,
Parkinson’s disease, Huntington’s disease and amyotrophic lat-
eral sclerosis. The molecular pathways of neurodegenerative dis-
eases have been intensively studied, suggesting common
mechanisms including oxidative stress, excitotoxicity, mitochon-
drial dysfunction, protein misfolding and aggregation, ubiqui-
tin-proteasome system dysfunction, and inflammation132,133.
Sensory neurodegeneration in diabetes might also share com-
mon molecular mechanisms with these diseases. In previous
chapters, we described sensory neuronal atrophy, loss of termi-
nal innervation and neuronal dysfunction, linked to aberrant
intracellular growth through signaling pathways, such as
insulin–PI3K–Akt. These intracellular alterations might involve
not only a shift in gene expression at the transcriptional level,
but also altered epigenetic mRNA processing at the post-tran-
scriptional level81. New evidence, recently explored in our labo-
ratory, suggests that diabetes might promote sensory neuron
dysfunction that involves aberrant mRNA splicing and that
resembles some forms of motor neuron disease23.
To explore the role of epigenetic changes in diabetic sensory

neurons, we first analyzed mRNA and miRNA profiles of
DRGs in mice with type 1 diabetes mellitus compared with
control mice by microarray81. The microarray examined 28,869
mRNAs, and identified 261 mRNAs that included 91 upregu-
lated and 170 downregulated for a difference of at least 1.5-fold
change in diabetes mellitus samples. Of these, 24 (5 downregu-
lated and 19 upregulated) achieved a statistically significant dif-
ference of P < 0.05 (Figure 3a). Most of these mRNAs were
coded for proteins of unknown function in sensory neurons or
diabetes. However, one prominently upregulated molecule,
CWC22, was classified as a pre-mRNA splicing factor.
MicroRNAs (miRNAs) are small non-coding RNAs of 18–23

nucleotides that bind to target sequences in mRNAs, resulting
in suppressed gene expression, a key element of post-transcrip-
tional RNA silencing. Precursor miRNAs are exported from the
nucleus and processed to form single-stranded small RNA.
Components of miRNA machinery, such as RNA-induced
silencing complex, a protein complex that cleaves mRNA, local-
izes in cytoplasmic structures called GW/P bodies, which

function as sites of both mRNA degradation and storage of
translationally repressed mRNAs134–137. Diabetic sensory neu-
rons had upregulated populations of GW/P bodies (Fig-
ure 3b)81, suggesting overt structural evidence of altered
miRNA-mediated mRNA processing by diabetes-induced stress.
As in the case of mRNAs, miRNA microarray analysis of
chronic experimental diabetic DRGs identified 19 differentially
expressed miRNAs (12 downregulated and 7 upregulated) of
high-abundance and 123 of low-abundance (56 downregulated
and 67 upregulated; Figure 3c,d)81. We focused on miRNAs
with most prominent changes in the high-abundance group,
which included a 39% downregulation of mmu-let-7i and a
255% upregulation of mmu-miR-341. Let-7i is an interesting
miRNA that is predicted to target >900 conserved sequences in
Ingenuity Pathway Analysis and TargetScan analysis, including
46 apoptotic cell death pathway mRNAs, 42 cardiovascular and
diabetes-related mRNAs, 84 growth pathway mRNAs, 80
inflammation-related pathway mRNAs, 21 metabolism and dia-
betes pathway mRNAs, and 59 neurotransmitter and nervous
system mRNAs. Using in situ hybridization, we noted that let-
7i was preferentially expressed in sensory neurons, rather than
DRG satellite cells or vessels (Figure 3e). Administration of
exogenous mmu-let-7i mimic enhanced neurite growth and
branching in sensory neurons in vitro, and improved electro-
physiological, structural and behavioral abnormalities in diabetic
mice. In contrast to downregulation of let-7i, a prominently
upregulated miRNA was miR-341. miR-341 is also reported to
be significantly upregulated in the injured DRG of rats with
chronic constriction injury138. Although miR-341 is only
expressed in rodents, it was also expressed in sensory neurons,
and the knock down of miR-341 improved sensory nerve con-
duction slowing and thermal hyposensitivity of DPN mice.
Taken together, it might be that as a single miRNA potentially
regulates many target genes, targeting or replenishing a single
miRNA might be a more interesting and potentially efficient
strategy for gene therapy than targeting a single mRNA.
Among the differentially expressed mRNAs in diabetic neu-

rons of uncertain significance, CWC22 was chosen as a starting
molecule23. CWC22 protein was expressed in the nucleus of
sensory neurons particularly, in nuclear speckles, a nuclear
organelle of sensory neurons, and reverse transcription poly-
merase chain reaction also confirmed its mRNA upregulation
of 2.5-fold (Figure 4a). CWC22 is known to be required for
pre-mRNA spicing139,140. A spliceosome is a large and complex
molecular machine required to catalyze pre-mRNA splicing in
nuclear speckles141. It consists of small nuclear ribonucleopro-
teins (snRNPs) that contain RNA components (snRNAs: U1,
U2, U4, U5 and U6) and additional splicing factors. Splicing
factors bind to the pre-mRNA in a sequential manner to
thereby form the spliceosome, which catalyzes two consecutive
steps of transesterification to excise the intron142,143. We found
new structural evidence of splicing abnormalities in diabetic
sensory neurons. For example, snRNPs formed aggregated mul-
tiple nuclear foci (Figure 4b) and their associated snRNA
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Figure 3 | Evidence for gene expression changes and micro ribonucleic acid (miRNA) regulation in diabetic sensory neurons. (a) mRNA microarry
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expression was reduced. CWC22 is required for exon junction
complex assembly, upstream of the exon–exon junction during
pre-mRNA splicing to regulate post-transcriptional mRNA
fate139,140. Global defects of pre-mRNA splicing and global
downregulation of diverse gene expressions have been identified

in CWC22 depleted cells144. We showed that CWC22 knock-
down in sensory neurons in vitro enhanced neurite outgrowth,
and CWC22 knockdown in vivo improved features of DPN in
diabetes mellitus mice. These findings indicate that aberrant
splicing associated with upregulated CWC22 might be included
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Figure 4 | Abnormal messenger ribonucleic acid splicing in diabetic sensory neurodegeneration. (a) CWC22 is expressed in the nuclei of DRG
sensory neurons, colocalized with a marker protein SC35 of nuclear speckles. Scale bar: 10 μm. CWC22 knockdown enhances DRG neurite
outgrowth. Scale bar: 100 μm. (b) Small nuclear ribonucleoproteins form abnormally aggregated multiple foci in the nuclei of DRG sensory
neurons. Scale bar: 20 μm, 10 μm in insets. (c) Cajal bodies number is increased in diabetic sensory neurons. Scale bar: 20 μm, 10 μm in magnified
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as a mediator of sensory neuron dysfunction. It is plausible that
CWC22 upregulation reflects heightened forms of inappropriate
spicing that ensue from diabetes, although this has not been
established. For example, injured and regenerating non-diabetic
neurons require altered gene expression to support their
growth. In diabetes, CWC22 overexpression appears to be
harmful to spliceosome formation; its inhibition might reverse
aberrant splicing, potentially normalizing gene expression criti-
cal for axon outgrowth.
Furthermore, we identified additional unique alterations in

nuclear structure that accompanied the aberrant splicing in
diabetic sensory neurons. The key events of mRNA process-
ing, including splicing, occur within the nucleus. In the
nucleus, interchromatin structures, such as nucleoli, Cajal
bodies (CBs), and nuclear speckles, could offer a cellular
microenvironment that facilitates more efficient changes of
gene expression145. CBs control transcriptional activity in
cross-talk with nucleoli on cellular stress, and emerge in pro-
liferative and metabolically active cells, such as cancer cells
or neurons146–149. CBs concentrate snRNPs and increase the
efficiency of gene expression through its sophisticated supply
of snRNPs for the spliceosome150,151. Nuclear speckles, colo-
calized with CWC22, also accumulate snRNPs and other
non-snRNP protein splicing factors, and provide a place to
execute splicing141. However, the overall role of these nuclear
bodies in diabetic sensory neurodegeneration has been other-
wise unexplored152. In diabetic sensory neurons, we found
that CBs were increased in number, but nucleoli and nuclear
speckles were not structurally altered (Figure 4c). Another
key molecule related to splicing, survival motor neuron
(SMN) protein, localized in nuclear foci, functions in the
assembly of snRNPs in collaboration with CBs142,153–155.
SMN mutations underlie spinal muscular atrophy (SMA),
through defects in CB formation and the assembly of
snRNPs in motor neurons156–158. In addition, SMN-deficient
sensory neurons in vitro are also abnormal with shorter neu-
rites and small growth cones159. We identified that CBs lost
their colocalization with SMN and abnormally aggregated
snRNPs in DRG sensory neurons in diabetes mellitus mice,
suggesting loss of recruitment of SMN proteins to CBs, simi-
lar to a key finding in the motor neuron degeneration of
SMA (Figure 4d)160.
Taken together, our findings provide evidence that spliceo-

some dysregulation might be a key neurodegenerative mecha-
nism of the development of DPN in type 1 diabetes mellitus
patients, as summarized in Figure 5. It still remains unclear
whether overexpressed CWC22 proteins in diabetic sensory
neurons are blocking factors for spliceosome formation includ-
ing SMN or snRNP recruitment, or independently inhibit the
other growth signal pathways as “brakes.” In addition, further
investigation is required to determine whether splicing abnor-
malities are also identifiable in type 2 diabetes mellitus, perhaps
associated with “insulin resistance.”

CONCLUSIONS
A microvascular hypothesis for the early development of DPN
can be challenged, and molecular approaches to sensory neu-
rodegeneration directly targeted by diabetes might offer a series
of new therapeutic opportunities. Interventions to activate
intrinsic neurotrophic pathways using approaches such as insu-
lin, inactivation of growth suppressing tumor suppressors,
GLP-1 agonism and HSP overexpression might be new strate-
gies to prevent or reverse neuropathic damage in DPN. Unfor-
tunately DPN is currently an irreversible complication of
diabetes mellitus. The pathogenesis of DPN might involve epi-
genetic changes mediated by miRNA that regulate gene expres-
sion in many biological processes including cell survival and
growth. Sensory neurodegeneration in DPN could share com-
mon mechanisms with other neurological disorders, such as
spliceosomal abnormalities, CB dysregulation and loss of SMN
proteins.
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