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Abstract

It is known that a disease is rarely a consequence of an abnormality of a single gene, but reflects the interactions of various processes in a com-
plex network. Annotated molecular networks offer new opportunities to understand diseases within a systems biology framework and provide
an excellent substrate for network-based identification of biomarkers. The network biomarkers and dynamic network biomarkers (DNBs)
represent new types of biomarkers with protein–protein or gene–gene interactions that can be monitored and evaluated at different stages and
time-points during development of disease. Clinical bioinformatics as a new way to combine clinical measurements and signs with human
tissue-generated bioinformatics is crucial to translate biomarkers into clinical application, validate the disease specificity, and understand the
role of biomarkers in clinical settings. In this article, the recent advances and developments on network biomarkers and DNBs are comprehen-
sively reviewed. How network biomarkers help a better understanding of molecular mechanism of diseases, the advantages and constraints of
network biomarkers for clinical application, clinical bioinformatics as a bridge to the development of diseases-specific, stage-specific, severity-
specific and therapy predictive biomarkers, and the potentials of network biomarkers are also discussed.
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Introduction

The disease consists of multiple dysfunctional proteins, cells, organs
and systems of the body within the complexity and molecular mecha-
nisms by which diseases occur remain unclear, although biotechnolo-
gies and knowledge on diseases have been improved tremendously.

Given the functional interdependencies between the molecular com-
ponents, a disease is rarely a consequence of an abnormality of a
gene, protein or cell, but reflects the interactions of genes, proteins or
cells in a complex network [1]. Protein–protein interactions (PPIs)
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are important in the interaction, communication and functional pro-
cess in a living cell, between cells, or between organs. PPI networks
are of central importance to modulate cell behaviour by interactively
link genome, epigenome, transcriptome, proteome and metabolome.
In response to the dynamically varying intrinsic (genetic) and extrin-
sic (environmental) perturbations, the interplay of these intercon-
nected cellular signalling networks can converge towards disease
states and ultimately can initiate and drive complex diseases (Fig. 1).
Annotated data sets of PPIs offer new opportunities to understand
diseases within a systems biology-based framework and provide a
useful substrate for network-based identification and validation of
multiple interacting markers [2, 3]. The PPIs are curated from the lit-
erature into databases [4], to improve the understanding of diseases
and provide the basis for new therapeutic approaches.

Biomarkers are typically thought of as individual genes, proteins
and metabolites (molecular biomarkers). However, with the recent
innovation and progress of new biotechnologies, a new type of bio-
markers, protein-based network biomarkers [5, 6], composes of a
panel of proteins and their interactions or interactions with DNA, RNA
or other molecules was initiated and investigated with the integration
of knowledge on protein annotations, interactions and signalling path-
ways. But both the molecular biomarkers and the protein-based net-
work biomarkers have limitations because of their static nature. To
increase the ability to make early diagnosis, identify disease-specific
biomarkers and therapeutic targets, and predict patient outcome,
dynamic network biomarkers (DNBs) were created, monitored and
evaluated at different stages and time-points of the disease, based on
non-linear dynamical theory and complex network theory. DNBs differ
from molecular biomarkers and network biomarkers to describe and
identify disease progress situations and interactions rather than the
static nature and approach. Thus, DNBs can demonstrate the expres-
sion density of genes or proteins and their time-dependent interac-
tions to draw a three-dimensional imaging of altered proteins,
interactions or regulations in the network and to discover and develop
disease-specific biomarkers to predict and foresee pre-disease

situations, monitor and regulate therapeutics in clinic, and indicate
and guide of patient prognosis and life quality [7, 8].

Furthermore, the human biomarker discovery mandates the asso-
ciation of biological measurements with clinical information, ideally
both statistically and mechanistically. Unlike biological data, clinical
data, such as patient complaints, history, therapies, clinical symp-
toms and signs, physical examinations, biochemical analyses, imag-
ing profiles, pathologies and other measurements, are descriptive and
far less structured. The lack of integrative results in the loss or
neglecting of valuable information, necessitates novel strategies to
successfully combine these large collections of heterogeneous data
sets, and identifies new disease-specific biomarkers. To address this
issue, clinical bioinformatics was proposed as a new emerging
science to combine clinical phenotypes with human tissue-generated
bioinformatics and define relationships between collectively directs
global function with clinical measurements [9, 10]. Comparing
dynamic alterations of network biomarkers with clinical informatics
may allow discovering disease-specific, stage-specific, severity-
specific and therapy-sensitive biomarkers.

The present review aims to introduce the need and significance of
protein-based network biomarkers, highlight the development of net-
work biomarkers of human diseases, and discuss the clinical rele-
vance and correlation between DNBs and clinical informatics. We will
explore how network biomarkers help a better understanding of
molecular mechanism of diseases, the advantages and constraints of
network biomarkers for clinical application, and the potential values
of network biomarkers in the future.

The need and significance of
protein-based network biomarkers

Biomarkers play an important role in the diagnosis of diseases, and in
assessing prognosis and directing treatment of the diseases. Its value

A B C

Fig. 1 Network-based human disease model. In response to the dynamically varying intrinsic (genetic) and extrinsic (environmental) perturbations

(A), protein interaction networks (B) that interactively link genome, epigenome, transcriptome, proteome and metabolome are of central importance

to modulate cell behaviour. The interplay of these interconnected cellular signalling networks can converge towards disease states and ultimately

can initiate and drive complex diseases (C).
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is correlated with the disease-associated specificity, sensitivity, trace-
ability, stability, repeatability and reliability. Conventional molecular
biomarkers consist of single or a group of several biological mole-
cules such as genes, RNAs, proteins and metabolites that can be
measured to distinguish disease from health. Advances in high-
throughput technologies such as genomics and proteomics make it
possible to measure thousands of different variables in pathobiologi-
cal conditions simultaneously, providing comprehensive and substan-
tial information of a disease state. An increasing number of
biomarkers identified through analysis of expression profiles have
been seen. Unfortunately, this type of biomarker lists that obtained
from omics data for similarly diagnosed patients by different research
groups differ widely and share few in common [11]. As biomarkers
are required to be reproducible to causally link to the disease pheno-
type to discover potential targets for diagnosis and therapy, this lack
of agreement imposed doubts about the reliability and robustness of
the reported biomarker lists.

The small overlap of biomarkers for similar phenotypes may have
various technique reasons, such as platforms differences, samples
differences, protocols differences, and statistical reasons, leading to
unstable selection of the biomarkers. Besides, identification of a phe-
notype-associated pathway solely on the basis of differentially
expressed molecules is frequently difficult because of the high inter-
dependency of the omics data. But more importantly, these biomar-
kers are not identified from the systems perspective. With the rapid
growing knowledge of the cellular molecular network in diseases,
most of the diseases are not considered to be caused by a single
effector gene product but the interrelated malfunction of genes and
proteins [1, 12–14]. This system-level understanding of the diseases
has brought about novel strategies of biomarker discovery that inte-
grate systemic information of the molecular networks (i.e. PPI net-
works, RNA networks, metabolic networks and regulatory networks)
to contextualize the differential expression patterns observed in a phe-
notype. The system-based ‘network biomarkers’ [5, 6] was proposed
to consider not only differentially expressed molecules but also the
molecules association network structure that even allows an accurate
identification of biomarkers with low discriminative potentials pro-
vided such molecules were associated with other significant mole-
cules. The past few years have witnessed systematic efforts to
integrate gene network knowledge in the gene expression analysis
[15–19]. However, a clearly limitation of gene network analysis is that
genes are not the proper end-point context of a phenotype. Moreover,
the majority of human genes have not yet been assigned to a
definitive pathway. Proteomic profiling provides information at the
post-translational level, therefore can be used to bridge the genotype-
phenotype gap, to help providing a global picture of cellular mecha-
nisms. With the recent significant improvements of mapping human
protein networks, network approaches have been studied in proteo-
mic researches to understand disease-related pathobiological pro-
cesses and to identify candidate disease biomarkers [6, 7, 20–24].

Studies have also integrated multiple data types to generate more
accurate molecular networks of diseases [5, 25–46] and revealed
the dynamic modular structure of the protein interaction networks
[47–49]. Integration of condition-specific co-expression information
can provide clues to the dynamic features of these networks, when

PPI data constitute static network maps – such knowledge-integrated
interaction is relatively defined and fixed. The ‘DNBs’ is an innovative
concept to integrate network biomarkers and dynamic biomarkers by
monitoring and evaluating the alterations of network biomarkers at
different stages and time-points. Unlike static molecular biomarkers
and network biomarkers with consistent values, DNB is a group of
molecules, which are highly fluctuating but strongly correlated with-
out consistent values during disease progression [7]. DNB is a pow-
erful way to detect the bifurcation of gene or protein interactions to
unravel the dynamic aspects of cellular networks and answer when,
where and why proteins interact, and to indicate the early change in
biomarkers and to predict the occurrence of diseases [50, 51].

Chen et al. [7] proposed to consider a disease progress as three
stages, including the normal stage, the pre-disease stage and the dis-
ease stage. The normal stage is a relatively healthy state, as well as
the chronic inflammation period or the period that the disease is
under control. The pre-disease stage [52–55] is a state just before the
presence of disease symptoms, defined as the limit of the normal
state immediately before the critical point is reached. This stage is
usually reversible to the normal state if appropriately treated, or
becomes irreversible if the system passes over the critical point to
the disease stage. Therefore, detection of the pre-disease stage is
crucial to achieve early diagnose and treatment. Rather as a wide,
general definition been discussed before, the authors developed DNB
in particular as an early warning indicator of pre-disease state and to
fulfil three criteria [7]: firstly, DNB is an observable subnetwork of the
system, composed of a group of molecules that are dynamically cor-
related when the system is in a pre-disease state; secondly, DNB is
an isolated subnetwork or functional module, behaves independent of
other non-DNB molecules that are in the same system or network;
and thirdly the expressions of DNB molecules increasingly fluctuate
as the system is approaching the critical point. Based on these condi-
tions, a composite index I was constructed to computationally identify
DNB from high-throughput omic data:

CI ¼ SDd � PCCd
PCCo

where PCCd is the numerical measurement of the average
Pearson’s correlation coefficient among the molecules of DNB
in absolute value; PCCo is the numerical measurement of the
average Pearson’s correlation coefficient of the molecules of
DNB with the other molecules in absolute value; SDd is the
numerical measurement of the average standard deviation of
the molecules of DNB. The composite index I was shown to be
effective to provide reliable and significant early warning signal,
despite the stochastically fluctuation in the expression of each
molecule, in complex diseases such as acute lung injury, liver
cancer and lymphoma [7].Furthermore, DNB was demonstrated
as the leading/driving network causally related to disease initia-
tion and progression [8].

Figure 2 summarizes the evolution of these three types of biomar-
ker concepts, namely, molecular biomarkers that provide static, one-
dimensional information (Fig. 2A), network biomarkers that provide
static, two-dimensional profiles (Fig. 2B), and DNBs that provide
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dynamic, three-dimensional images of biomarker–biomarker interac-
tions (Fig. 2C).

The development of protein-based
network biomarkers

Protein–protein interactions play major role in a living system, pro-
vide information at the post-translational level, and bridge the geno-
type–phenotype gap. Annotated data sets of PPIs provide key
substrate for network-based identification of biomarkers. The system-
atic approach of protein-based network biomarker discovery typically
involves three pivotal processes: (i) obtaining global expression

profiles of a disease phenotype; (ii) integrating such information into
protein network frameworks or literature-curated pathways that con-
tain key pathobiological events of phenotypes and (iii) interpreting,
identifying and validating phenotype-associated candidate key net-
work molecules or modules (Fig. 3). This section mainly introduces
some foundations of protein-based network biomarker discovery and
demonstrates several representative studies in human diseases and
how such network biomarkers shed light onto the molecular mecha-
nism of diseases.

Human protein–protein interaction network

Human PPI network mapping is a crucial component of systematic
approach for protein-based network biomarker discovery. Extensive
efforts have been seen recently to increase the coverage of human
PPI maps by high-throughput yeast two-hybrid (Y2H) interaction
mating [2, 3, 56–58], affinity purification mass spectrometry (AP-MS)
[59], literature curation of published experiments [60–70] or compu-
tational integrating approaches [71–76]. Some of the major public
PPI databases are summarized in Table 1. The global efforts to map
protein interactions with curated interactions from the literature also
has resulted in the formation of the International Molecular Exchange
(IMEx) consortium (http://www.imexconsortium.org/) which can
facilitate literature curation standards, data exchange and compari-
son. However, considering the full human protein interaction network
has been estimated to be between 154,000 and 369,000 [77] or
approximately 650,000 [78], current human PPI maps are still incom-
plete, noisy and prone to biases [74, 79], caution should be exercised
when using them to research diseases. Given the magnitude of
this challenge, a number of strategies have been proposed to
maximize the efficiency and correct biases for PPI network mapping
[56–58, 80].

Methodologies for integrating and identifying
network biomarkers

A disease can be linked to a well-defined neighbourhood of PPI net-
work, which refers to as ‘disease module’, representing a panel of
network components responsible for cellular function and disruption
of which results in a specific disease phenotype [1]. Disease-related
profiles can be integrated within a network framework by a number of
technologies and algorithms [81, 82]. Computational programs were
developed to integrate selected genes or proteins into the knowledge-
based networks via the combination of genomics, proteomics and
bioinformatics, such as GRNInfer [83], MDCinfer [84], TRNInfer [85],
Samo [86], MNAligner [87], PTG [88], PRNA [89], NOA [90], differen-
tial dependency network (DDN) [91], WGCNA [92], SurvNet [93] or
DiME [94], each of them has its own advantages and strength on
basis of scientific needs and investigative goals, as summarized in
Table 2.

Methodologies for expression data integration could be catego-
rized as ‘univariate’ or ‘multivariate’ on basis of statistics [95], to
interpret the dysregulation (differential expression) at the system

A

B

C

Fig. 2 The evolution of biomarkers concepts. (A) Traditional molecule

biomarkers, known as single or a group of several genes and proteins

that are static indicators on the disease state; (B) The recent developed

network biomarkers, with the integration of knowledge on protein anno-
tations, interactions, and signalling pathways, are static measurements

on the disease state; (C) The newly developed dynamic network biomar-

kers, providing dynamical measurements on the disease state within a

systems biology framework.
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level. Defining the subnetworks dysregulation as the aggregate signif-
icance of the dysregulation of each gene, the univariate approaches
measure the dysregulation of subnetworks by combining the results
of differential expression of each gene that are assessed separately
[47, 49, 96–99]. However, multivariate studies consider the dysregu-
lation of the subnetworks as the mutual information between pheno-
type and subnetworks activity, and access the coordination of
multiple gene differential expressions in discriminating normal and
disease samples [99]. The coordinate dysregulation was shown to be
effective integrating protein and mRNA expression data for identifica-

tion of important subnetworks in colorectal cancer [30, 33]. The coor-
dination of subnetwork dysregulation could be captured by ‘additive’
or ‘combinatorial’ formulations. The additive dysregulation formulates
the coordination between genes through the additive representation
of their expression profiles and utilizes fast heuristics to identify dys-
regulated subnetwork; while the combinatorial formulation assesses
the combining degrees of gene expressions in the subnetwork that
can discriminate control and phenotype samples. The combinatorial
approach was shown to be powerful in predicting liver metastasis in
human colorectal cancer [100]. As the coordinate dysregulation that

A B

D C

Fig. 3 Systematic approach of network biomarker discovery. Chart schematically illustrates the critical stages of network biomarker discovery: (A)
The global expression profiles (genomics, proteomics, literatures, etc.) of a disease phenotype are obtained as ‘seeds’ of the disease module; (B)
Such seeds is integrated into the constructed protein network (Y2H, AP-MS), literature-curated pathways, or computational predicted networks that

contain systematic pathobiological events of phenotypes; (C) Through quantitative systematic approaches, phenotype-associated subnetworks and/or

pathways are then scored, ranked and identified; and (D) such disease modules or network biomarkers can distinguish a disease phenotype from a
normal phenotype more accurately than traditional molecule biomarkers. Y2H: high-throughput yeast two-hybrid; AP-MS: affinity purification mass

spectrometry.
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is not explained by smaller parts of the subnetwork, the synergistic
dysregulation was formulated to delineate the complementarity of
genes in the subnetwork [101]. Synergy corrects for the coordinate
dysregulation of the subsets of the subnetwork, capturing the pattern
of dysregulation that emerges only when all genes in the subnetwork
are considered. Although identification of multiple genes with syner-
gistic dysregulation is intractable, this methodology provides impor-
tant insight through pair-wise assessment of synergy, which jointly
analyses two sets of expression data, one in the presence and one in
the absence of a disease, identifying gene pairs whose correlation
with disease is because of co-operative, rather than independent, con-
tributions of genes [102]. Besides coordinate dysregulation, differen-
tial co-expression approaches are also shown to be effective in
finding co-expressed genes in the disease samples, rather than con-
trols, and vice versa [103, 104].

Briefly, disease-related molecules identified from omic profiling
studies or other sources, which serve as the ‘seeds’ of the disease
module, are placed on their corresponding proteins in the properly
constructed PPI network, and by exploiting both the functional and
topological modularity of the network through quantitative systematic
approaches, subnetworks and/or pathways with the disease-related
components could then be identified as disease module, and as
potential network biomarker. Numerous computational methods and
algorithms have been proposed for network biomarker identification.

For instance, the DDN analysis [91, 105], which detects topological
changes in biological networks by comparing the topological differ-
ences between networks, is a straightforward way in distinguishing
disease samples when the topology of disease networks is signifi-
cantly different from the topology of normal samples. However, the
network structure learning is inconsistent because of the limitation of
the data samples, making this approach not convenient in real appli-
cations. The active subnetwork identification approach [5, 106] identi-
fies disease module as active subnetworks that show significant
changes in particular conditions by using existing PPI networks.
While this approach can identify disease-related subnetworks that are
not differentially expressed, it is limited by the availability of the PPI
networks. The disease-specific pathway identification method [37, 73,
107] is another systemic approach to extract disease-specific subnet-
works or pathways by using regression models or scoring modules.
This approach is effective in identifying network biomarkers based on
the integration of PPIs and pathway knowledge. However, it is limited
by the exhaustive search procedure. Besides, caution should be
excised that the regression model-based method is not suitable for
small sample cases, in which the parameters are biased. The informa-
tion flow modelling approach [108, 109] identifies dysfunctional
modules in complex disease by modelling the information flow
from source disease genes to targets of differentially expressed genes
via a context-specific PPI network. This approach is effective in

Table 1 Information of human protein–protein interaction network databases

Database Method Proteins number Interactions number Ref. Website

CCSB Y2H 1549 2754 [2] http://interactome.dfci.harvard.edu/

MDC Y2H 1705 3186 [3] http://www.mdc-berlin.de/neuroprot/
database.htm

BIND Literature 6089 14955 [60] http://bind.ca

DIP Literature 3877 6103 [62] http://dip.doe-mbi.ucla.edu/dip

MINT Literature 8762 26830 [63] http://mint.bio.uniroma2.it/mint

HomoMINT Prediction & Literature 8634 323595 [70] http://mint.bio.uniroma2.it/HomoMINT

InteAct Literature 60932 197974 [64] http://www.ebi.ac.uk/intact/

BioGRID Literature 18208 220390 [65] http://thebiogrid.org/

HPRD Literature 30047 41327 [66] http://hprd.org/

Reactome Literature 7085 6744 [68] http://www.reactome.org/

UniHI Database integration 36023* 374833* [74] http://www.unihi.org/

HAPPI Database integration 70829 601757 [75] http://bio.informatics.iupui.edu/HAPPI

The table displays the number of proteins and the number of interactions derived from each database. The column termed Methods shows the
general approaches how PPIs were compiled in the different resources. In addition, the literature reference for the resource and the websites of
the databases are given.
CCSB: Center for Cancer Systems Biology; MDC: Max Delbr€uck Center; BIND: Biomolecular Interaction Network Database; DIP: Database of
Interacting Proteins; MINT: Molecular INTeraction database; HomoMINT: inferred human network of MINT; InteAct: the protein Interaction data-
base; BioGRID: Biological General Repository for Interaction Datasets; HPRD: Human Protein Reference Database; Reactome: a curated pathway
database; UniHI: Unified Human Interactome; HAPPI: Human Annotated and Predicted Protein Interaction.
*All species.
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characterizing the functional dependency or crosstalk between path-
ways provided differentially expressions are detected. Unlike the con-
ventional clustering approaches based on differential expressions,

classification of differential interactions [110, 111] investigates the
differential interactions between disease and normal samples and net-
work rewiring between molecules related to pathogenesis. Applied to

Table 2 Examples of software packages for mapping phenotype-related subnetworks

Name Full name Website Description Ref.

GRNInfer Gene Regulatory Network Inference
Tool

http://digbio.missouri.edu/grninfer/ A gene regulatory network
inference tool from multiple
microarray data sets

[83]

MDCinfer Inferring protein–protein interactions
based on multi-domain Co-operation

http://intelligent.eic.osaka-sandai.ac.
jp/chenen/MDCinfer.htm

PPI prediction tool based on
multiple domain co-operation
analysis

[85]

TRNInfer Inferring transcriptional regulatory
networks from high-throughput
data

http://intelligent.eic.osaka-sandai.ac.
jp/chenen/TRNinfer.htm

Infer direct relationships
between transcription factors
and target genes

[85]

Samo Protein Structure Alignment tool
based on Multiple Objective
optimization

http://doc.aporc.org/wiki/Samo A protein structure alignment
tool based on multiple
objective optimization

[86]

MNAligner Molecular Network Aligner http://doc.aporc.org/wiki/MNAligner Alignment of molecular networks
by quadratic programming

[87]

PTG Parsimonious Tree-Grow method
for haplotype inference

http://doc.aporc.org/wiki/PTG Parsimonious tree-grow method
for haplotype inference

[88]

PRNA Protein–RNA Binding-Site
Prediction

http://doc.aporc.org/wiki/PRNA Prediction of protein–RNA binding
sites by a random forest method
with combined features

[89]

NOA Network Ontology Analysis http://www.aporc.org/noa/ Collection of gene ontology tools
aiming to analyse functions
of gene network instead of
gene list

[90]

DDN Differential dependency network
analysis

http://www.cbil.ece.vt.edu/software.htm Detect statistically significant
topological changes in the
transcriptional networks
between two biological conditions

[91]

WGCNA Weighted correlation network
analysis

http://www.genetics.ucla.edu/labs/
horvath/CoexpressionNetwork/
Rpackages/WGCNA

A comprehensive collection of
R functions for performing
various aspects of weighted
correlation network analysis
patterns among genes across
microarray samples

[92]

SurvNet N/A http://bioinformatics.mdanderson.org/
SurvNet

A bioinformatics web app for
identifying network-based
biomarkers that most correlate
with patient survival data

[93]

DiME Disease Module Extraction www.cs.bham.ac.uk/~szh/DiME A novel algorithm based on the
Community Extraction criterion,
to extract topological core
modules from biological networks
as putative disease modules

[94]

The table displays the abbreviated name and full name of the computational programs with respective description and website. In addition, the
literature reference for the resource is given.
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gastric cancer, this method demonstrated that the differential interac-
tions are effective on identifying dysfunctional modules from the
molecular interaction network and can be applied as network biomar-
kers [111]. However, this approach is time consuming because of the
large-scale interaction networks. The supporting vector machine
(SVM) approach [35, 112, 113] identifies a comprehensive key inter-
action map and integrating different types of interaction information
of heterogeneous data sources within the SVM scheme. By using var-
ious biological knowledge and data sources such as gene co-expres-
sion, regulatory networks, evolutionary relationship and functional
similarity, the effectiveness and efficiency are significantly improved.
The major shortcoming of SVM is its high computational cost for real
applications.

Network biomarker studies in humans

Variants of aforementioned approaches have been applied to a wide
range of disease phenotypes for identifying protein-based network
biomarkers, such as breast cancer [5, 35, 36, 49], colorectal cancer
[30, 33, 100], prostate cancer [97, 114], gastric cancer [115], lung
cancer [37], ovarian cancer [116], acute myeloid leukaemia [39],
glioma [117], ageing [23, 98], Alzheimer’s disease [38], inherited
ataxias [118], cardiovascular diseases [6, 32, 34, 109, 119, 120],
chronic obstructive pulmonary disease [22], diabetes [43], asthma
[121], osteoarthritis [42, 122], multiple sclerosis [29], primary immu-
nodeficiency [31], systemic inflammation [25], or acute aortic dissec-
tion [123], and demonstrated promising results. For example, Jin
et al. [6]developed a cardiovascular-related network based on protein
information databases, and discovered network biomarkers of major
adverse cardiac events (MACE) in the MS data on basis of protein
knowledge. Candidate network biomarkers could classify patients
with MACE more accurately than current single ones without network
information. Similarly, Lim et al. [118] developed a PPI network of 54
proteins involved in 23 inherited ataxias, and expanded the network
by incorporating literature-curated and evolutionarily conserved inter-
actions. This phenotype-based PPI network reveals several previously
unsuspected ataxia-causing proteins interactions and provides candi-
date genes for target-based therapies.

Integrating multiple types of data sources could enhance the
accuracy of the network and improve the quality of identified disease-
specific biomarkers [38, 108]. Chuang et al. [5] integrated the gene
expression and PPI network data sets to identify biomarkers associ-
ated with breast cancer metastasis. The gene expression profiles of
two cohorts of breast cancer patients were obtained from literatures,
assigned as either ‘metastatic’ or ‘non-metastatic’, and a correspond-
ing human PPI network was constructed by integrating data sets from
Y2H, orthology and literature curation experiments. The expression
values of each gene were then mapped onto their corresponding pro-
teins in the network to combine the gene and protein data sets. The
discriminative potential of candidate subnetwork was computed
based on the mutual information between its activity score and the
metastatic/non-metastatic disease status over all patients and the sig-
nificantly discriminative subnetworks were identified by comparing
their discriminative potentials to those of random networks. The

results showed that known breast cancer genes such as P53, KRAS,
HRAS, HER-2/neu and PIK3CA that do not change their expression
profile might still play a central role interconnecting genes in the pro-
tein network. The identified subnetworks may be more reproducible
than individual gene marker selected by traditional approaches, and
be better to define metastatic tumours. Systems-based approaches
were also used to identify novel biomarkers and understand related
mechanisms in a more comprehensive way by integrating protein net-
work with data types or sources, such as phenome [28, 40], micro-
RNA [42] or mRNA [33].

The network biomarkers have also been investigated dynamically.
Taylor et al. [49] examined the dynamic structure of human protein
interaction network by analysing ‘intermodular’ or ‘intramodular’ hub
proteins that are co-expressed with their interacting partners in a tis-
sue-restricted manner or in all or most tissues. Substantial differ-
ences in biochemical structure were observed between the two types
of hubs. Hub proteins that displayed dynamic modularity were useful
indicators for predicting the outcome of patients with breast cancer.
Similar observations were noticed by other groups in the yeast
[47, 48]. Lin et al. [119] proposed a network-based approach that
integrates PPIs with gene expression profiles and biological function
annotations to analyse the interaction networks in different biological
states. They found that hub proteins in condition-specific co-
expressed PPI networks tended to be differentially expressed between
biological states. Applying this method to a cohort of heart failure
patients, they identified two functional modules that significantly
emerged from the interaction networks that can provide new insights
into the cause of dilated cardiomyopathy and might be used as poten-
tial drug targets. The dynamic features of network biomarker were
also investigated in ageing [98], liver cancer [124], breast cancer
[107], glioma [105] and influenza [125].

Table 3 summarized some representative network biomarker
studies in humans. While the results seemed promising, these studies
are method and algorithms oriented; apparently, there is a great need
to validate these approaches according to clinical application.

Better understanding of molecular mechanism of
diseases

The integration of disease-specific molecules into the knowledge-
based protein networks and subnetworks is a new and better way to
understand mechanistic hypotheses about the causes of disease. The
interactions within such subnetworks are often suggestive of func-
tional signalling cascades, metabolic pathways or molecular com-
plexes responsible for or/and contributing to the phenotypes and
dysfunction of the disease. Thus, the network approach offers a
potent means of mapping the molecular mechanisms underlying
complex pathobiological processes. While the networks of genes and
proteins present the links and association between them, such knowl-
edge-integrated interaction is relatively defined and fixed. Rather than
only the expression, the strength of interactions between genes or
proteins varies during the development of diseases. Moreover, DNB
is proved to be the leading network to initiate the critical transition
during disease progression, and is highly related to causal factors of
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Table 3 Examples of network biomarkers studies in humans

Disease Seeds PPI data sources Ref. Key findings

Breast
cancer

Microarray data of two
cohorts of breast cancer
patients from literature

Database integration of Y2H,
prediction and literature curation,
includes 11203 proteins and
57235 interactions

[5] The identified subnetwork
biomarkers increased the
reproducibility and
accuracy in differentiating
metastatic from
non-metastatic breast
tumours, compared to
traditional molecular
biomarkers

Microarray data of two
cohorts of breast cancer
patients from literature

Database integration of HPRD
database and IPA, includes
584 genes and 2280 interactions

[35] The identified network
biomarkers are highly
enriched in biological
pathways associated
with cancer progression
and the prediction
performance is much
improved when tested
across different data
sets

Colorectal
cancer

Two sets of proteomic
targets of colorectal
cancer obtained from
tissue biopsies

HPRD database includes
9299 proteins and 35023
interactions

[33] Integration of
complementary data
sources can enhance the
discovery of candidate
subnetworks in cancer
that are well-suited for
mechanistic validation
in disease

Microarray data of two
cohorts of colorectal
cancer patients from
literature

HPRD database includes 9299
proteins and 35023 interactions

[100] The identified subnetwork
biomarkers outperformed
other biomarkers in
predicting metastasis
of colorectal cancer
and offered insights
in the mechanisms of
metastasis in cancer

67 proteins identified from
tumour tissue of a
cohort of colorectal
cancer patients

MetaCorefrom GeneGo Inc.
(version 4.6 build 12332)

[30] The identified protein
subnetwork biomarkers
can discriminate late
stage cancer versus
control. Proteins in the
subnetworks were
associated with the
tumour progression
or identification

Prostate
cancer

A prostate gene data set
from literature

Database integration of DIP and
HPRD, includes 6509 proteins
and 23157 interactions

[97] The proposed approach
can discover condition
relevant functional
modules efficiently
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Table 3. Continued

Disease Seeds PPI data sources Ref. Key findings

Gastric cancer 272 differentially expressed
genes in the metastatic
gastric cancer

UniHI database [115] The identified subnetwork
biomarkers are promising
diagnostic markers
for liver metastasis of
gastric cancer

Gene expression data
from GEO database
(ID: GSE27342)

HPRD database includes 9465
proteins and 37039 interactions

[111] Identified network
biomarkers include
34 genes shown
to be directly connected
by the gastric
cancer-related genes to
all phases, and a
functional transition from
normal phenotypes to
cancer phases was
demonstrated

Lung cancer Microarray data from
GEO database
(ID: GSE4115)

Database integration of BioGRID
and HPRD

[37] Identified 40 proteins
related to lung
carcinogenesis. The
network-based biomarker
was effective in
diagnosing smokers
with signs of lung cancer

Cardiovascular
disease

Mass spectrometry data
from major adverse
cardiac events patients

HPRD includes 18796 proteins
and 37056 interactions

[6] The identified network
biomarkers can classify
the patients with major
adverse cardiac events
more accurately than
traditional molecular
biomarkers

105 heart failure
associated proteins from
the literature

Database integration of HPRD,
BioGRID and MINT

[32] The identified network
biomarkers support
accurate prediction
of heart failure and
provide novel clue to the
underlying mechanisms

Known inflammation
biomarkers from clinical
practice and literature

Database integration of DIP,
IntAct and MINT

[34] Identified a panel of gene
biomarkers with high
discriminatory capability
predicts clinical outcome
after myocardial infarction

CHD microarray data from
GEO database
(ID: GSE26125 & GSE14790)

Database integration of HPRD,
BIND, BioGrid, IntAct and MINT,
includes 4761 proteins and
18084 interactions

[109] Identified 12 dysfunctional
modules from the
constructed CHD
subnetwork, which
provide clue to
molecular mechanisms
of CHD
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the disease [8]. In this regard, DNBs, by integrating of condition-
specific information of network biomarkers at different stages and
time-points, promise an improved understanding of the causes of
human disease [8, 49, 119].

Xue et al. [98] examined the modular structure of the protein
interaction networks during the ageing of fruitfly and human brains
and found two modules associated with the cellular proliferation to
differentiation temporal switch that display opposite ageing-related
changes in expression. This particular study provides a modularized
network view of the ageing process and found the dynamic network
stability might be associated with the ageing. Such a dynamic net-
work view provides a molecular explanation for the stochastic nature

of ageing, that is, isogenic population age at vastly different paces,
for the states of the network can be differentially affected by develop-
mental and environmental factors. Li et al. [126] constructed
dynamic physical and functional protein interactions network regulat-
ing the production of type I interferon (IFN) and identified 22 unique
genes that regulated NF-kB and ISRE reporter activity, viral replication
or virus-induced IFN production. Among them, mind bomb (MIB) E3
ligases played a role in K63-linked ubiquitination of TBK1kinase that
phosphorylates IRF transcription factors controlling IFN production.
MIB genes were found selectively controlled responses to cytosolic
RNA viruses, and MIB deficiency reduced antiviral activity. This study
established the role of MIB proteins as positive regulators of antiviral

Table 3. Continued

Disease Seeds PPI data sources Ref. Key findings

Dilated cardiomyopathy
microarray data
from GEO database
(ID: GSE3586)

HPRD includes 9059 proteins
and 34869 interactions

[119] Identified two functional
modules from the
interaction networks.
The dynamics of these
modules between
normal and disease states
suggested a potential
molecular model of
dilated cardiomyopathy

Acute myeloid leukaemia Microarray data from
GEO database
(ID: GSE425)

Database integration of HPRD and
OPHID, includes 9142 proteins
and 41456 interactions

[39] Identified AML causing
genes most of which
were not detectable with
gene expression analysis
alone because of
the minor changes in
mRNA level

Asthma Asthma-associated
genes from
OMIM database

HPRD [121] The identified subnetworks
were consistent with
known asthma pathways.
Novel asthma associated
genes were also identified

Glioma Microarray data from GEO
database (ID: GDS1815)

I2D database, includes
681404 interaction

[117] Network biomarkers
related to glioma
prognosis were identified.
MYC expression is
positively correlated
with lifetime extension

Acute aortic
dissection

2737 genes differentially
expressed between
acute Stanford type
A aortic dissection
patients and controls

Curated human PPI network,
includes 6437 proteins
and 258954 interactions

[123] Eight PPI hotspots
associated with aortic
dissection were identified.
In particular, JAK2
may play a key role in
the occurrence
of acute aortic dissection

The table displays biomarkers studies in humans with respective network approach description. In addition, the literature reference for the
resource is given.
GEO: Gene Expression Omnibus; OMIM: Online Mendelian Inheritance in Man database; IPA: Ingenuity Pathway Analysis; MetaCore: Data-mining
and pathway analysis (http://thomsonreuters.com/metacore/); CHD: Congenital heart disease; OPHID: Online Predicted Human Interaction Data-
base; I2D: Interologous Interaction Database; MYC: myelocytomatosis oncogene.
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responses and demonstrated that mapping a dynamic physical
and regulatory network of type I IFN can be a valuable source for
understanding the connections between innate immunity and other
cell processes.

Based on the computational algorithm (composite index I)
described above, researchers found two dynamical network biomar-
kers which can be separately used to predict the peri-insulitis of the
early stage of disease and the onset of type 1 diabetes with overt hy-
perglycaemia [127]. These two DNBs were adopted to analyse and
revealed that mitochondrion electron transport induces the apoptosis
function of the second DNB and pushes the peri-insulitis to diabetes.
Li et al. [128] identified tissue-specific DNBs corresponding to the
critical transitions occurring in liver, adipose and muscle during type
2 diabetes mellitus (T2DM) progression, and found two different criti-
cal states during T2DM development, characterized as responses to
insulin resistance and serious inflammation respectively. The identi-
fied DNB genes are significantly associated with T2DM, either to be
the disease genes or participate in important biological processes
related to the T2DM development, such as response to insulin stimuli,
abnormal lipid metabolism and immune system response. DNB genes
were also found tend to be located at the upstream of pathway rather
than the consequence so that DNB genes act as the causal factors to
drive the downstream molecules to change their transcriptional activi-
ties. These studies demonstrated that DNB approaches can detect the
early warning signals for detecting the normal and pre-disease states,
and provide insights to the molecular mechanism of disease pheno-
type or complex physiological processes.

Fang et al. investigated the relationship of cigarette smoking and
lung cancer development [44]. The disease states (tumour or nor-
mal), smoking states (current smokers or non-smokers or former
smokers), and the disease stage (stages I–IV) were pair-wise com-
pared using a novel strategy that incorporates network-based
approach with gene set enrichment analysis. They identified panels of
gene candidates that involve in cell proliferation and drug metabolism,
such as cytochrome P450 and WW domain containing transcription
regulator 1, in smoking or lung cancer development. Pathways of cell
cycle, DNA replication, RNA transport, protein processing in endo-
plasmic reticulum, vascular smooth muscle contraction and endocy-
tosis were found commonly involved in smoking and lung cancer.
Furthermore, semaphorin 5A and protein phosphatase 1F were identi-
fied as the common genes represented in major hubs in both the
smoking and cancer-related network. This study provides an excellent
example not only to understand the complex and dynamic relation-
ships between cigarette smoking and lung cancer but also to reveal
molecular mechanisms of cancer initiation and progression at a net-
work level.

Correlation between network
biomarkers and clinical informatics

Network approaches allow an accurate identification of biomarkers.
DNBs have the advantage to demonstrate pathophysiological changes
at different stages and periods. One of the most challenges is to

translate network biomarkers into clinical application and validate the
disease specificity [9, 10]. The biological measurements need to be
statistically and mechanistically correlated with clinical information.
But conventional clinical measurements, such as complaints, history,
symptoms and signs, physical examinations, laboratory tests, medi-
cal imaging and therapies, are descriptive and rarely integrated, com-
paring with biological data. As such, clinical bioinformatics was
proposed to combine clinical phenotypes with human tissue-gener-
ated bioinformatics, to understand molecular mechanisms of the dis-
ease, and to define relationships between collectively direct global
function with clinical measurements [9]. Defined as ‘the clinical appli-
cation of bioinformatics-associated sciences and technologies to
understand molecular mechanisms and potential therapies for human
diseases’, clinical bioinformatics emphasizes the association and
specificity complex biomedical data sets with the disease complexity
of patient information. It suggests that the integration of biology data
with clinical informatics can be a new way to validate and optimize
disease-special network biomarkers [10]. It would be even more val-
ues if clinical bioinformatics can integrate network-based approaches
to prioritize disease-specific interaction subnetworks between gene–
gene, gene–protein, or protein–protein with disease signature and
clinical phenotypes, to improve the accuracy of clinical diagnostics
and prediction.

The strategies to integrate biological and clinical data have been
proposed and are still under the rapid development [129, 130]. Using
a clinical bioinformatics approach, Schwarz et al. [131] quantified
relationships between specific variables of patients with schizophrenia
(i.e. cerebrospinal fluid and serum samples, obtained from two differ-
ent profiling platforms and standard laboratory tests) as networks,
and detected a subgroup of patients featuring remarkable abnormali-
ties in a network of serum primary fatty acid amides. The identified
disease-associated patterns of biomarkers were suggested to be able
to describe the complicity of psychiatric diseases. This particular
study demonstrated that simultaneous evaluation of clinical data and
molecular biology data via a clinical bioinformatics approach could
improve the understanding of complex diseases and lead to better
diagnosis, prediction and therapy.

Because of the large and independent nature of the clinical data,
the application of controlled vocabulary and ontology for the standard
nomenclature of clinical trial data is critical and important for clinical
data integration [129]. In a preliminary study, Chen et al. [22] utilized
chemokine multiplex antibody array to detect inflammatory mediators
in the circulation of patients with acute exacerbation (AECOPD) or sta-
ble condition (sCOPD) of chronic obstructive pulmonary disease to
correlate DNBs with clinical informatics. Clinical informatics, which
translates clinical descriptive information into the digital data, was
achieved by a digital evaluation score system (DESS) for assessing
severity of the patients. DESS is a score index established by senior
chest physicians that take into account patient symptoms, signs, doc-
tor examination, clinical imaging and biochemical analyses in patients
with AECOPD or sCOPD. For the assessment of the severity, each
component was assigned with different scores as 0, 1, 2 and 4. The
score of 4 (maximal value) indicates far more above normal range or
more severe condition, while 0 (minimal value) means the variable is
within physiological range. The value of 3 was missed in the scoring
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system for exponential values to better define the severity stages. The
points of each variable were added after compiling patients’ data and
DESS values ranged from 0 to 264, of which higher scores indicate
severer conditions. By integrating proteomics-based bioinformatics
with clinical informatics, disease-specific biomarkers in the circula-
tion were scanned and a multi-scale predictive model was estab-
lished. The authors identified 13 mediators (BTC, IL-9, IL-18Bpa,
CCL22, CCL23, CCL25, CCL28, CTACK, LIGHT, MSPa, MCP-3, MCP-4
and OPN) that could discriminate AECOPD patients from both healthy
and sCOPD patients.

Using similar approach, the authors further investigated the
potential correlation of proteomic profile with clinical informatics in
COPD patients. Plasma samples from 18 patients including healthy
individuals or patients with sCOPD or AECOPD were collected to mea-
sure 507 inflammatory mediators using antibody microarray [24].
Clinical descriptive information was translated into digital data by
DESS for severity assessment. Twenty mediators were significantly
different between three groups, of which Cerberus 1, inhibin B, osteo-
activin and thrompoietin were firstly reported in COPD and AECOPD.
Ten cytokines such as Cerberus 1, Growth Hormone R, IL-1F6,
IL-17B R, IL-17D, IL-19, Lymphotoxin beta, MMP-10, Thrombopoie-
tin and TLR4 were found inversely correlated with DESS scores. A
down-regulation of systemic inflammatory responses was indicated
in the occurrence of AECOPD. These studies demonstrated that the
integration of omic profiles with clinical informatics as part of clinical
bioinformatics is important to discover, validate and optimize dis-
ease-specific and disease-staged biomarkers. The proposed protocol
for disease-specific biomarker discovery by integrating bioinformatics
and clinical informatics is illustrated in Figure 4. Firstly, the expres-
sion profiles and the clinical data of a disease phenotype during dis-
ease precession are obtained. Secondly, the disease-associated
networks are measured by bioinformatics, and clinical informatics is
generated through a digital evaluation score system. Thirdly, the
molecular-phenotype networks are then measured and ranked by
integration of bioinformatics and clinical informatics to identify candi-
date biomarkers. And lastly, the identified disease-specific biomarkers
are validated for clinical applications.

The advantages and constraints for
clinical application

Protein-based network biomarkers with systems information can pro-
vide a more precise and complete profile of cellular changes in human
diseases. As proteins perform the major cellular functions essential to
signal transduction that role cell growth, differentiation, proliferation
and death, protein-based network biomarkers are critical in providing
valuable information at the post-translational level that can be used to
establish diagnosis or prognosis of a disease and to develop person-
alized therapeutics, with favourable clinical feasibilities. The effective-
ness of protein-based network biomarkers has been demonstrated in
the context of various diseases.

On the other hand, a number of proteomics-associated challenges
should be bear in mind. For instance, proteomics experiments typi-

cally screen only a limited fraction of proteins, in particular, gel-based
expression experiments are most likely to detect high abundance pro-
teins. The human PPI data are still incomplete and variable because
of different curated collections. Therefore, the advantages of the net-
work biomarker discovery include not only easily avoiding data noises
by knowledge-based network but also deriving high confident net-
work biomarkers.

A number of challenges still exist in every step of the network
biomarker development pipelines, despite of technological
advances. Protein post-translational modification and alterations in
protein stability may influence network modularity on a global scale
during disease progression. Most high-throughput methods can
suffer from high false-positive or -negative rates that may lead to
misclassifications. Large-scale networks are not specific to dis-
eases or clinical phenotypes. The level of certainty is constrained
by the issues of data collection, interpretation of large size of the
proteome, and the diversity of cells and tissues. On the other hand,
noise generated during different network methodologies integration
remains a major constraint to correctly interpret complex networks
and needs to be critically evaluated and managed. Thus, the princi-
ples used in network discovery, validation and development
remains to be further defined and quantified, and the development
of novel and reliable statistical tools for the network environment
is urgently needed. Also, the lack of standardized vocabularies for
a definitive translation of networks into the clinical arena represents
a main challenge in the integration and interpretation of clinical
bioinformatics. Another important challenge is to translate DNBs
into the understanding of clinical phenotypes, molecular mecha-
nisms of disease development and progress, and development of
therapeutic strategy [10].

Despite these limitations related to knowledge incompleteness
and uncertainty in the network inference process, the characterization
of complex biological phenomena on the basis of functional modular
architectures and topological parameters present us with new oppor-
tunities to improve our understanding of the aetiology, evolution and
therapeutics of the diseases. To reach clinical application, the advan-
tages and disadvantages of protein-based network biomarkers should
be furthermore investigated to evaluate the potential values of net-
work biomarkers in the development. We believe that clinical bioinfor-
matics can play an important role in identification and validation of
disease-specific DNBs.

Prospective and conclusions

Better biomarkers are urgently needed to disease detection, diagnosis
and prognosis. Network approaches have revolutionized the tradi-
tional ways of biomarkers discovery and offered a powerful way for
pathway mapping and development of disease-specific biomarkers.
Although challenges exist in steps of the network biomarker develop-
ment, network biomarkers are proving to play importance roles in
disease-causing genes prediction, disease-related subnetworks iden-
tification, disease classification, disease in vitro/in silico modelling,
drug discovery and target screening, and ultimately improving the
outcome and life quality of patients.
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In the era of network medicine, new biomarker discovery depends
on a comprehensive view of transcriptome, genome, proteome, and
metabolome, or diseaseome. The dynamic nature of human protein
interaction network because of the diversity and regulative structure
of post-translational modifications, gives in-depth insight into disease
mechanism. Scientists and physicians are facing more challenges to
keep the pace with the growing availability of a variety of high-
throughput data. Global efforts are been done to improve our under-
standing of diseases through integrative approaches to translate
science into the clinical practice [132–134]. With the development of
clinical bioinformatics, biomarker discovery should not only integrate
different types of omics data, but also consolidate of such molecular

biological measurements with clinical phenotypes. The development
of profiling technologies, biological databases, data mining, biostatis-
tics and clinical bioinformatics will tremendously speed up the identi-
fication, validation and development of disease-specific network
biomarkers and DNBs.
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