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ABSTRACT: Although gene fusions are recognized as driver mutations in a wide
variety of cancers, the general molecular mechanisms underlying oncogenic fusion
proteins are insufficiently understood. Here, we employ large-scale data integration
and machine learning and (1) identify three functionally distinct subgroups of gene
fusions and their molecular signatures; (2) characterize the cellular pathways rewired
by fusion events across different cancers; and (3) analyze the relative importance of
over 100 structural, functional, and regulatory features of ∼2200 gene fusions. We
report subgroups of fusions that likely act as driver mutations and find that gene
fusions disproportionately affect pathways regulating cellular shape and movement.
Although fusion proteins are similar across different cancer types, they affect cancer
type-specific pathways. Key indicators of fusion-forming proteins include high and
nontissue specific expression, numerous splice sites, and higher centrality in protein-
interaction networks. Together, these findings provide unifying and cancer type-
specific trends across diverse oncogenic fusion proteins.
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Gene fusions are formed via the joining of two previously
independent genes, which typically results from structural

rearrangements such as translocation. Gene fusions can lead to a
deregulation of the involved genes (e.g., overexpression), the
formation of a novel fusion protein (e.g., a constitutively active
kinase), or the truncation of protein products. The total number
of known gene fusions is increasing rapidly, and a growing
number of gene fusions have been found to act as driver
mutations across diverse cancer types.1,2 For example, gene
fusions drive the majority of lymphomas and leukemias,3 and
one specific gene fusion (TMPRSS2-ERG) is the most common
driver mutation in prostate cancer.4 In accord with their
importance to cancer-related processes, gene fusions and their
products have been useful as drug targets, as well as diagnostic,
prognostic, and cancer subtype biomarkers.5,6 A recent analysis
of over 25000 fusions present in the TCGA database estimates
that fusions drive the development of 16.5% of cancer cases
(functioning as solve drivers in over 1% of cases), and that 6.0%
are potentially druggable by fusion-targeted treatments.7

Several studies have sought to broadly characterize the
functional trends present in gene fusions and fusion proteins.
For example, studies have addressed fusion protein interactions
and regulation,8 domain content,9−14 intrinsic structural
disorder,15,16 expression levels,2,11,17−21 and fusion pairing
networks.9−11,22,23 Such work has shed light on a variety of
functional trends, such as the tendency of fusions to involve
kinases,24,25 chromatin modifying proteins,26,27 and highly
expressed “parent” genes that are involved in the fusion.11

However, to the best of our knowledge, no study has sought to
identify the molecular signatures or functional subgroups of
gene fusion events, or the hallmarks of gene fusion in terms of

describing the trends in the rewiring of cellular pathways
resulting from fusion.
Here, we first compile a genome-wide, protein-centric feature

set of over 100 attributes−including data on gene function,
protein structure, molecular interactions, gene expression,
regulatory sites and tissue-specificity−in order to ask a series
of questions about the functions of gene fusion events (Figure
1A). We focus exclusively on the properties of parent proteins
and fusion proteins, and hence do not consider DNA or RNA-
level features (promoter architectures, epigenetic states, miRNA
targets, UTRs, etc.). To infer the molecular signatures and
hallmarks of fusion proteins, we use unsupervised clustering to
find groups of functionally similar gene fusions (Figure 1B) and
identify the pathway rewiring trends of known fusions (Figure
1C). We also use statistical learning algorithms to infer feature
importance (Figure 1D) across a variety of predictive tasks, for
example, to find attributes predictive of proteins involved in
fusion events, fusion recurrence, etc. Only a handful of previous
studies have used machine learning techniques to model or
predict any aspect of gene fusion biology,13,28−30 all focusing on
distinguishing driver and passenger fusion events. The specific
findings, general trends, and predictive framework presented
here will be useful for (i) facilitating a deeper molecular
understanding of the role of gene fusions in cancer and (ii)
identifying novel therapeutic strategies for developing pharma-
cological agents, targeting specific pathways to counter the
oncogenic effects of diverse cancer gene fusions.
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Figure 1. Study overview. (a) Data sets describing the function, structure, interactions, and expression of human proteins were integrated with a gene
fusion data set in order to identify the molecular signatures, hallmarks, and investigate the functional molecular biology of fusion events in cancer. (b)
Clusters of fusion-forming proteins (i.e., “parent proteins”) and fusion proteins (each composed of two parent proteins) were identified by principal
components analysis followed by agglomerative hierarchical clustering. (c) Cellular pathways significantly rewired by fusion events were identified
using randomization tests that compared pathway fusion frequencies to expected null counts. (d) Random forest (RF) and regularized logistic
regression (RLR) models were used to infer feature importance across a variety of classification tasks, such as ranking which properties best distinguish
between parent proteins and nonfusion forming proteins. The mechanisms of feature importance ranking by the two models are outlined (see Online
Methods in the Supporting Information for details).
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■ RESULTS
Feature Space Construction. We curated and integrated

genome-wide data from 25 data sets and papers to compose a
feature set of 119 variables (names, descriptions, and data
sources in Table S1) that may influence fusion protein function,
as suggested by a review of current literature.5 Only protein-
coding genes (n = 20295) were considered. A gene fusion data
set containing 2371 in-frame fusion events, resulting from a
recent transcriptomic screen of 675 human cancer cell lines,31

was used as the known gene fusion set. For prediction tasks, the
data set was balanced according to outcome class frequencies
(see OnlineMethods) before being input to learning algorithms.
Molecular Signatures of Parent Proteins Involved in

Gene Fusions. Gene fusions generally involve two genes (i.e.,

two “parent genes” or “parent proteins”). We first examine
whether natural subgroups of parent proteins can be identified,
and what characterizes each subgroup (or “cluster”). Principal
components analysis (PCA) was conducted on parent protein
features (Figure 2A) to identify axes on which parent proteins
vary most (Figure 2B). The largest axis of variance (principal
component 1, PC1; 21.5% of total variance) captures aspects of
a parent protein’s position in protein−protein interaction (PPI)
networks (using different measures of “centrality” to a network)
and its interactions with cancer proteins (e.g., oncoproteins and
tumor suppressor proteins), such that proteins with high PC1
values have higher network centrality andmore interactions with
cancer proteins; PC2 (8.3%) reflects elements associated with
intrinsic structural disorder, such as the presence of linear

Figure 2.Molecular Signatures of Fusion: Identification and characterization of parent protein subgroups. (a) Scree plot showing the eigenvalues and
cumulative variance explained by successive principle components (PCs). (b) Loadings on the PCs showing the correlations (r) between features and
the first 6 PCs. Headers to PC boxes conceptually summarize the correlations. Variable names, descriptions, and data sources are available as Table S1.
Shortened variable names used for display purposes: num_LMs, num_ANCHOR_LMs; density_LMs, density_ANCHOR_LMs; density_IN-
struct_d, density_INstruct_domains. (c) Hierarchical clustering was performed on the values of the first 10 PCs, yielding three clusters of parent
proteins. (d) Parent proteins plotted by PC1 and PC2 values, colored by cluster. (e) Distributions of key features by cluster. The features chosen highly
correlate with the first six PCs. (f) Paragon parent proteins are instances closest to cluster centroids, and therefore represent “average” cases for the
cluster. Five paragon examples (i.e., the five points closest to the centroid) are provided for each cluster. (g) Frequencies of parent proteins acting as
either the 5′ or 3′ parent by cluster. (h) Fusion frequencies by cluster membership and 5′ versus 3′ parent status. (i) Expected proportions of
intercluster fusions derived from randomization analyses. Random fusions were generated by sampling twice from the three parent cluster gene sets.
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peptide binding motifs (LMs), etc. (see Figure 2B for PC3 to
PC6 correlations). We identify three clusters of parent proteins
(Figure 2C,D). These groups are described by their functional
and structural properties (Figure 2E), by average cases or
“paragons” (Figure 2F), and by functional enrichments by
cluster (Figure S1). The three parent protein clusters are

1. Structured and isolated proteins (P1). A large cluster (n =
1742; parent cluster 1 or P1) of poorly interactive,
structurally ordered proteins, which are expressed in a

tissue-specific manner and are isolated from oncogenic
processes, that is, have few interactions with cancer
proteins (Figure 2D,E). P1 proteins have few interaction-
mediating elements (such as certain domains and LMs)
and relatively rarely localize to the nucleus. Functionally,
P1 proteins are most dramatically enriched for protein
localization and protein transport (Figure S1). Paragon
P1 proteins (Figure 2F) include the mitochondrial

Figure 3. Molecular signatures of fusion: Identification and characterization of gene fusion subgroups. (a) Scree plot showing the eigenvalues and
cumulative variance explained by successive PCs. (b) Loadings for the first 6 PCs. (c) Clusters of gene fusion events emerging from hierarchical
clustering on the first 10 PCs. (d) Fusion proteins plotted by PC1 and PC2 values, colored by cluster. (e) Composition trends of fusion events by
cluster. For each of the three fusion event clusters, the proportions of fusions arising from different combinations of proteins from the previously
identified parent protein clusters (see Figure 2) are shown. (f) Distributions of key features of fusion events colored by cluster. (g) Paragon gene fusion
events by cluster. (h) Prevalence of the three gene fusion clusters among a range of cancer types.
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ribosomal protein L47 (MRPL47) and the cell−cell
signaling and migration protein plexin D1 (PLXND1).

2. Disordered, nuclear cell cycle proteins (P2). An
intermediate-sized cluster (n = 898) of large, disordered,
LM and post-translation modification (PTM) rich
proteins with low/intermediate PPI centrality and
number of cancer interactions. P2 proteins are enriched
for cell division, cell cycle, and transcription functions.
Paragon P2 proteins (Figure 2F) include the neurite
outgrowth and cytoskeletal organization protein shootin 1
(SHTN1) and the DNA binding factor Rho GTPase
activating protein 35 (ARHGAP35).

3. Central connector and cancer interactor proteins (P3). A
small cluster (n = 504) of highly central, PTM-dense,
multifunctional, nucleus-localized proteins with numer-
ous interactions with cancer proteins. P3 proteins are
smaller, more ordered, and much more interaction-prone
and central in PPI networks than P2 parents. P3 proteins
are highly enriched for roles in protein production and
processing, for example, translation and RNA splicing, as
well as cell division, cell cycle, and cell death. Interestingly,
alteration of splicing has been demonstrated as a key
oncogenic mechanism of the PPI network hub EWS-FLI1
fusion protein, an important oncoprotein in Ewing
sarcoma.32 Paragon P3 proteins (Figure 2F) include the
SET nuclear proto-oncogene, and the mitogen-activating
RPS6KA1 kinase (involved in cell proliferation and
survival).

For the majority of enriched molecular functions, there is a
clear functional separation by cluster; for example, only P3
parents are significantly enriched in translation, splicing, and cell
death functions (Figure S1A, S1B). The data used for clustering
did not include specific GO function annotation. Certain
functions, such as mitosis, the cell cycle, and nitrogen
metabolism, are enriched across multiple clusters (P2 and P3).
The sole biological process enriched across all parent clusters is
“RNAmetabolic processes”, which encompasses RNA synthesis,
modification, and processing.
Parent proteins from each cluster act as 5′ or 3′ parent genes

at approximately statistically expected rates, though P1 proteins
tend toward being 3′ parents and P2 toward 5′ parents (Figure
2G; χ2 = 8.8, df = 2, p = 0.0124). P2 and P3 parents are much
more likely to be recurrent (i.e., participate in multiple fusions),
a marker of driver mutations (% recurrent parents in P1, 24.7%;
P2, 32.6%; P3, 41.1%; χ2 = 55.5, df = 2, p = 8.9e−13). Overall, the
largest proportion of fusion events (30.2%) fuse P1 and P2
proteins (P1 + P2 or P2 + P1); P1 + P1 fusions are also abundant
(26.0%) (Figure 2H). Fusion frequencies by parent cluster
deviate from expected values, suggesting preferential pairing
between certain clusters (Figure 2H; χ2 = 19.8, p = 5.4e−4). A
follow-up randomization analysis (see OnlineMethods) showed
that P1 + P1 fusions and P1 + P2 fusions occur less often than
expected, while P3 + P3 and P2 + P1 fusions are
disproportionately common. Hence, there exist functionally
distinct clusters of parent proteins with observable pairing biases
between them.
Functional andMolecular Clustering of Fusion Events.

Next, subgroups of entire fusion proteins (consisting of two
fusion parents; see above) were identified. Specifically, PCA and
clustering analyses were conducted on the features of 2362
fusion events detected in 675 cancer cell lines. Interestingly, the
axes on which fusion events differ most are nearly perfectly

separated into 5′ versus 3′ parent features. Fusion principal
component 1 (F-PC1; 12.1% of variance; Figure 3A) captures 3′
parent PPI network centrality and interactions with cancer
proteins (Figure 3B) while F-PC2 (9.3%) captures the 5′ parent
version of F-PC1, correlating with the centrality and cancer
interactions of 5′ parents. F-PC3 (4.4%) quantifies 3′ parent
functional disorder, and F-PC4 (3.7%) captures 5′ linear motifs
(strongly associated with disorder). From these PCs, three
clusters of fusion events were identified (Figure 3C,D), which
incorporate parent protein clusters at different rates (Figure 3E),
namely:
(1) Structured, peripheral fusion proteins (F1): A large

cluster (n = 1126; fusion cluster 1 or F1) of fusions composed of
large, relatively structurally ordered, functionally specialized 5′
and 3′ proteins characterized by low PPI centrality, few
interactions with cancer proteins, few PTMs, and low, tissue-
specific expression (Figure 3D,F). F1 fusions are most often
composed of parents from the P1 and P2 clusters (specifically,
P1/P1 and P1/P2 combinations make up 84.6% of F1 fusions;
see above for parent cluster descriptions), with almost no
involvement of P3 parents. Paragon F1 fusions are diverse
(Figure 3G), and include fusions between a translation initiation
factor (EIF3A) and mitochondrial membrane protein
(SFXN4); a cell division (PARD3) and a signaling (PLEKHA2)
protein; an mRNA processing (CNOT2) and cell survival and
proliferation (PTMA) protein; and a transcriptional coactiva-
tion (CREBBP) and DNA repair (SLX4) protein.
(2) Fusion proteins with central, regulated, and cancer-

associated 3′ parents (F2). An intermediate-sized cluster (n =
778) of fusions in which the 3′ parents are characterized by high
PPI centrality, connectivity to cancer proteins, and multi-
functionality. F2 3′ parents have high and broad expression, and
many PTMs and interaction-mediating regions. The 5′ parents
in F2 fusions do not have such extreme features, and more
resemble P1 parents. Typical F2 fusions include a ribosome
maturation protein (NCL) with PTMA; a transcription
regulator involved in leukaemogenesis33 (PBX3) and an
mRNA export mediator (GLE1); cell cycle progression protein
(ANP32B) and the SET proto-oncogene.
(3) Fusion proteins with central, regulated, and cancer-

associated 5′ parents (F3). Conversely, in the final small cluster
(n = 448) of fusions, the 5′ but not the 3′ parents are
characterized by high centrality, cancer interactions, high PTM
densities, expression levels, etc. (Figure 3B,F). Prototypical F3
fusions often involve proteins functioning in processes classically
associated with cancer,34 for example, a mitotic checkpoint
protein (MAD1L1) and a chloride anion channel (TTYH3); an
activator of NF-kappa-B signaling (TRAPPC9) and a potassium
channel (KCNK9); and a translation elongation factor
(EEF1G) and a regulator of NF-kappa-B signaling (UBXN1).35

These results demonstrate the existence of distinct subgroups
of fusion events that share common functional and structural
themes, especially with respect to 5′ versus 3′ parent properties.
F1 and F3 fusions are slightly more likely to be detected in
metastatic tumors (% of fusions classed as metastatic in F1:9.7%;
F2:7.0%; F3:12.1%; χ2 = 9.3, df = 2, p = 9.4e−3; see Online
Methods). Although cancer types have different proportions of
fusions from each cluster (Figure 3H; for example, brain cancers
have the highest proportion of F1 fusions; sarcomatoid cancers
F2 fusions; lymphoid cancers F3 fusions, etc.), these differences
do not reach significance (χ2 = 19.2, df = 16, p = 0.26).

Fusions Disproportionately Rewire Signaling and Cell
Movement Pathways.To investigate fusion hallmarks, that is,
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which pairs of cellular pathways aremost often joined by fusions,
REACTOME gene pathway annotation was mapped onto
parent proteins in fusion events. Across all fusions, signal
transduction pathways are the most frequently rewired (Table
S2), with “signal transduction” often being paired with “immune
system” (in 14.7% of fusions), “metabolism” (12.3%), other
“signal transduction” (11.7%), “gene expression” (11.5%), and
“disease” (10.5%) pathways. To identify which pairs of pathways
are fused more than expected by chance, empirical frequencies
were compared to frequencies derived from 1 000 000 randomly
generated gene fusions (see Online Methods).
Signaling and cell movement pathwaysespecially RHO

GTPase and semaphorin signaling, and actin dynamicsare the

most disproportionately frequently rewired by fusions (Figure
S2; Table S2). For example, the pairing of “diseases of signal
transduction” and “RHO GTPases Activate WASPs and
WAVEs” (involved in cytoskeletal signaling) is expected to
occur at a rate of 0.0273% by chance (∼1 in 3663 fusions) while
the observed rate is 1.748% (∼1 in 57), giving an enrichment of
over 64 (log10 enrichment of 1.8). We observe an abundance of
rewired pathways involving semaphorins (which regulate cell
adhesion, motility, and tumor progression), semaphorin 4D
(“sema4D” or “CD100”; a transmembrane semaphore involved
in cell migration as well as immune signaling and angiogenesis),
and other pathways relating to actin dynamics and cell

Figure 4. Fusion hallmarks: trends in cellular pathways fusions by fusion event cluster. REACTOME gene pathway annotation was mapped onto
parent proteins in fusion events and enrichment was assessed using randomization analyses. Nodes indicate pathways, and edges indicate the
occurrence of a fusion between them (i.e., between two genes which participate in the pathways). Edge widths denote the number of unique fusion
events associated with a specific pathway fusion, and edge colors represent enrichments, whereby enrichments are calculated as the log10 fold change
between observed fusion frequencies and expected frequencies derived by randomly pairing any two human protein-coding genes 1 000 000 times (see
OnlineMethods). Using only parent proteins as the sampling set for generating background frequencies results in highly similar results (see Figure S2).
Only pathways that were fused in 10 or more different fusion events are shown.
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movement. Pathway fusions were recalculated by fusion event
clusters (Figure 4), showing the following:

1. F1 fusions are minor contributors to cellular pathway
rewiring. The largest cluster of fusion events has the
smallest number of enriched pathway fusions. The
existing enrichments are slight and largely related to
metabolism.

2. F2 fusions link cell movement with gene expression and
rewire translation. F2 fusions connect cell movement
(actin dynamics, growth cone collapse, EPH-Ephrin
signaling, phagocytosis) with gene expression pathways,
and fuse translation-related pathways with signal trans-
duction and immune signaling processes.

3. F3 fusions affect cell movement, signaling, and DNA
repair. F3 fusions also highly affect phagocytosis, actin
dynamics, and cell movement, in addition to DNA repair
processes and other signaling pathways. Both F2 and F3
fusions combine immune system signaling with VEGF
(promoter of angiogenesis) and DAP12 (immune cell
activation) signaling.

Specific cases of fused pathways can be used to generate
mechanistic hypotheses; for example, the fusion between
translation and pathways related to cell movement (e.g.,
semaphorin interactions) could relate to the localized trans-
lation of proteins involved in cell motility at the cell movement
boundary,36,37 while the fusion of gene expression pathways to
PAK signaling could influence PAK-related oncogenic signal-
ing.38

Cancer Type Specific Similarities and Differences in
Pathways Affected by Fusion. Fusion protein properties
(e.g., expression, protein domains, regulatory sites) do not
significantly differ across eight cancer types, as evidenced by a

low overall accuracy of classification algorithms trained on these
properties (see Table S4). Despite this protein-level similarity,
the fusion-mediated pathway rewiring trends vary substantially
by cancer type (Figure 5):

1. Lung cancer fusions commonly link signaling pathways
with processes labeled as being related to disease, such as
the fusions involving various fibroblast growth factor
receptor (FGFR; often targetable mutations, including
FGFR fusion proteins39,40) pathways and fusions
involving DAP12 immune signaling.41 Fusions between
NGF signaling and EPH-Ephrin signaling pathways are
also highly enriched.

2. Lymphoid cancer fusions most substantially rewire Slit-
Robo (cell guidance and angiogenesis) and FGFR
signaling (cell proliferation, differentiation, and survival),
as well as affecting DNA repair processes and cell
adhesion.

3. Head-neck cancer fusions frequently pair cell movement
with translation and mRNA decay pathways. Interest-
ingly, pathways related to infectious disease (particularly,
influenza) are also frequently affected, whichmay relate to
the link between inflammation, infection, and carcinoge-
nesis.42,43

4. Breast cancer fusions are most enriched for connecting
VEGF (vascular endothelial growth factor; an established
promoter of angiogenesis and metastasis in breast
cancer44,45) pathways with immune system pathways,
and also affect membrane trafficking.

5. Ovarian cancer fusions tend to affect gene expression
pathways, Wnt signaling (ovarian cancer initiation and
development), and Rho GTPase signaling.

Figure 5. Fusion hallmarks: trends in cellular pathway fusions by cancer type. Enrichments in pathway fusions were calculated as before. Only pathways
that were fused in five or more different fusion events are shown. The five displayed cancer types were chosen due to their availability of pathway
annotation and of a sufficiently high number of gene fusions.
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Figure 6. Predictive characteristics of fusion parent proteins. RF and RLR models were trained to distinguish between parent proteins and all other
proteins on the basis of their gene- and protein-level properties (or features) on a balanced data set. (a) Categories of parent genes and fusion events
within the data set, used as target labels for subsequent classification tasks. (b) Most informative features for distinguishing parent proteins from
nonparent proteins, as ranked by the random forest and regularized logistic regression models. Higher values in stacked bar plots indicate higher
predictive importance (see Figure 1d and Online Methods for details). Feature rankings are returned in highly different formats by the RF and RLR
models, but weremade comparable by considering ordinal rankings only. (c) Distributions of most predictive variables for parent proteins (lime green)
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Hence, although fusion protein characteristics are broadly
similar across cancer types (and across primary vs metastatic
tumors; see Figure S5), the pathways they affect are specific to
the cancer type.
Features Distinguishing Parent and Nonparent

Genes. Random forest (RF) and regularized logistic regression
(RLR) classifiers, chosen for their different formulations and
ability to generate interpretable feature rankings, were trained to
distinguish parent and nonparent proteins on a balanced data set
(Figure 6A; nparent = nnonparent = 3151). The most influential
features were aggregated across both models (Figure 6B;
variable definitions are available in Table S1), and distributions
of these key features were visualized (Figure 6C). Models
trained on the gathered feature set can differentiate between
parent and nonparent genes moderately well (overall accuracy:
RF = 0.674, RLR = 0.683 with 10 features, RLR = 0.686 with
CV-optimized λ1), with both models ranking similar features as
highly predictive of parent proteins. As a baseline,46 predicting
parent proteins using cancer gene labels achieves 52.1% accuracy
(random chance: 50.0% accuracy). Parent proteins have more
exons and isoforms, are more highly expressed, expressed across
more tissues, more molecular functions, higher PPI network
centrality, interact with many oncogenes and other cancer
proteins, and contain many disorder-associated elements such as
PTMs and LMs. Several of these features have not been
previously implicated in a significant manner with fusion protein
functionality (e.g., multifunctionality).
All human proteins were ranked by their “similarity” to known

parent proteins (Table S3) on the basis of the RF and RLR
model predictionswhich agree on 79% of parent/nonparent
labels in the human proteome, despite highly different model
formulations. For example, the three most “fusion parent-like”
proteins (Table S3) are SRRM2 (serine/arginine repetitive
matrix 2; pre-mRNA splicing, associated with papillary thyroid
carcinoma), APP (amyloid beta precursor protein; protein
synthesis, cell proliferation, and cancer cell migration), and
MACF1 (microtubule-actin cross-linking factor 1; cytoskeleton
organization protein facilitating peripheral actin-microtubule
interactions and regulating cell migration). Examples of
predicted highly “parent-like” proteins not currently classified
as parents (in this data set), include CTNND1 (catenin delta 1;
cell−cell adhesion, and signal transduction), NUMA1 (nuclear
mitotic apparatus protein 1; cell division), EGFR (epidermal
growth factor receptor; a receptor tyrosine kinase involved in
cell proliferation signaling), TLN1 (talin 1; actin filament
assembly, cell adhesion and cell migration), and TOP2B
(topoisomerase DNA II beta; nuclear enzyme which alters
DNA topology during transcription). As a brief validation of
these rankings, we note that CTNND1,47 NUMA1,48 EGFR,49

and TOP2B50 gene fusions have indeed been described in the
literature.
5′ and 3′ Parent Proteins Are Functionally and

Structurally Similar. Gene fusion generally involves two
different parent genes, one acting as the 5′ parent and the other
as the 3′ parent. The pairing of genes in fusion events has been
suggested to be nonrandom at the level of genes and domains.11

We trained models to distinguish between 1341 5′ and 1392 3′

parents (excluding genes which act as both 5′ and 3′ parents;
Figure S4A) and analyzed features most predictive of each
category (Figure S4B). Despite some differences in properties
(Figure S4C; for example, 3′ parents are expressed at lower
levels and more tissue-specifically), models could classify 5′ and
3′ parent genes at a rate only slightly higher than chance
(accuracy: RF = 0.554, RLR = 0.550 with 10 features, RLR =
0.552 with CV-optimized λ1). This indicates the absence of a
strong difference between 5′ and 3′ parent genes at the level of
protein features and gene functions. However, DNA- or RNA-
level features such as promoter strength may still separate 5′ and
3′ parents, as has been previously suggested.11

Observed 5′−3′ Fusion Pairings Are Not Distinguish-
able from Random 5′−3′ Pairings. To examine whether the
specific pairing pattern between 5′ and 3′ parent genes is
nonrandom, models were trained to distinguish between real
and random combinations of known 5′ and 3′ parents. Random
events were generated by sampling from a matrix of all possible
fusion events (Figure S5A; Online Methods) and models were
trained. In line with our previous result that 5′ and 3′ parent
proteins are largely identical (Figure S5B−D), the classifiers
performed comparably to random chance. For example, both the
random and real fusions possessed an oncogene 5′ parent and a
nononcogene 3′ parent in ∼2.4% of the cases, and had a kinase
5′ parent and nonkinase 3′ parent in ∼4.3% of the cases. This
suggests that fusion events may simply incorporate two “parent-
like” genes, with the specific genes and 5′-3′ ordering being
relatively unimportant (at the protein level), though the order is
undoubtedly important for specific individual cases and for their
expression level in different cancer types.22

Characteristic Features of Recurrent versus Non-
recurrent Parent Genes. Recurrence has been suggested to
be a marker of driver fusion mutations.25,51 Within the set of
parent genes (n = 3151), 934 (29.6%) are recurrent parents (i.e.,
they form more than 1 fusion within the data set; Figure S6A).
Recurrent parents are much more likely to participate in fusions
detected in cell lines derived from metastatic (versus primary)
tumors (Fisher’s exact test odds ratio = 2.46, p < 2.2e−16),
suggesting a link between recurrence and cancer progression
(Figure S6B). On the basis of protein features, recurrent parent
proteins are relatively poorly distinguishable from genes that
form two or more fusions (overall accuracy: RF = 0.561, RLR =
0.546 with 10 features, RLR= 0.560 with CV-optimized λ1). The
list of predictive features is largely the same as the collection of
features that best split parent genes from nonparents (e.g.,
higher and broader expression, more exons and isoforms; Figure
S6C,D), suggesting that recurrent parent genes are “more
extreme” versions of parent genes. Indeed, certain properties
gradually increase with how many fusions a gene forms,
including expression heterogeneity, expression levels, PTM
density, interaction-mediating domains, and interactions with
cancer proteins (Figure S7A), and increasingly recurrent genes
are therefore easier to identify (classification accuracies in Figure
S7B; recurrence class sample sizes in Figure S7C). Genes that
form 5+ fusions are as highly distinct from nonrecurrent parents
as parents are from nonparents, when judged by classification
accuracies (Figure S7B).

Figure 6. continued

and nonparent proteins (light gray). Boxplots (with outliers removed) are overlaid on violin plots. Differences in distributions were quantified using
nonparametric Wilcoxon rank sum tests (for numerical variables), chi-squared tests (categorical data), and Fisher’s exact tests (categorical data where
any cell count is less than 30).
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■ DISCUSSION

Given the rapidly growing evidence that gene fusions are
frequent driver mutations across a wide variety of cancer
types,5,7,22 a deeper understanding of the molecular and
functional signatures of fusion is essential. We hope that the
functional trends in this manuscript will be useful for both
exploratory and translational efforts such as the detection and
prioritization of novel gene fusions,5 studies of the druggability
of gene fusions,7 cancer-focused knowledge bases supporting
translational research52 and more broadly, network- and
proteomics-based approaches to identifying new therapeutics
and therapeutic avenues.53−55 As pharmacological agents are
developed against specific fusion transcripts and proteins6 and
the medical targeting of entire pathways is refined, the broad
overview of the types of processes affected by numerous gene
fusions provided in this study could help guide and focus
research efforts.
In this work, we integrated large data sets of gene- and

protein-level features and mined information on fusion protein
functionality, such as the major classes of fusion proteins (e.g.,
two groups of fusions with characteristics of oncogenic driver
mutations were identified; Figures 2 and 3), their effects on
cellular pathways (e.g., high impact on cellular shape and
movement pathways; Figures 4 and 5, Figure S2), and which
features are predictive of a protein’s involvement in fusions (e.g.,
higher propensity for splicing, central positioning in protein
interaction networks; Figure 6). The properties of the largest
fusion event cluster (F1) are not traditionally associated with
cancer-related proteins. This may point toward underexplored
oncogenic mechanisms, or may simply reflect neutral passenger
fusions (potentially due to the cell line origin of the fusions).
Gene fusions from different cancer types were placed within the
three functional clusters at comparable rates, suggesting that
type-specific proportions of driver versus passenger fusions are
similar. Despite the largest cluster of fusion proteins being
relatively inert (e.g., lowly expressed, few interactions, sparsely
regulated), certain structural and interactomic features (e.g.,
phosphorylation sites, ubiquitination sites, linear motifs, the
number of interactions with cancer proteins) were key
predictors of a gene’s involvement in fusion events, more so
even than whether the gene is itself a cancer gene. This is
reflective of the extreme characteristics of fusion proteins from
the two remaining clusters (Figure 2, Figure 6). Previous work
has shown that many interaction-mediating modules and PTM
sites of parent proteins are excluded from fusion proteins due to
fusion breakpoint placement,8 suggesting a loss-of-function
theme to fusion mutations and aligning with previous work of
disease mutations leading to a loss of regulatory56 and
interaction-mediating sites.57,58 Future work can elucidate
feature gain/loss patterns across clusters of fusion events.
While gene and transcript fusion occurs at the DNA and RNA

level, selection generally operates at the protein level (provided
that transcripts are viable and undergo translation). Therefore,
in this study, protein-level features of fusion events were studied.
The specific questions for which no significant differences were
found (e.g., the high similarity between 5′ and 3′ parents, and
the randomness of 5′/3′ pairing patterns) could point toward
DNA and RNA level properties (e.g., promoter properties, 3D
nuclear location, replication timing, epigenetic states, etc.)
taking precedence over protein-level features in the underlying
phenomena.

Finally, despite evidence that point mutation patterns differ
across cancer types,59−63 and gene fusions in many cases being
cancer type specific,3 we find that fusion proteins from different
cancer types are highly similar at the function and pathway levels
(Figure 5). However, different pathways specific to cancer type
are rewired by fusions. Future work could in more detail study
how fusion protein functionality is affected across human tissues
and cancer stages, thereby building on the expanding body of
research surrounding tissue-specific interactomes in dis-
ease58,64,65 and cancer subtype specific trends in driver
genes.62,66

In conclusion, the specific findings and general trends
presented in this work provide molecular insights into the
functional patterns present across diverse oncogenic fusion
proteins, which may help elucidate the roles that the thousands
of known (and yet to be detected) fusion mutations play in
cancer.
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