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Weighted gene coexpress
ion network analysis
identifies hub genes related to KRAS mutant lung
adenocarcinoma
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Abstract
The aim of current study was to use Weighted Gene Coexpression Network Analysis (WGCNA) to identify hub genes related to the
incidence and prognosis of KRAS mutant (MT) lung adenocarcinoma (LUAD).
We involved 184 stage IIB to IV LUAD samples and 59 normal lung tissue samples from The Cancer Genome Atlas (TCGA)

database. The R package “limma” was used to identify differentially expressed genes (DEGs). WGCNA and survival analyses were
performed by R packages “WGCNA” and “survival,” respectively. The functional analyses were performed by R package
“clusterProfiler” and GSEA software. Network construction and MCODE analysis were performed by Cytoscape_v3.6.1.
Totally 2590 KRAS MT specific DEGs were found between LUAD and normal lung tissues, and 10 WGCNA modules were

identified. Functional analysis of the key module showed the ribosome biogenesis related terms were enriched. We observed the
expression of 8 genes were positively correlated to the worse survival of KRAS MT LUAD patients, the 7 of them were validated by
Kaplan–Meier plotter database (kmplot.com/) (thymosin Beta 10 [TMSB10], ribosomal Protein S16 [RPS16], mitochondrial ribosomal
protein L27 [MRPL27], cytochrome c oxidase subunit 6A1 [COX6A1], HCLS1-associated protein X-1 [HAX1], ribosomal protein L38
[RPL38], and ATP Synthase Membrane Subunit DAPIT [ATP5MD]). The GSEA analysis found mTOR and STK33 pathways were
upregulated in KRAS MT LUAD (P< .05, false discovery rate [FDR]<0.25).
In summary, our study firstly used WGCNA to identify hub genes in the development of KRAS MT LUAD. The identified prognostic

factors would be potential biomarkers in clinical use. Further molecular studies are required to confirm the mechanism of those genes
in KRAS MT LUAD.

Abbreviations: 4-HPR = N-(4-hydroxyphenyl) retinamide, COX = Cytochrome oxidase, DEGs = differentially expressed genes,
F-ATPase= Fo subunit of themitochondrial H+-ATP synthase, FDR= false discovery rate, FC= fold change, FPKM= Fragments per
Kilobase Million, GAPs = GTPase activating proteins, GO = Gene Ontology, GS = gene significance, GSEA = gene set enrichment
analysis, KEGG = Kyoto Encyclopedia of Genes and Genomes (KEGG), KM = Kaplan–Meier, KMPLOT = Kaplan–Meier plotter
database, KRAS MT = KRAS mutant, LUAD = lung adenocarcinoma, MCODE = molecular complex detection, ME = module
eigengene, MM = Module Membership, MS = module significance, NSCLC = non-small-cell lung cancer, OS = overall survival,
PFS = progression-free survival, RNA-seq = RNA-sequencing, TCGA = The Cancer Genome Atlas, TOM = topological overlap
matrix, V-ATPase = Vacuolar proton pump, WGCNA = Weighted Gene Coexpression Network Analysis.
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1. Introduction

Lung cancer is the leading cause of cancer related deaths
worldwide.[1] Non-small-cell lung cancer (NSCLC) accounts for
80% of all lung cancer and is often diagnosed at an advanced
stage, which lead to a poor prognosis.[2] The main type of
NSCLC is lung adenocarcinoma (LUAD).[3]

The RAS gene family includes KRAS, NRAS, andHRAS, which
encodes for plasma membrane-localized transduction proteins
with intrinsic GTPase activity. Normally, the intrinsic GTPase
activity of RAS proteins is accelerated by GTPase activating
proteins (GAPs),which attenuateGTPase signaling by accelerating
the conversion of KRAS-GTP bound status to KRAS-GDP bound
status. However, the mutation of RAS gene leads to deficiency of
GTPase degradation which results in a constitutively KRAS-GTP
bound state and in turn actives the downstream pathways to
promote cell proliferation.[4] Themutation ofRAS genewas found
in approximately 30% of human cancers.[5] RAS mutation was
observed to promote many types of cancers.[5] RAS mutation is
implicated with the cancer development and the resistance to
cancer therapies, such as EGFR inhibitors treatment and
chemotherapy.[6]KRASwas identifiedasanoutstandingpredictive
biomarker for LUAD, which generally associated with worse
progression-free survival (PFS) and overall survival (OS).[7]

RAS protein is famous for its “undruggable.” No effective
direct RAS inhibitor has been approved.[8] In KRAS mutant
(KRAS MT) LUAD, many indirect strategies were developed to
target the downstream pathways of KRAS such as RAF/MAPK/
ERK pathway, PI3K/AKT/mTOR pathway, and RHO-FAK
pathway.[9] The KRAS downstream targets remain worth to be
discovered. Weighted Gene Coexpression Network Analysis
(WGCNA) is a valuable modular biological analysis methodolo-
gy, which could identify and screen co-expressed gene modules
and key biomarkers.[10] The WGCNA is a suitable tool for
identifying new hub genes and pathways in the downstream of
KRAS pathway. To our best knowledge, this approach has not
been applied in KRAS MT LUAD. The aim of our study was to
identify novel coexpression gene network modules associated
with KRASMT LUAD byWGCNA, and in turn to find potential
signal pathways and genes that involved in the pathogenesis and
prognosis of KRAS MT LUAD.
2. Methods

2.1. Data collection

We downloaded our data from The Cancer Genome Atlas
(TCGA) database.[11] As the 5-year survival rate dropped sharply
in higher stage lung cancer patients,[12] we included 184 stage IIB
to IV LUAD samples and 59 normal lung tissue samples with
clinical information and RNA-sequencing (RNA-seq) data. The
read counts and Fragments per Kilobase Million (FPKM) data
were both collected. Ethical approval was not available for the
study as our data were revealed from public database.
2.2. Differentially expressed genes (DEGs) screening

The read counts data were used to screen the DEGs between
LUAD samples and normal tissues by using R package “limma.”
The genes with false discovery rate (FDR)<0.05 and jlog2 fold
change (FC)j≥0.585 were selected for further analysis. As shown
in Fig. 1, we first screened DEGs between KRAS wild type LUAD
or KRAS MT LUAD samples and normal tissues, respectively.
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Next, we selected KRAS MT specific DEGs by removing the
intersect DEGs of these 2 groups in the KRAS MT group. The
FPKM data of these genes were further analyzed by WGCNA.

2.3. Weighted gene coexpression networks construction
and module selection

WGCNA was performed by R package “WGCNA.”[10] The
KRAS MT LUAD samples (N=56) and the normal tissue (N=
59) samples were included in the WGCNA analysis. Pearson’s
correlation matrices were constructed for pair-wise genes. A
weighted adjacency matrix of genes using a power function
amn= jcmnjb (cmn=Pearson correlation between gene m and
gene n; amn=adjacency between gene m and gene n) was built.
The b was a softthresholding-power parameter which could
strengthen strong correlations and penalize the weak correlation.
The best b here was 7, with a scale free R2=0.82 (Supplemental
Digital Content [Figure S1, http://links.lww.com/MD/E640]).
Next, the adjacency was transformed into topological overlap
matrix (TOM) to measure the network connectivity of single
gene, which was defined as the sum of its adjacency with all other
genes for network generation. Then, an average linkage
hierarchical clustering was built to find modules with genes of
similar expression profile by using the TOM-based dissimilarity
measure with a minimum group size of 40 genes for dendrogram.
2.4. Identification of significant modules related to KRAS
MT LUAD

The module eigengene (ME) was calculated for representing and
summarizing each module. The ME was defined as the first
principal component of a given module, which could be
representative of the gene expression profile in a module. The
correlation between KRAS MT LUAD and MEs was calculated
to identify the key module related to KRAS MT LUAD. Gene
significance (GS) represents the absolute value of the correlation
between a specific gene and the KRAS MT LUAD. Module
significance (MS) was defined as the average GS for all genes in a
module. The module with the highest MS was considered as the
key module related with KRAS MT LUAD.
2.5. Analysis of hub genes in the most significant module

Hub genes are the highly connected nodes with more interaction
than other genes in a module. For intramodular analysis, the GS
and module membership (MM, which is also known as
eigengene-based connectivity kME) were calculated. Genes with
higher MM and GS in the key module would be defined as hub
genes. Here we selected the hub gene by external traits based
jGSj>0.2 and jMMj>0.7 with a threshold of P-value <.05.
MCODE (molecular complex detection) analysis was performed
to select the sub-module, the parameters were set as the follows:
degree cut-of=2, node score cut-of=0.2, k-core=2, and max.
depth=100. The hub genes interaction network and MCODE
analysis were performed by Cytoscape_v3.6.1.
2.6. Functional enrichment analysis

The functional analysis was performed by Kyoto Encyclopedia of
Genes andGenomes (KEGG), GeneOntology (GO) analyses, and
gene set enrichment analysis (GSEA). The KEGG and GO
analyses were conducted by R package “clusterProfiler.”[13] The
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Identifying DEGs between KRAS wild type LUAD 
and normal tissues (15802 genes) 
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Figure 1. The workflow of current study. Legends: Gene dendrogram was obtained by average linkage hierarchical clustering. The color row underneath the
dendrogram indicates module membership.
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GSEAwas performed by the GSEA software from Broad Institute
(http://software.broadinstitute.org/gsea/downloads.jsp). The P
< .05 and FDR<0.25 were set as the cut-off criterion.
2.7. Survival analysis of DEGs in KRAS mutation patients

We performed survival analysis of each KRASMT specific DEGs
by using R package “survival.” The patients were divided into 2
groups based on whether its expression was over the median
value of all samples. The univariate Cox proportional hazards
regression model was used to find survival related genes. The
screened survival related genes overlapped with the hub genes of
MCODE analysis were considered as hub survival genes. The
Kaplan–Meier (KM) method was applied to draw survival curve.
Log-rank P-value was calculated for KM plot. The validation of
the hub survival genes was performed using the Kaplan–Meier
plotter database (KMPLOT) (http://kmplot.com/analysis/).
3. Results

3.1. Screening the mRNA modules

As shown in Fig. 1, we identified 15,802 DEGs between KRAS
wild type LUAD and normal lung tissues and 16,012 DEGs
3

between KRAS MT LUAD and normal lung tissues, respectively.
After removing the intersect DEGs, we involved 2590 genes into
the WGCNA (1606 upregulated genes and 984 downregulated
genes in KRAS MT LUAD tissue, Supplemental Digital Content
[Table S1, http://links.lww.com/MD/E645]). After WGCNA
analysis, we revealed 10 modules (“MEmagenta,” “MEbrown,”
“MEpink,” “MEblack,” “MEblue,” “MEturquoise,” “MEyel-
low,” “MEgreen,” “MEred,” “MEgrey,” Table 1, Supplemental
Digital Content [Figure S2, http://links.lww.com/MD/E641]).
The heatmap of the correlation between MEs and KRAS MT
LUAD showed that module blue had the strongest correlation
with KRASMT LUAD (Fig. 2A). We found module blue also had
the highest MS score (Fig. 2B). A scatterplot found GS and MM
exhibited a very significant correlation between module blue and
KRAS MT LUAD (Fig. 2C, Table 1). Furthermore, hierarchical
clustering dendrogram showed the KRAS MT LUAD was highly
related to module blue, as evidenced by their low merging height
(Fig. 2D). Those results implied that module blue was the key
module in the KRAS MT LUAD.

3.2. Functional analysis of blue module

Functional analyses were performed for genes in module blue to
clarify its biological meaning. GO analysis was applied from 3
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Table 1

The modules identified from WGCNA for KRAS MT LUAD.

Correlation with tumor stage

Modules Total gene count R2 P-value

Black 67 �0.23 .061
Blue 403 0.68 5.30E–56
Brown 236 0.2 .002
Green 95 0.09 .39
Magenta 51 �0.42 .0022
Pink 61 �0.4 .0014
Red 81 �0.26 .019
Turquoise 455 0.29 2.90E–10
Yellow 130 0.18 .04
Grey 1011 NA NA

To be noted, the grey module belongs to WGCNA special category that has no association with the
clinical trait analyzed. NA=not available.
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aspects: biological process (BP), cellular component (CC), and
molecular function (MF). Both the GO and KEGG analyses
showed the proportion of genes increased significantly in
ribosome and translation terms (Fig. 3, Supplemental Digital
Module-trait relationships
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Content [Table S2, http://links.lww.com/MD/E646, S3, http://
links.lww.com/MD/E647, S4, http://links.lww.com/MD/E648,
and S5, http://links.lww.com/MD/E649]). Further GSEA analysis
of GO terms showed the ribosome related gene sets were enriched
in KRAS MT LUAD tissues (Supplemental Digital Content
[Table S6, http://links.lww.com/MD/E650]). Besides, GSEA
analysis of oncogenic signatures showed mTOR[14] and
STK33[15] pathways were enriched in KRAS MT LUAD tissues
(Supplemental Digital Content [Table S7, http://links.lww.com/
MD/E651]).

3.3. Detection of hub gene and their functional
annotations

Hub genes selection was performed by the criteria mentioned in
method section. There were 64 significant genes with jGSj>0.2
and jMMj>0.7. After MCODE analysis, a network of 57 genes
was constructed (Supplemental Digital Content [Figure S3, http://
links.lww.com/MD/E642], Table 2). Furthermore, as KRAS was
identified as a poor prognostic predictor in lung cancer,[16] we
performed survival analysis between each gene of the KRAS MT
specific DEGs in KRAS MT LUAD patients. There were 222
MS across modules, p-value=7.1e-188
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survival related genes screened (70 genes positively correlated
and 152 genes negatively correlated with worse KRAS MT
LUAD prognosis, respectively, Supplemental Digital Content
[Table S8, http://links.lww.com/MD/E652]). Among them, we
found 8 genes, including thymosin Beta 10 (TMSB10), ribosomal
protein L26 like 1 (RPL26L1), ribosomal Protein S16 (RPS16),
mitochondrial ribosomal protein L27 (MRPL27), cytochrome c
oxidase subunit 6A1 (COX6A1), HCLS1-associated protein X-1
(HAX1), ribosomal protein L38 (RPL38), and ATP Synthase
Membrane Subunit DAPIT (ATP5MD), were overlapped with
the hub genes in MCODE module and were positively correlated
with worse prognosis of KRAS MT LUAD (Fig. 4). The
expression of these 8 genes were observed to be higher in KRAS
MT LUAD tissues (Supplemental Digital Content [Figure S4,
http://links.lww.com/MD/E643]). Moreover, the validation of
those prognostic genes by KMPLOT showed consistent results
except for RPL26L1 (Supplemental Digital Content [Figure S5,
http://links.lww.com/MD/E644]).

4. Discussion

TheWGCNA is a useful tool to find modules of highly correlated
genes. The intramodular hub genes of the key module could be
used for the diagnostic and prognostic prediction of disease such
as cancer.[17] We performed WGCNA for stage IIB to IV KRAS
MT LUAD and normal lung samples using specific DEGs caused
by KRAS mutation. The calculation of correlation between
coexpression module and KRAS MT LUAD identified module
blue as the key module of tumorigenesis of KRAS MT LUAD.
Functional analyses found ribosome related terms, mTOR and
STK33 pathways were enriched in KRASMT LUAD. We further
determined hub genes in module blue which were related to
KRAS MT LUAD. Moreover, there were 8 hub genes correlated
with the prognosis of KRAS MT LUAD patients.
5

The hyperactivation of ribosome biogenesis has a critical role
in the initiation and progression of cancers.[18] The alteration of
ribosome biogenesis influences the translation of cancer genome.
Major cancer related signaling pathways, such as MYC, RAS–
MAPK, PI3K–AKT–mTOR, andWNT–b-catenin, were found to
be involved in the aberrant activation of mRNA translation at the
initiation and elongation steps.[18] Drugs had been discovered to
inhibit ribosome biogenesis to offer a viable therapeutic approach
for cancer treatment.[19] In our study, ribosome biogenesis related
gene sets were found to be upregulated in KRAS MT LUAD
tissues. In addition, we also identified ribosome related genes
RPS16, RPL26L1, MRPL27, and RPL38 as hub genes and
prognostic markers in KRAS MT LUAD. The mRNA expression
of those genes were also proved to be upregulated in cancers by
previous studies.[20–23] Furthermore, PI3K–AKT–mTOR path-
way could cause hyperactivation of RNA polymerase I-
dependent transcription and ribosome biogenesis, which would
lead to sustain proliferation of cancer cells through the
upregulation of global protein synthesis.[24] Our GSEA analysis
foundmTOR pathway was enriched in KRASMT LUAD tissues.
The current WGCNA study proved new hint to the relationship
between ribosome/translation and the LUAD.
Multiple KRASMT cancer cell lines were found to be sensitive

to the suppression of STK33. The STK33 could suppress the
mitochondrial apoptosis in KRAS MT cell by Ribosomal protein
S6 kinase beta-1 (S6K1)-induced inactivation of the death agonist
BAD. The STK33 was identified as a drug target for the treatment
of KRAS MT cancer cell.[15] S6K1 is a serine/threonine kinase in
the downstream ofmTOR pathway. The target substrate of S6K1
is the S6 ribosomal protein.[25] The phosphorylation of S6
ribosomal protein induces protein synthesis at the ribosome,
which is consistent with our findings that the mTOR pathway
and the ribosome related pathway were upregulated in KRAS
MT LUAD.
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Table 2

The hub genes selected after MCODE analysis.

Name MM P value MM value GS value MCODE_Score

ACBD6 2.56E–29 0.82 0.71 44.71
APLP2 3.92E–19 �0.71 �0.58 43.65
ATP5MD 1.89E–22 0.76 0.44 44.71
ATP5PD 3.89E–22 0.75 0.60 44.71
ATXN1 2.78E–19 �0.72 �0.43 42.72
AUP1 1.84E–35 0.86 0.74 44.71
C1orf43 2.44E–28 0.81 0.55 44.71
CCDC51 5.72E–19 0.71 0.49 42.83
CCT7 9.28E–27 0.80 0.67 44.71
CDK7 7.25E–22 0.75 0.67 44.71
CHCHD1 1.54E–31 0.84 0.63 44.71
COX6A1 2.04E–18 0.70 0.48 42.94
COX6B1 2.79E–23 0.76 0.55 44.71
CYLD 6.30E–23 �0.76 �0.54 44.71
FBXO22 2.05E–19 0.72 0.54 43.25
FBXO7 9.47E–21 �0.73 �0.71 42.83
FCHSD2 1.28E–27 �0.81 �0.65 44.71
FH 3.16E–23 0.76 0.67 40.49
GOLIM4 3.11E–18 �0.70 �0.49 39.95
GUCD1 3.13E–22 �0.75 �0.74 44.05
HAX1 3.23E–24 0.77 0.51 44.71
HNRNPC 8.40E–26 0.79 0.69 44.71
IMPDH2 2.08E–18 0.70 0.59 43.65
KDELR1 1.24E–21 0.75 0.74 43.80
LAMTOR2 2.08E–29 0.82 0.72 44.71
MAIP1 1.27E–25 0.79 0.62 44.71
MRPL27 1.91E–25 0.79 0.57 44.71
MRPL35 2.67E–23 0.76 0.66 44.71
MRPL44 2.33E–21 0.74 0.62 44.71
MYDGF 2.71E–23 0.76 0.62 44.71
NDUFAF2 4.52E–19 0.71 0.52 44.71
NDUFS2 5.56E–26 0.79 0.71 40.09
ODR4 5.02E–23 0.76 0.69 36.22
ORMDL2 9.77E–20 0.72 0.54 43.92
OST4 7.11E–26 0.79 0.61 44.71
PIGF 3.91E–19 0.71 0.59 43.10
PPP2R5B 2.14E–19 �0.72 �0.59 41.83
RNF146 1.17E–18 �0.71 �0.62 37.81
RPL12 1.77E–20 0.73 0.50 44.29
RPL23A 3.77E–23 0.76 0.54 44.71
RPL26L1 2.31E–23 0.77 0.56 44.71
RPL29 2.76E–18 0.70 0.42 43.39
RPL37A 2.95E–24 0.77 0.50 44.71
RPL38 9.79E–19 0.71 0.45 44.29
RPS16 5.45E–25 0.78 0.49 44.71
RPS19 1.03E–19 0.72 0.44 44.29
RSL1D1 1.88E–25 0.79 0.69 43.76
SLIRP 2.81E–22 0.75 0.53 44.71
SRP9 2.94E–22 0.75 0.61 44.71
SSR2 2.85E–25 0.79 0.57 44.71
TESK2 9.84E–28 �0.81 �0.70 43.03
TMCO1 1.06E–32 0.85 0.69 44.71
TMEM183A 6.04E–22 0.75 0.56 44.71
TMSB10 1.90E–18 0.70 0.60 44.58
UFC1 1.81E–22 0.76 0.58 44.71
UQCRQ 8.40E–20 0.72 0.42 44.29
ZNF136 3.02E–29 �0.82 �0.70 44.71

GS=gene significance, MM=module membership.
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TMSB10 is a monomeric actin sequestering protein, which is
involved in cell motility. The TMSB10 protein was found to be
highly expressed in most of the cancer types including the lung
cancer.[26] TMSB10 could inhibit the apoptosis and promote the
6

proliferation of lung cancer.[27] However, controversial results
also exist in the expression of TMSB10 in lung cancer tissue.[26]

Our results showed TMSB10 was upregulated in KRAS MT
LUAD tissues and promoted the tumor progression of KRASMT
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Figure 4. The KMplots of hub genes related to survival of KRASMT LUADpatients. KM=Kaplan–Meier, KRASMT=KRASmutant, LUAD= lung adenocarcinoma.

Dai et al. Medicine (2020) 99:32 www.md-journal.com
LUAD patients, which provided new evidence for the relationship
between TMSB10 and lung cancer.
HAX1 is located mainly in mitochondria and acts as an anti-

apoptosis factor in cells.[28] HAX1 was observed to inhibit the
apoptosis of prostate cancer through the suppression of caspase-9
activation.[29] HAX1 also promoted the carcinogenesis of
colorectal cancer.[30] HAX1 overexpression was observed in
lung cancer.[28] ATP5MD is a component of the Fo subunit of the
mitochondrial H+-ATP synthase (F-ATPase)[19] and vacuolar
proton pump (V-ATPase).[31] The H+-ATP synthase and F-
ATPase were identified to promote cancer progression.[32]

ATP5MD is highly expressed in various cancer types.[33]

Cytochrome oxidase (COX) activity was identified to be critical
for the cell proliferation of lung cancer by favoring metabolic
reprograming required for cell proliferation.[34] Overexpression
of COX6A1 significantly suppressed Bax- and N-(4-hydrox-
yphenyl) retinamide (4-HPR)-induced apoptosis in glioblastoma
cell. The 4-HPR-induced mitochondrial translocation of Bax,
release of mitochondrial cytochrome c, and activation of caspase-
3 were attenuated under the overexpression of COX6A1 in
cancer cell.[35] Current study identified HAX1, ATP5MD, and
COX6A1 as hub genes and prognostic markers of KRAS MT
7

LUAD. Besides, those 3 genes were mitochondrial related, and
our GSEA analysis also found the mitochondrial related terms
were enriched in KRAS MT LUAD (Supplemental Digital
Content [Table S6, http://links.lww.com/MD/E650]).
Our study had potential limitations. First, there was no

validation performance of KRAS MT LUAD and normal tissues
since the lack of KRAS MT LUAD related studies. Second, the
validation of the survival hub genes in KRASMT LUAD patients
by KMPLOT was limited by the fact that there was no KRAS
information in this website tool. Nevertheless, our study proved
those LUAD prognostic factors might be caused by KRAS
mutation.
In conclusion, our study firstly used WGCNA technique to

identify KRAS MT LUAD related gene modules. The function
analyses found the ribosome related terms were enriched in
KRAS MT LUAD. We also identified 8 hub genes whose mRNA
expression was correlated with the prognosis of KRAS MT
LUAD patients. The 7 of them were validated by KMPLOT
(TMSB10, RPS16, MRPL27, COX6A1, HAX1, RPL38, and
ATP5MD). Further molecular biological experiments are
required to explore the deep mechanism between those genes
and KRAS MT LUAD.

http://links.lww.com/MD/E650
http://www.md-journal.com
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