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A B S T R A C T   

Recent studies reveal that imbalanced microbiota is related to thyroid diseases. However, studies 
on the alterations in fecal metabolites in Graves’ disease and clinical hypothyroidism patients are 
insufficient. Here, we identified 21 genera and 53 metabolites that were statistically significant 
among Graves’ disease patients, hypothyroidism patients, and controls integrating microbiome 
and untargeted metabolome analysis. Disease groups revealed a decreased abundance in butyrate- 
producing microbiota and an increased abundance in potentially pathogenic microbiota. Lipids 
molecules were the major differential metabolites identified in all fecal samples. Network analysis 
recognized that microbiota may affect thyroid function by targeting specific metabolites. We 
further identified specific microbiota and metabolites that could distinguish Graves’ disease pa-
tients, hypothyroidism patients, and controls. Our study reveals a distinct microbial and meta-
bolic signature in hypothyroidism patients and Graves’ disease patients and further validates the 
potential role of microbiota in thyroid diseases, providing new ideas for future research into the 
etiology and clinical intervention of thyroid diseases.   

1. Introduction 

The thyroid, the largest endocrine gland in adults, regulates growth and development, energy, glucose, lipid metabolism, and 
thermogenesis via thyroid hormone synthesis, affecting the functions of almost all organs [1,2]. Changes in circulating thyroid hor-
mone levels can cause thyroid dysfunction, manifesting as hyperthyroidism or hypothyroidism [3]. Graves’ disease (GD), the most 
common cause of hyperthyroidism, can cause certain hypermetabolic symptoms, including tachycardia, sweating, heat intolerance, 
and even worse, cardiac arrhythmias and atrial fibrillation [4]. Congenital thyroid function deficiencies, thyroidectomy, and radio-
iodine treatment are common causes of hypothyroidism (HT) [5]. Thyroid dysfunction significantly impacts their physiological 
functioning and has a serious negative impact on patients’ quality of life. Nevertheless, a significant gap remains in understanding the 
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specific pathogenesis of GD and HT, and further research is necessary to identify a theoretical basis for the prevention and prognosis of 
thyroid disorders. 

Accumulating studies have demonstrated intestinal microbial alterations might be related to thyroid diseases [6–8]. Prior studies 
have also reported that patients with GD and Hashimoto’s thyroiditis exhibit a disruption in their intestinal microbiomes, suggesting 
that gut microbiota may play a vital role in the pathogenesis of thyroid diseases [9,10]. A study has reported that the pathological 
changes and the increased permeability of the intestinal mucosa lead to the leakage of intestinal microbiota and metabolites into the 
bloodstream, leading to a continuous inflammatory stimulus, ultimately, autoimmune disease [11,12]. These findings suggest a po-
tential relationship between intestinal microbiota and the thyroid. 

Although associations between thyroid diseases and gut microbiota have previously been reported, studies on fecal metabolite 
alterations among GD and HT patients are insufficient. Multi-omics analysis was integrated to identify specific intestinal microbiota 
and metabolites that may mediate thyroid-intestine interactions. Moreover, previous studies offer limited information regarding the 
relationship between gut microbiota and thyroid function disorders but rare secondary validation. Thus, we validated the causal role of 
gut microbiota in thyroid disorders by transplanting fecal microbiota from GD and HT patients into antibiotic-treated mice. We aim to 
bridge the research gaps in the gut-thyroid axis, providing new insights into the pathophysiology and novel diagnostic strategies for 
thyroid diseases. 

2. Materials and methods 

2.1. Recruitment of participants 

Subjects were initially diagnosed patients recruited from the Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, 
between June 2020 and June 2021. The inclusion criteria for GD patients were as follows: 1) elevated thyroid hormone and decreased 
serum thyroid stimulating hormone (TSH) levels; 2) diffuse goiter and increased thyroid vascularity on ultrasonography; and 3) 
positive serum thyroid stimulating hormone receptor antibody (TRAb) [13]. Inclusion criteria for HT patients included decreased 
serum free thyroxine (FT4) and increased TSH [5]. The inclusion of controls was based on normal thyroid ultrasound and clinical 
indicators of thyroid function. Exclusion criteria for all subjects included: 1) malignancy; 2) other gastrointestinal and metabolic 
diseases (inflammatory bowel disease and type 2 diabetes); 3) history of abdominal surgery that may interfere with the microbiome; 4) 
patients receiving parenteral nutrition; 5) exposure to any anti-tumor therapy or radiation within one month before stool sampling; 6) 
use of any antibiotics, probiotics, prebiotics, steroids, or immune-suppressants within one month before stool sampling; and 7) un-
healthy lifestyle (smoking and alcohol consumption). 

Finally, 117 untreated patients, including 39 GD patients (12 males, 27 females, age 16–65) and 78 HT patients (34 males, 44 
females, age 16–73), were enrolled in this study. Simultaneously, 48 healthy controls matched for age, gender, and body mass index 
(BMI) (18 males, 30 females, age 22–71) were recruited from the physical examination center. All study subjects were Han nationality 
and lived in the eastern coastal provinces of China with a balanced diet. Demographic information and clinical examination data from 
all participants were collected at enrollment. This study was approved by the Ethics Committee of Shanghai Tenth People’s Hospital 
(ethics number 2020-KN73-01) and conducted under the guidance of the World Medical Association and the Declaration of Helsinki. In 
addition, all research subjects were informed of the purpose of the study at the time of recruitment and voluntarily provided written 
informed consent to publish the study data. 

2.2. Sample collection, thyroid function, and autoantibody tests 

Fecal samples of participants who fasted overnight (≥8 h) were collected, quenched with liquid nitrogen, and stored at − 80 ◦C until 
microbial DNA and metabolite extraction. Peripheral blood (6 mL) was collected from all participants and stored at 4 ◦C for routine 
thyroid function and autoantibody tests. Serum levels of free triiodothyronine (FT3), FT4, total triiodothyronine (TT3), total thyroxine 
(TT4), TSH, and TRAb were measured using a chemiluminescent immunoassay (Beckman Coulter, Fullerton, CA, USA). The reference 
ranges were defined as follows: FT3 2.80–6.30 pmol/L; FT4 10.50–24.40 pmol/L; TT3 1–3 nmol/L; TT4 55.50–161.30 nmol/L; TSH 
0.38–4.34 mIU/L; and TRAb 0.00–1.75 IU/L. 

2.3. DNA extraction, polymerase chain reaction amplification, and Miseq sequencing 

The E.Z.N.A. ® soil DNA kit (Omega Bio-tek, Norcross, GA) was used to extract bacterial DNA from fecal samples. The bacterial 
DNA concentration was determined using Nanodrop 2000 (Thermo Scientific, Wilmington, USA). The extracted DNA was stored at 
− 20 ◦C to prevent degradation. Specific primers 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (GGACTACHVGGGTWTCTAAT- 
3′) targeting V3–V4 variable region were used to complete polymerase chain reaction amplification, and testing on each sample was 
repeated three times to ensure the reliability of subsequent microbial and metabolic analysis [14]. The AxyPrep DNA Extraction Kit 
(Axygen Biosciences, USA) was used to purify the amplicons, and QuantiFluorTM-ST (Promega, USA) was used for quantitative 
analysis. Afterward, the purified amplicons were pooled in equimolar concentrations, and paired-end sequencing analysis was per-
formed using the Illumina Miseq PE300 platform (Illumina Sandiego, USA). 
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2.4. Fecal metabolite extraction 

Briefly, 400 μL methanol: water (4:1, v/v) solution was mixed with a 50 mg fecal sample. The sample was placed in the high- 
throughput tissue crusher Wonbio-96c (Shanghai Wanbo Biotechnology Co., Ltd., China) for 6 min at 50 Hz. Then, the mixture was 
vortexed for 30 s and sonicated at 40 kHz for 30 min at 5 ◦C. Subsequently, the mixture was incubated at − 20 ◦C for 30 min to 
precipitate proteins. After centrifugation at 13000×g for 15 min at 4 ◦C, the supernatant was transferred to a sample bottle for liquid 
chromatography-mass spectrometry (LC-MS) analysis in the positive and negative ion modes. Meanwhile, 10 μL of supernatant from 
each sample was mixed for quality control (QC). This was injected at regular intervals (every eight samples) to monitor the stability of 
the analysis. 

2.5. Microbial analysis of 16S rRNA gene sequencing 

According to the overlap relationship, the paired-end reads obtained from the Illumina Miseq PE300 high-throughput sequencing 
were spliced into a target sequence and filtered for QC. The chimera was eliminated using UCHIME software (version 4.2.40) to 
optimize sequence [15]. The Ribosomal Database Project Classifier (version 2.11, http://sourceforge.net/projects/rdp-classifier/) was 
applied to perform species classification annotations on the optimal sequences according to the Silva database (Release128, https:// 
www.arb-silva.de/documentation/release-128/) with a confidence threshold of 70 %. Operational taxonomy units (OTUs) were 
clustered with a 97 % similarity cut-off by UPARSE software (version 7.1, http://drive5.com/uparse/). OTUs accounting for less than 
0.005 % of the total sequences were removed to eliminate such presumed spurious sequences [16]. 

2.6. Data preprocessing of LC-MS 

The LC-MS raw data were imported into progenesis QI 2.3 (Nonlinear Dynamics, Waters, USA) for peak detection and comparison. 
Subsequently, a data matrix composed of retention time, mass-to-charge ratio values, and peak intensity was generated. The quali-
tative and quantitative results regarding specific metabolites were obtained. Metabolic datasets were required to be preprocessed 
before multivariate statistical analysis. The pre-processing methods were as follows: 1) data filtering included the removal of samples 
with >50 % missing values; 2) simulated filling of missing values according to one-half of the minimum metabolite value and 
normalization of the total peaks; and 3) elimination of QC samples with a relative standard deviation > 30 %. Finally, after logarithmic 
transformation, the pre-processed datasets were prepared for further analysis. 

2.7. Multivariate statistical analysis 

Our data were processed using IBM SPSS (Version 20.0) and R package (Version 3.4.3). The clinical characteristics of the subjects 
were expressed as the mean ± standard deviation, and P-values were determined using the Kruskal-Wallis test. The intestinal 
microbiota abundances and alpha diversities were analyzed using the Chao and Shannon indices. Partial Least Squares Discriminant 
Analysis (PLS-DA) was used to evaluate for differences in the distribution of microbial communities across the three groups. The beta 
diversities and statistical significances were determined between the groups using (Permutational Multivariate Analysis of Variance 
(PERMANOVA). Pairwise comparisons using the Mann-Whitney U test and linear discriminant analysis (LDA) effect size (LEfSe) 
analysis were used at the phylum and genus levels to investigate the differential microbiota among the three groups [14]. The dif-
ferences were considered statistically significant when the average abundance level of the gut microbiota reached >0.1 %, LDA value 
> 3, and P < 0.05. 

SIMCA software (Version 16.0.2, Sartorius Stedim Data Analytics AB, Umea, Sweden) was used to perform multivariate statistical 
analysis between the GD, HT, and control groups. The Orthogonal projections to latent structures-discriminant analysis (OPLS-DA) 
modeling were used to identify the distribution characteristics of metabolites across the three groups. Then, the corresponding 

Table 1 
Baseline characteristics and clinical markers of all participants.  

Parameters GD group (n = 39) HT group (n = 78) Control group (n = 48) P value 

Demographics 
Age (years) 39.51 ± 12.41 45.26 ± 14.30 41.67 ± 14.62 0.117 
Gender (Male/Female) 12/27 34/44 18/30 0.399 
BMI (kg/m2) 21.98 ± 0.48 22.36 ± 1.55 22.21 ± 1.67 0.138 
Thyroid biochemical markers 
FT3 (pmol/L) 19.69 ± 9.28 1.44 ± 0.65 3.61 ± 0.49 <0.001*** 
FT4 (pmol/L) 49.96 ± 26.03 3.92 ± 1.49 12.94 ± 1.28 <0.001*** 
TT3 (nmol/L) 6.10 ± 3.03 0.53 ± 0.24 1.85 ± 0.48 <0.001*** 
TT4 (pmol/L) 237.34 ± 88.55 19.38 ± 13.33 79.00 ± 12.21 <0.001*** 
TSH (mIU/L) 0.11 ± 0.33 118.05 ± 36.60 2.22 ± 1.02 <0.001*** 
TRAB (IU/L) 17.51 ± 14.49 0.72 ± 1.15 2.46 ± 1.27 <0.001*** 

Note: All data, except gender, are shown as the mean ± standard deviation. HT, hypothyroidism; GD, Graves’ disease; BMI: body mass index; FT3: free 
triiodothyronine; FT4: free thyroxine; TT3: total triiodothyronine; TT4: total thyroxine; TSH: thyroid-stimulating hormone; TRAB: thyroid stimu-
lating hormone receptor antibody. ***P < 0.001. 
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permutation test was used to obtain R2 and Q2 values to validate each OPLS-DA model’s reliability and avoid overfitting. Corre-
sponding variable importance in the projection (VIP) values, reflective of the contribution to the distribution between groups, were 
generated using the OPLS-DA models. Differential metabolites were mapped to their biochemical pathways based on the Kyoto 

Fig. 1. Intestinal microbial diversities in the HT, GD, and control groups. (A) The demographic information, thyroid biochemical markers, and the 
abundances of the dominant phyla and genera (top 10) from the 165 participants; (B) Rarefaction curves (Sobs index) for the HT, GD, and control 
groups at the OTU level; (C) Differences in microbial composition (beta diversity) between the GD, HT, and control groups based on the PLS-DA 
model; (D, E) Comparisons of the mean relative abundances (Chao index) and alpha diversity (Shannon index) of gut microbiota between the 
GD, HT, and control groups at the OTU level. HT, hypothyroidism; GD, Graves’ disease; FT3: free triiodothyronine; FT4: free thyroxine; TT3: total 
triiodothyronine; TT4: total thyroxine; TSH: thyroid-stimulating hormone; TRAB: thyroid stimulating hormone receptor antibody; OTU, operational 
taxonomic unit; PLS-DA, Partial Least Squares Discriminant Analysis; *P < 0.05. 
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Encyclopedia of Genes and Genomes (KEGG) database using MetboAnalyst 5.0 (http://www.metaboanalyst.ca/) [17]. Superclass 
refers to the classification of metabolites as matched in the Human Metabolome Database. Spearman correlation coefficients were 
generated to characterize the correlations between microbiota, metabolites, and clinical indicators. The interaction network plots were 
visualized using Cytoscape (Version 3.7.1) [18]. The metabolites were considered to differ significantly between groups when VIP 
value > 1 and P < 0.05. 

3. Results 

3.1. Study population 

Stool samples for multi-omics sequencing were derived from 78 HT, 39 GD, and 49 healthy controls. Table 1 summarizes the 
baseline information and thyroid biochemical indicators of the 165 participants. Age, gender, and BMI did not differ significantly 
between the HT, GD, and control groups. Fig. 1A illustrates an overview of the clinical traits of all participants. 

3.2. Landscape of the gut microbiota in HT, GD, and control groups 

This study generated 8,224,714 high-quality sequences from the 165 fecal samples using Illumina MiSeq high-throughput 
sequencing. This included 17 phyla, 323 genera, and 1320 OTUs. The rarefaction curves (Sobs index) gradually flattened as the 
number of sequences increased, indicating that the sequencing data was sufficient to reflect the microbial profiles of the subjects 
(Fig. 1B). Additionally, the rarefaction curves of the HT and GD groups were lower than those of the controls, suggesting a decrease in 
the number of species detected in patients. PLS-DA plot demonstrated that gut microbiota tends to cluster by group, reflecting the 
significant distinction in microbial composition among the three groups (PERMANOVA, R2 = 0.037, P = 0.001, Fig. 1C). The Chao and 
Shannon indices, indicating the microbial alpha richness and diversity, were analyzed at the OTU level (Table S1). The Chao index was 

Fig. 2. Microbial composition in the HT, GD, and control groups at the phylum and genus levels. (A) The composition ratios of the dominant phyla 
in the HT, GD, and control groups; (B) Statistical analysis of the F/B ratio for each group; (C, D) Correlations between F/B ratio and age or BMI in the 
GD, HT, and control groups. HT, hypothyroidism; GD, Graves’ disease; F/B, Firmicutes to Bacteroidetes; BMI, body mass index; *P < 0.05. 
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significantly lower in both the HT and GD groups than in controls (P = 0.025, 0.028, respectively), with the GD index slightly lower 
than the HT group (P = 0.710, Fig. 1D). Similarly, the Shannon index of the HT and GD groups was lower than that of the controls (P =
0.048, 0.011, respectively), with the HT group having a slightly higher Shannon index than the GD group (P = 0.603, Fig. 1E). 

The pie charts visually demonstrate that Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria are the dominant phyla in three 
groups, though in different proportions (Fig. 2A). Fig. 1A depicts the distribution of the dominant phyla and genera richness in each 
sample. Firmicutes was the most abundant phylum in almost all samples. Given that abnormal ratios of Firmicutes to Bacteroidetes (F/B) 
are related to many diseases, we also investigated variations in the F/B ratios between the three groups [19,20]. The F/B ratio was 
significantly lower in the HT and GD groups than in the controls (P = 0.039, 0.012, respectively, Fig. 2B), with a slight increase F/B 
ratio in the HT group than in the GD group. It has been widely reported that the F/B ratio may be influenced by age and BMI; therefore, 
we also examined the association between the F/B ratio and age and BMI [21,22]. However, our samples did not find a significant 
relationship between the F/B ratio and either age or BMI (Fig. 2C and D). 

3.3. Species analysis in the HT, GD, and control groups 

Statistical significances of microbiota were determined by pairwise comparison (HT versus Control, GD versus Control, and HT 
versus GD) using the Mann-Whitney U test and LEfSe analysis, respectively. Our study identified microbiota that differed between the 
HT, GD, and control groups only if both tests indicated statistical significance. Finally, we identified 29 genera that differed among all 
groups (LDA value > 3, P < 0.05, Table S2). Considering that eight genera were not found in significant numbers (relative abundances 
<0.1 %), they were eliminated from the next analysis, leaving the top 21 genera. Fig. 3 displays the top 10 genera screened for sig-
nificance using the Mann-Whitney U test for each pairwise comparison, while Fig. S1 indicates all genera with LDA value > 3 and P <
0.05 as determined by the LEfSe analysis. The proportions of the top 10 differential genera were significantly lower in HT patients than 
in the controls, except for Bacteroides, which was significantly higher (P < 0.05, Fig. 3). The proportions of Bacteroides and Lactobacillus 
were significantly increased in GD patients than in the controls, while the proportions of Blautia, [Eubacterium]_hallii_group, and 
Collinsella were significantly decreased (P < 0.05, Fig. 3). Additionally, Faecalibacterium, Hungatella, and unclassified_f__Lachnospiraceae 
were significantly enriched in GD patients than in HT patients, while unclassified_f__Peptostreptococcaceae, and Clostridium_sensu_s-
tricto_1 were significantly decreased (P < 0.05, Fig. 3). The LEfSe results were similar to the Mann-Whitney U test at the genus level 
(LDA value > 3, P < 0.05, Fig. S1). 

3.4. Metabolic profiling in the HT, GD, and control groups 

We successfully quantified the 339 metabolite levels using non-target liquid LC-MS metabolomics. The OPLS-DA, with better 
validity and resolving power, revealed that certain metabolites could distinguish HT, GD, and controls during pairwise comparisons 
(Fig. 4A, S2A–B). Then, we used the permutation test to verify the validity of the OPLS-DA model. The Q2 regression line intercepted 

Fig. 3. Mann-Whitney U test plots of the pairwise comparisons between the HT, GD, and control groups. This figure presents the top 10 genera that 
differed between groups in each pairwise comparison (HT versus Control, GD versus Control, and HT versus GD) according to the Mann-Whitney U 
test. The family and genus levels are sorted alphabetically. Bar size corresponds to the proportion of gut microbiota, and the color represents the 
group with elevated levels. Green represents the HT group, red represents the GD group, and blue represents the control group. HT, hypothyroidism; 
GD, Graves’ disease. 
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the Y axis negatively, indicating that the OPLS-DA model was adequate to determine differences between the HT and GD groups (R2Y 
= 0.959, Q2 = − 0.65, Fig. 4B). The validity of the other two pairwise comparisons (HT versus Controls and GD versus Controls) were 
verified similarly (Figs. S2C–D). 

Subsequently, various metabolites with VIP value > 1 and P < 0.05 were investigated using stratified analysis. Twenty-nine 
metabolites significantly differed between HT and GD patients (Fig. 5, Table S3). Twenty metabolites significantly differed between 
GD patients and controls, whereas 27 metabolites significantly differed between HT patients and controls (Fig. 5, Tables S4–S5). Next, 
we performed KEGG functional annotation to determine the roles of these differential metabolites using MetboAnalyst 5.0. Fig. 4C 
illustrates the KEGG pathways at level 3 for all differential metabolites. Specifically, 5,6-DHET was involved in Arachidonic acid 

Fig. 4. Metabolic traits across the HT and GD. (A) OPLS-DA score plot between the HT and GD groups (R2X = 0.0629, R2Y = 0.875, Q2 = 0.418); 
(B) Permutation test for the OPLS-DA model (R2Y = 0.959, Q2 = − 0.65); (C) KEGG functional pathways (level 3) annotated for all of the differential 
metabolites; (D) Random forest analysis of the 21 microbiota between the HT and GD groups based on 10-fold cross-validation; (E) ROC curves 
generated from the top three genera with the lowest error rates, the eight metabolites with VIP >2, and a combination of the three genera and eight 
metabolites to distinguish HT from GD. HT, hypothyroidism; GD, Graves’ disease; OPLS-DA, orthogonal projections to latent structures-discriminant 
analysis; VIP, variable importance in projection; ROC, receiver operating characteristic curve; AUC, the area under the curve. 
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metabolism, and cortisone was involved in Steroid hormone biosynthesis, both lipid metabolisms. The Citrate cycle (TCA cycle) 
involved oxalosuccinic acid. Pyridoxamine, nicotinic acid, and pantothenic acid were involved in vitamin B6 metabolism, nicotinate 
and nicotinamide metabolism, and pantothenate and CoA biosynthesis, respectively, cofactors and vitamin metabolism. 

3.5. Network analysis among the microbiota, metabolites, and thyroid hormones 

Subsequently, we performed the co-occurrence analysis to investigate the relationships among the differential microbiota, me-
tabolites, and thyroid clinic indicators. Some butyrate-producing bacteria, such as Blautia and unclassified_f_Lachnospiraceae, were only 
linked to metabolites, while other potentially pathogenic bacteria that were significantly increased in patients (Flavonifractor and 
Bacteroides) were directly related to thyroid hormones besides being closely related to metabolites (Fig. 6). We artificially divided the 
metabolites into three clusters: cluster 1, containing metabolites only associated with thyroid function, cluster 2, containing lipids that 
served as a communication link between thyroid function and microbiota; and cluster 3, containing metabolites only associated with 
gut microbiota. 

3.6. Random forest (RF) analysis 

We compared receiver operating characteristic curves (ROC) generated from genera with the lowest prediction error rates, sig-
nificant metabolites (VIP value > 2), and a combination of both using RF analysis to examine whether certain microbiota and me-
tabolites can characterize the gut microbiota changes of patients with thyroid function disorders. RF analysis using the 10-fold cross- 
validation method revealed the highest accuracy when the top three genera (unclassified_f__Peptostreptococcaceae, Faecalibaterium, and 
Eggerthella) were used to distinguish HT from GD, yielding an area under the curve (AUC) of 0.7692 (95 % confidence interval (CI) =

Fig. 5. VIP values for the differential metabolites in each pairwise comparison. This figure illustrates all differential metabolites with VIP value > 1 
and P < 0.05 for each pairwise comparison (HT versus Control, GD versus Control, and HT versus GD). Superclass refers to the metabolite clas-
sification as matched in the Human Metabolome Database, and these are sorted alphabetically. Bar size corresponds to the VIP value, and the color 
represents the group with elevated metabolite. Green represents the HT group, red represents the GD group, and blue represents the control group. 
HT, hypothyroidism; GD, Graves’ disease, VIP, variable importance in projection. 
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0.6763–0.8622, Fig. 4D and E). Similarly, we selected eight metabolites with VIP value > 2 that differed significantly between the HT 
and GD groups for ROC, generating an AUC of 0.8231 (95 % CI = 0.7433–0.9010, Fig. 4E). Notably, AUC was significantly increased to 
0.8820 (95 % CI = 0.8199–0.9441) by combining the three genera with the eight metabolites, suggesting that microbiota in com-
bination with metabolites has a better performance to discriminate HT from GD (Fig. 4E). Furthermore, the combination of intestinal 
microbiota and metabolites may improve the ability to distinguish HT or GD patients from controls, with AUCs of 0.9912 (95 % CI =
0.9765–1.000) and 0.9802 (95 % CI = 0.9568–1.000), respectively (Fig. S3). 

4. Discussion 

Decreased alpha diversity of gut microbiota was observed in HT and GD patients, consistent with previous findings regarding GD 
and primary hypothyroidism patients [9,23]. The F/B ratio in the HT group overall was not elevated as it was in obese patients [19]. 
We speculate that the proportions of Firmicutes and Bacteroidetes may be indirectly regulated by thyroid hormones, with microbial 
interactions also likely contributing to the reduced F/B ratio. The correlations between microbiota and thyroid hormones provide a 
theoretical basis for these assumptions. A further metagenomic investigation would be necessary to elucidate these additional factors 
more precisely. 

Twenty-one genera whose abundances significantly differed among the HT, GD, and control groups were identified (relative 
abundance >0.01 %, LDA value > 3, and p < 0.05). The butyrate-producing microbiota, including Blautia, Subdoligranulum, Anae-
rostipes, unclassified_f__Lachnospiraceae, Fusicatenibacter, Butyricicoccus, and Coprococcus_3, in HT and GD patients were significantly 
decreased compared to controls, consistent with previous studies presenting drops in these microbiota in other diseases [24–26]. 
Butyrate plays an anti-inflammatory role by reinforcing the intestinal mucosal barrier and maintaining intestinal epithelium integrity 
[27]. Nagendra Singh et al. discovered that butyrate exerted anti-inflammatory and anti-carcinogenic effects in the colon by activating 
G-protein coupled receptor 109a signaling, promoting regulatory T cells and interleukin-10 production, inducing T cell proliferation, 
and increasing interleukin-18 secretion [28]. Considering the intimate associations of T cells in thyroid diseases, we hypothesized that 
butyrate may also indirectly regulate thyroid function by affecting intestinal mucosal permeability and T cell differentiation. More 
precise targeted assays for short-chain fatty acids, especially butyrate, are required to obtain a comprehensive view of this relationship 
because no data on intestinal butyrate changes in our patients were available during fecal metabolomics. 

Furthermore, the increased potentially pathogenic microbiota may promote thyroid hormone disorders. Bacteroides, the most 
abundant genus in the HT and GD groups, may play a dominant pathogenic role in the disease progression. Bacteroides impair the 
intestinal mucosal barrier by reducing mucin synthesis and allowing toxins and bacterial metabolites to leak into the bloodstream, 
activating inflammatory responses [29]. The increased abundance of Lactobacillus in thyroid patients also attracted our attention, 
consistent with findings in autoimmune hepatitis [30]. It is thought that this result may be related to the immune response activated by 
the microbiota through cross-antigenic reactions [31]. 

However, the influences of other pathogenic microbiota in the pathophysiology of HT and GD, despite their relatively lower 
abundances, should not be overlooked. The four least abundant genera that differed significantly between thyroid patients and 

Fig. 6. A network analysis of all differential microbiota, fecal metabolites, and thyroid clinical indicators across the HT, GD, and control groups. In 
the network, Spearman correlation coefficient values below − 0.1 (negative correlation) were indicated as blue edges, and coefficient values above 
0.1 (positive correlation) were indicated as red edges. Metabolites were artificially divided into three clusters: cluster 1 was associated with gut 
microbiota, cluster 2 was primarily composed of lipids having complex correlations with the thyroid and microbiota, and cluster 3 was associated 
with the thyroid. The size of the nodes represents the degree of connectivity. Edge thickness indicates the range of correlation coefficient values. The 
pentagons are thyroid clinical indicators, the squares are metabolites, and the circles are microbiota. 
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controls included Flavonifractor, Hungatella, Erysipelatoclostridium, and Acinetobacter; all are elevated in other diseases [32–35]. Bac-
teroides, Flavonifractor, Hungatella, and Erysipelatoclostridium negatively correlated with T3 and T4 levels and positively correlated with 
TSH levels. Regarding the above results, we speculate that the pathogenic microbiota, at least in part, may synergistically affect thyroid 
function, requiring advanced research. 

Faecalibaterium prausnitzii, the unique identifier specie of the genus Faecalibaterium, can inhibit the nuclear factor kappa-B and T 
helper cell 17/Interleukin-17 pathways to maintain intestinal immune homeostasis [36–38]. Moreover, butyrate produced by Fae-
calibaterium regulates oxidative stress by reducing peroxidase and cyclooxygenase and inhibiting inflammatory cytokine expression, 
thereby ameliorating inflammation along the intestinal mucosa [39]. Thus, reduced levels of Faecalibaterium may be crucial to the 
pathogenesis of hypothyroidism in certain patients. 

Many studies have demonstrated correlations between lipid metabolism and factors, including microbiota and thyroid hormones 
[40,41]. In our study, the significant metabolites identified were also dominated by lipids and lipid-like molecules. Co-occurrence 
network analysis revealed that cluster 2, primarily composed of lipids metabolites, were likely to be a pivotal mediator in the in-
teractions between butyrate-producing bacteria and the thyroid [41]. Notably, only cortisone and pantothenic acid, matched in lipid 
and cofactors and vitamin metabolism, respectively, appear to be the specific mediators communicating between the intestinal 
microbiota and the thyroid. The flavonoids, including (− )-Epicatechin 3′-O-glucuronide, and Epi-
fisetinidol-(4beta->8)-epicatechin-(6->4beta)-epifisetinidol were also significantly elevated in HT patients. According to reports, 
flavonoids can reduce thyroid hormone synthesis by inhibiting thyroid iodine uptake [42]. It is thus possible that the elevated 
flavonoid levels observed in the HT patients may have directly contributed to their reduced thyroid hormone levels, leading to hy-
pothyroidism. Moreover, Kaeko Murota et al. discovered that intestinal microbiota is involved in flavonoid metabolism, suggesting 
that flavonoids may play a communicative role in the interactions between gut microbiota and the thyroid [43]. Therefore, this can 
reasonably explain why HT patients have a higher abundance of Flavonifractor, a kind of microorganism related to the utilization of 
flavonoids, in their stool samples than GD patients. Notably, gut microbiota and metabolites could be candidate biomarkers for 
characterizing the gut microecology of our patients, as their AUCs were greater than 0.7; however, the combination of genera and 
metabolites performed better. 

However, some limitations of this study must be addressed in future studies. Large sample populations are still needed to 
demonstrate whether there are indeed substantial differences in the biomarkers derived from the gut microbiome and metabolites. 
Metagenomics research will be needed to elucidate the active gut microbiome in thyroid patients more thoroughly. Another limitation 
of this study is that high-throughput sequencing observed a reduced abundance of butyrate-producing bacteria, but metabolomics 
studies did not find a corresponding reduction in butyrate. This may be partly due to the low concentration of butyrate, but also due to 
insufficient targeting of non-target technologies to detect more finely classified metabolites. Therefore, targeted metabolomics could 
be used in subsequent studies to further investigate the mechanisms regarding the gut-thyroid axis. 

5. Conclusions 

Briefly, our data reveal the association between gut microbiota and metabolites and thyroid functions from a multi-omics 
perspective. Combined with studies of other autoimmune diseases, such as Hashimoto and rheumatoid arthritis, this study may 
provide evidence for a hypothesis that changes in the gut microbiota are related to the pathogenesis of autoimmune diseases [8,44]. It 
lays a research foundation for microbiota refinement and provides a comprehensive understanding of clinical prevention and a po-
tential noninvasive tool for disease management. 
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