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The achievements of genome-wide association studies have suggested ways to predict dis-
eases, such as type 2 diabetes (T2D), using single-nucleotide polymorphisms (SNPs). Most 
T2D risk prediction models have used SNPs in combination with demographic variables. 
However, it is difficult to evaluate the pure additive contribution of genetic variants to 
classically used demographic models. Since prediction models include some heritable traits, 
such as body mass index, the contribution of SNPs using unmatched case-control samples 
may be underestimated. In this article, we propose a method that uses propensity score 
matching to avoid underestimation by matching case and control samples, thereby deter-
mining the pure additive contribution of SNPs. To illustrate the proposed propensity score 
matching method, we used SNP data from the Korea Association Resources project and re-
ported SNPs from the genome-wide association study catalog. We selected various SNP 
sets via stepwise logistic regression (SLR), least absolute shrinkage and selection operator 
(LASSO), and the elastic-net (EN) algorithm. Using these SNP sets, we made predictions us-
ing SLR, LASSO, and EN as logistic regression modeling techniques. The accuracy of the 
predictions was compared in terms of area under the receiver operating characteristic 
curve (AUC). The contribution of SNPs to T2D was evaluated by the difference in the AUC 
between models using only demographic variables and models that included the SNPs. The 
largest difference among our models showed that the AUC of the model using genetic 
variants with demographic variables could be 0.107 higher than that of the corresponding 
model using only demographic variables. 
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Introduction 

Genome-wide association studies (GWASs) have identified many disease-related genetic 
variants, including numerous single-nucleotide polymorphisms (SNPs). Kooperberg et 
al. [1] constructed prediction models with SNPs and showed that they improved diagno-
sis and disease risk prediction. Bae et al. [2] constructed prediction models of quantita-
tive traits using common genetic variants and compared several variable selection meth-
ods, including stepwise linear regression (SLR), least absolute shrinkage and selection 
operator (LASSO), and the elastic-net (EN) algorithm via mean square error. More re-
cently, Bae et al. [3] compared several variable selection methods for predicting the risk 
of type 2 diabetes (T2D).  
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Some problems need to be considered when predicting disease 
risk according to genetic variants, and technologies are available 
that can help to solve these problems. First, the construction of pre-
diction models suffers from the ‘large p, small n’ problem. That is, 
the number of genetic variants is much larger than the number of 
samples, which induces the curse of dimensionality [4]. Next, the 
presence of linkage disequilibrium, which refers to the non-random 
association of alleles in different loci, has impeded statistical infer-
ences due to multi-collinearity [5,6]. Multi-collinearity makes pa-
rameter estimates non-stable and increases the estimates’ variance 
[7]. Third, only a small proportion of heritability has been ex-
plained by the SNPs discovered until now. This ‘missing heritabili-
ty’ of complex diseases sometimes hinders the detection of SNPs 
with effects on complex diseases [8]. Many of the aforementioned 
problems have been an obstacle to disease risk prediction via genet-
ic variants. Nonetheless, penalized regression has solved the ‘large p, 
small n’ problem, and missing heritability may be explained by 
newly identified SNPs, including rare variants. 

Heritability is estimated as the ratio of variance caused by genetic 
factors to the total phenotypic variance [9]. Instead of heritability, 
in this study, we focus on the accuracy of prediction models. It 
should be noted that most of these prediction models have used 
SNPs, which represent genetic effects, and demographic variables, 
which represent environmental effects. However, it is not easy to 
evaluate the pure additive contribution of genetic variants in classi-
cally used demographic models. Since prediction models for T2D 
include some heritable traits, such as body mass index (BMI), the 
contribution of SNPs to T2D prediction using unmatched 
case-control samples may be underestimated [10,11]. In this article, 
we propose a method that uses propensity score matching (PSM) 
to determine the pure additive contribution of SNPs [12]. PSM 
helps avoid underestimating the contribution of the effects of ge-
netic variants. It can also reduce possible confounding effects from 
demographic variables when unmatched samples are used. Thus, 
applying PSM enables the contribution of the effects of genetic 
variants to be more correctly estimated in a prediction model. 

For an illustrative example of our approach, we selected T2D as 
a trait of interest. T2D results from the interactions between envi-
ronmental factors and genetic factors. Many studies have sought to 
predict T2D through genetic variants [10,11,13,14]. Obesity is 
the strongest predictor of T2D, and several additional risk factors 
such as age, sex, smoking, and family history have been well identi-
fied [15-19]. Furthermore, some studies have shown that T2D is 
strongly associated with genetic factors [20]. Monozygotic twins 
had a T2D incidence matching rate of around 70%, whereas dizy-
gotic twins had a T2D incidence matching rate of 20%–30% [21]. 
However, some skeptical opinions have been raised regarding ar-

guments that SNPs are effective for predicting T2D. Lyssenko and 
Laakso [13] reviewed 43 different studies, and acknowledged that 
genetic variants create opportunities to improve the accuracy of 
T2D risk prediction, but pointed out that so far studies have not 
given compelling evidence to support the use of genetic variants 
for predicting T2D. Furthermore, Wray et al. [22] discussed some 
limitations and pitfalls of prediction analysis for complex traits and 
asserted that naïve assessments can lead to severe bias. 

Some previous studies on T2D have been conducted using data 
from the Korea Association Resources (KARE) project [2,14]. 
However, previous studies have some deficiencies. First, predic-
tion performance—assessed by testing area under the receiver op-
erating characteristic curve (AUC) values—was overestimated 
due to overfitting. When selecting SNPs, previous studies used all 
training and test data together. The training data were then used to 
build prediction models. This way of selecting SNPs tends to yield 
higher test AUCs than expected. Second, although SNPs have an 
influence on traits, the inclusion of some heritable demographic 
variables in a prediction model may lead to an underestimation of 
the pure additive genetic contribution of SNPs. 

In this study, we built prediction models for T2D following the 
methods proposed by Bae and colleagues [2,14], while perform-
ing valid SNP selection to avoid overfitting. We also investigated 
the pure additive contribution of SNPs to T2D prediction by com-
paring the performance of a prediction model with only demo-
graphic variables to that of a model with both SNPs and demo-
graphic variables [2]. We used data from the KARE project. To re-
duce possible confounding effects from demographic variables 
caused by using unmatched samples, we used PSM, which allowed 
us to create pairs constituting one case and one control with simi-
lar demographic variables. We used PSM to investigate the pure 
additive contribution of SNPs on T2D diagnosis and to avoid the 
effects of confounding. 

We created three different SNP sets using combinations of vari-
ants from the GWAS catalog and statistically significant variants in 
Koreans [23]. We then used SLR, LASSO, and the EN algorithm 
for variable selection. Next, we created prediction models using lo-
gistic regression techniques such as SLR, LASSO, and EN. Finally, 
we calculated the AUC and compared the models that used only 
demographic variables with those that used demographic variables 
and genetic variants. For the LASSO-LASSO combination, which 
showed the largest difference among our models, it was found that 
the test AUC of the model that used genetic variants and demo-
graphic variables was 0.107 higher than that of the model using 
only demographic variables. 
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Methods 

Korea Association Resource Project 
The KARE project began in 2007 with Ansung and Ansan region-
al cohorts representative of the general Korean population. The 
Affymetrix Genome-Wide Human SNP array 5.0 (Affymetrix 
Inc., Santa Clara, CA, USA) was used to analyze the genotype 
data from 10,038 participants. After quality control with a Har-
dy-Weinberg equilibrium p-value <  10-6 and genotype call rates 
less than 95%, and with the exclusion of SNPs with a minor allele 
frequency <  0.05, a total of 305,799 autosomal SNPs were uti-
lized in this analysis. After eliminating participants with samples 
having low call rates (less than 96%), contaminated samples, gen-
der inconsistency, serious concomitant illness, and cryptic relat-
edness, 8,842 samples (4,183 males and 4,659 females) were in-
cluded in the analysis. Since our study focused on T2D, we select-
ed only T2D patients and controls by excluding 3,863 samples 
using the T2D diagnostic criteria summarized in Table 1 [24]. 
Table 2 presents the demographic information of participants and 
differences in demographic variables between cases and controls. 

Fig. 1 presents a principal component analysis plot that demon-
strates the relationship between T2D and demographic variables. 
As can be seen in Fig. 1, demographic variation did not discrimi-
nate cases and controls well. 

Statistical analysis 
SNPs were selected by two different approaches: from a single-SNP 
analysis and from the GWAS catalog [25]. Then, we built predic-
tion models using logistic regression via SLR, LASSO, and EN. 

Propensity score matching 
PSM is a statistical matching technique that attempts to estimate 
the effectiveness of treatments, policies, or other interventions by 
taking covariates into account [12]. PSM reduces the bias due to 
confounding variables. The propensity score is calculated by the 
following conditional probability. 

The caliper is defined by the maximum propensity score differ-
ence within the matched pair. Three methods of matching individ-
uals with similar propensity scores are presented based on the con-
cept of the caliper in the R package MatchIt: largest, smallest, and 
random [26]. The ‘largest’ method establishes matches from the 
largest to the smallest value of a distance measure, while the ‘small-
est’ method generates matches from the smallest to the largest val-
ue of a distance measure, while the ‘random’ method yields match-
es in random order. PSM was applied to the KARE data to ensure 
homogeneity of demographic variables (covariates) between the 
control and T2D groups, using the R package MatchIt.  

Since it was necessary to minimize the loss of data due to the 
non-matched sample and the homogenization of covariates be-
tween controls and cases, we manipulated the caliper (from 0 to 1) 
by increments of 0.01. We checked the p-values using the paired 
t-test and the Wilcoxon test to evaluate the homogeneity of the 
cases’ and controls’ propensity scores at each caliper increment 
and for each method of choosing the caliper. For each caliper, we 
conducted 100 experiments. To ensure demographic homogene-
ity of the case and control group, we only considered calipers for 
which the p-values of both the paired t-test and the Wilcoxon test 
were larger than 0.05. 

Table 1. Type 2 diabetes (T2D) diagnostic criteria

T2D group Normal subjects
Fasting plasma glucose (mg/dL) ≥  126 ≤  100
Glycated hemoglobin (%) ≥  6.5 <  5.7
2-Hour postprandial blood glucose (mg/dL) ≥200 ≤140
History of diabetes Treatment for T2D No history of diabetes

Age of disease onset ≥  40 y

Table 2. Differences between type 2 diabetes cases and controls

Variable Case Control Total
No. of samples 1288 3687 4975
Sex (male/female) 671/617 1,679/2,008 2,350/2,625
Age, mean ±  SD (y) 55.92 ±  8.79 49.88 ±  8.31 51.44 ±  8.85
BMI, mean ±  SD (kg/m2) 25.54 ±  3.27 24.09 ±  2.90 24.47 ±  3.06

SD, standard deviation; BMI, body mass index.

exp(γ0+γ1sexi+γ2agei+γ3BMIi)
exp(γ0+γ1sexi+γ2agei+γ3BMIi) +1

p(χ i) = pr (T=1 | X=χ i) =
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SNP sets 
As the GWAS catalog is based on populations of worldwide ances-
try, while the KARE dataset is drawn from the Korean population, 
we carefully constructed three different SNP sets, which we denot-
ed as KARE, GWAS + KARE, and CATAGENE. First, the KARE 
set consisted of the SNPs chosen by the p-values from a sin-
gle-SNP analysis with adjustments for sex, age, and BMI. Second, 
the GWAS + KARE set was a combination of SNPs from the 
GWAS catalog (May 22, 2019) related to T2D and SNPs from the 
KARE data analysis. Third, the CATAGENE set was assembled 
through the steps detailed below. We first selected the genes in the 
GWAS catalog, and then extracted all SNPs in those genes from 

the KARE data. After performing a single-SNP analysis, we assem-
bled the CATAGENE set based on the p-values. The SNPs were 
selected by the p-values of the univariate logistic regression for 
each SNP. The top 200, 500, and 1,000 SNPs were chosen based 
on these p-values for the prediction model. 

We used only genotyped variants when choosing the candidate 
SNPs and constructing the prediction models. Therefore, 
non-genotyped variants were not included in our data, even if they 
were in the GWAS catalog. We found 132 SNPs in the GWAS cat-
alog [25], and 11,025 catalog-related genes (SNPs located in the 
gene in which the GWAS catalog SNPs were located). Table 3 pro-
vides more details and further clarification on the SNP sets. 

Fig. 1. Principle component analysis plot. Demographic variables (sex, age, body mass index) discriminate the type 2 diabetes (T2D) cases 
from controls. Trait 0 (red), control; Trait 1 (blue), T2D.
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Variable selection 
At first, we randomly selected two-thirds of the samples for the train-
ing set, and the remaining third was used for the test set. Table 4 
shows the sample size of the training set and test set, respectively. 
With the SNP sets we constructed earlier, the variable selection 
was conducted by SLR, LASSO, and EN to select SNPs via five-
fold cross validation (CV) of the training set.  

The penalized SLR model used the following formula: 

  
In this formula, πi is the probability of T2D (1 ≤  i ≤  n), n denotes 

the number of samples. xij represents the SNPs (1 ≤  i ≤  n, 1 ≤  j ≤  p) 
with 0, 1, and 2 values for the number of minor alleles. p denotes the 
number of SNPs used in the model. Stepwise selection was used to 
maximize the AUC by updating variables step by step. Since age, 
BMI, and sex are known demographic and prognostic variables of 
T2D, we fixed these three variables during the stepwise process. 

This procedure was performed using the R package MASS [27].  
The LASSO and EN estimates of β were obtained by minimiz-

ing the following formula.

Values of the parameter λ were estimated by CV, using the R 
package glmnet [28].  

The following five groups were then defined: 
(1) Group 1: SNPs that appeared at least once in the five-fold CV. 
(2) Group 2: SNPs that appeared at least twice in the five-fold CV. 
(3) Group 3: SNPs that appeared at least three times in the five-

fold CV. 
(4) Group 4: SNPs that appeared at least four times in the five-fold 

CV.  
(5) Group 5: SNPs that appeared in every time in the five-fold CV.  

These groups represent the sets of candidate SNPs selected by 
SLR, LASSO and EN, which were used to construct the predic-
tion model. 

Prediction models 
To make prediction models, we used the same prediction methods 
(logistic SLR, EN, and LASSO) that were used for variable selec-
tion. More specifically, for LASSO, we selected the λ value to be 
lambda.min, which is the value at which the training mean square 
error is smallest [28]. For EN, we selected the λ value to be lamb-
da.1se in the glmnet package. Each prediction model was evaluated 
in terms of the test-set AUC. 

Results 

Propensity score matching 
Fig. 2 shows a graph of the relationship between the caliper and 
the p-values of the Wilcoxon test and t-test. Each box plot in the 
graph shows the confidence level of the p-values for the Wilcoxon 

Table 3. List of SNP sets

SNP sets Caliper method No. of total SNPs
KARE-200 - 200
GWAS + KARE-200 - 200
CATAGENE-200 - 200
KARE-500 - 500
GWAS + KARE-500 - 500
CATAGENE-500 - 500
KARE-1000 - 1,000
GWAS + KARE-1000 - 1,000
CATAGENE-1000 - 1,000
KARE-psmmax200 Maximum 200
GWAS + KARE-psmmax200 Maximum 200
CATAGENE-psmmax200 Maximum 200
KARE-psmmin200 Minimum 200
GWAS + KARE-psmmin200 Minimum 200
CATAGENE-psmmin200 Minimum 200
KARE-psmmax500 Maximum 500
GWAS + KARE-psmmax500 Maximum 500
CATAGENE-psmmax500 Maximum 500
KARE-psmmin500 Minimum 500
GWAS + KARE-psmmin500 Minimum 500
CATAGENE-psmmin500 Minimum 500
KARE-psmmax1000 Maximum 1,000
GWAS + KARE-psmmax1000 Maximum 1,000
CATAGENE-psmmax1000 Maximum 1,000
KARE-psmmin1000 Minimum 1,000
GWAS + KARE-psmmin1000 Minimum 1,000
CATAGENE-psmmin1000 Minimum 1,000

SNP, single-nucleotide polymorphism; KARE, Korea Association Resources; 
GWAS, genome-wide association study.

Table 4. Data description

Training set (cases) Test set (cases)
Original data 3,316 (858) 1,659 (430)
PSM dataa 1,626 (813) 812 (406)
PSM datab 1,634 (817) 816 (408)

aPropensity score matching (PSM) data: dataset using the ‘largest’ maximum 
method with a caliper of 0.19.
bPSM data: dataset using the ‘largest’ minimum method with a caliper of 
0.21.

log  = β0 + β1xi1 + β2xi2 + … + βpxip + γ1sexi + γ2agei + γ3BMIi
πi

1-πi

y i-r i
2

+ m 1

b iand +m 2 b i
2 forEN

b i

where πi : = 1
 1 + exp (βTχ i + γ1sexi + γ2agei + γ3BMIi
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test and the t-test. The right x-axis and green line show the average 
number of matched samples. Figs. 2–4 present the results of the 
various caliper selection methods (‘smallest,’ ‘largest,’ and ‘ran-
dom’). 

As described above, we conducted 100 experiments for each 
caliper. First, we selected the largest caliper for which the maxi-
mum value of the experiment’s p-value was >  0.05. Table 5 shows 
the average selected sample size obtained when the maximum val-
ue of the experiment’s p-value was >  0.05. As shown in Table 5, 
setting the caliper at 0.19 and using the ‘largest’ method resulted in 
a larger sample. In the same way, it was possible to select a caliper 
by evaluating the sample sizes when the first quartile of p-values 
from the experiment exceeded 0.05 and when the minimum p-val-
ue of the experiment exceeded 0.05. Tables 6 and 7 present the re-
sults of this process. Similarly, we can see that the ‘largest’ method 
with a caliper of 0.21 was the least likely method to lose samples. 
Therefore, we selected two candidate calipers—0.19 and 0.21—
and used the ‘largest’ matching method based on the results of 100 
replicated experiments. 

The average sample sizes for nine combinations obtained using 
three matching methods (‘largest’, ‘smallest’, and ‘random’) and 
three criteria for the experiment’s p-value (minimum value, maxi-

Fig. 2. Propensity score matching results (matching method = “smallest”). Green boxes represent the p-values of the Wilcoxon test. Blue 
boxes mean the p-values of the paired t-test. The solid green lines represent the number of matched samples with the caliper as the x-axis. 
The red line means p = 0.05. The p-values are represented by a log scale.

Table 5. Average sample number when the maximum value of the 
experiment’s p-values was >0.05

Matching method Average selected sample number Caliper
Largest 2,506 0.19
Smallest 2,408 0.62
Random 2,450 0.19

Table 6. Average sample number when the first-quartile value of the 
experiment’s p-values was >0.05

Matching method Average selected sample number Caliper
Largest 2,512 0.21
Smallest 2,439 0.75
Random 2,453 0.21

Table 7. Average sample number when the minimum value of the 
experiment’s p-values was >0.05

Matching method Average selected sample number Caliper
Largest 2,512 0.21
Smallest 2,458 0.82
Random 2,455 0.22
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Fig. 3. Propensity score matching results (matching method = “random”). Green boxes represent the p-values of the Wilcoxon test. Blue 
boxes mean the p-values of the paired t-test. The solid green lines represent the number of matched samples with the caliper as the x-axis. 
The red line means p = 0.05. The p-values are represented by a log scale.

Fig. 4. Propensity score matching results (matching method = “Largest”). Green boxes represent the p-values of the Wilcoxon test. Blue 
boxes mean the p-values of the paired t-test. The solid green lines represent the number of matched samples with the caliper as the x-axis. 
The red line means p = 0.05. The p-values are represented by a log scale.
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mum value, or first-quartile value > 0.05) are shown in Tables 5–7. 
The ‘largest’ matching method with a caliper of 0.19 (with the 
maximum value of the experiment’s p-value > 0.05) and 0.21 
(with the minimum/first-quartile value of the experiment’s p-val-
ue > 0.05) resulted in a smaller loss of samples than other calipers. 
To guarantee the consistency of results from PSM, we set the 
matching method as ‘largest’ and considered both 0.19 and 0.21 as 
candidate calipers. The sample sizes of the training set and the test 

set after applying PSM with these two candidate calipers are 
shown in Table 4. Figs. 5 and 6 present the box plots of age and 
BMI before and after PSM, respectively. 

Model prediction 
Table 8 shows the best variable selection methods, groups, and 
prediction models for each SNP set that we constructed. For the 
method without PSM, the AUC of the prediction model with both 

Fig. 5. Compare age distribution between before propensity score matching (PSM) and after PSM.

Fig. 6. Compare body mass index (BMI) distribution between before propensity score matching (PSM) and after PSM.
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Table 8. Best results in each SNP set

SNP set Methoda (group) Covariates SNPs + covariates Delta
KARE-200 EN-LASSO (5) 0.7479 0.7451 -0.0029
GWAS + KARE-200 EN-SLR (3) 0.7479 0.7479 0
CATAGENE-200 SLR-SLR (4) 0.7479 0.7479 0
KARE-500 EN-SLR (5) 0.7479 0.7479 0
GWAS + KARE-500 EN-SLR (5) 0.7479 0.7479 0
CATAGENE-500 EN-SLR (4) 0.7479 0.7479 0
KARE-1000 EN-SLR (5) 0.7479 0.7479 0
GWAS + KARE-1000 EN-SLR (4) 0.7479 0.7479 0
CATAGENE-1000 SLR-LASSO (4) 0.7479 0.7479 0
KARE-psmmax200 LASSO-SLR (1) 0.5379 0.5585 0.0206
GWAS + KARE-psmmax200 SLR-SLR (1) 0.5379 0.5964 0.0585
CATAGENE-psmmax200 EN-LASSO (5) 0.5379 0.538 0.0001
KARE-psmmax500 LASSO-LASSO (5) 0.5379 0.5604 0.0225
GWAS + KARE-psmmax500 EN-EN (2) 0.5379 0.5645 0.0265
CATAGENE-psmmax500 EN-EN (3) 0.5379 0.5792 0.0413
KARE-psmmax1000 EN-EN (2) 0.5379 0.5461 0.0082
GWAS + KARE-psmmax1000 LASSO-LASSO (1) 0.5379 0.6449 0.107
CATAGENE-psmmax1000 LASSO-EN (3) 0.5379 0.562 0.0241
KARE-psmmin200 LASSO-EN (3) 0.4808 0.5458 0.065
GWAS + kare-psmmin200 SLR-SLR (2) 0.4808 0.5783 0.0975
CATAGENE-psmmin200 EN-EN (3) 0.4808 0.5505 0.0698
KARE-psmmin500 EN-LASSO (2) 0.4808 0.5222 0.0314
GWAS + kare-psmmin500 SLR-SLR (1) 0.4808 0.5507 0.0699
CATAGENE-psmmin500 EN-EN (2) 0.4808 0.5584 0.0777
KARE-psmmin1000 LASSO-LASSO (3) 0.4808 0.5244 0.0437
GWAS + kare-psmmin1000 EN-EN (3) 0.4808 0.5374 0.0566
CATAGENE-psmmin1000 EN-LASSO (2) 0.4808 0.5604 0.0696

SNP, single-nucleotide polymorphism; KARE, Korea Association Resources; EN, elastic-net; LASSO, least absolute shrinkage and selection operator; GWAS, 
genome-wide association study; SLR, stepwise logistic regression.
aMethod: variable selection-prediction model.

SNPs and demographic variants was close to the AUC of the model 
with demographic variables only (delta =  –0.0029) (Table 8). 
However, the use of PSM with a variety of variable selection meth-
ods yielded higher AUCs for the prediction models including 
SNPs than for those using only demographic variables (Table 8). 
The best AUCs using SNPs ranged from 0.52 to 0.65. For exam-
ple, group 1 in the GWAS+KARE-psmmax1000 set using the 
LASSO-LASSO (variable selection–prediction model) combina-
tion yielded an AUC of 0.645, which was 0.107 higher than that of 
the model with only demographic variables. We summarize the 
AUC results in Figs. 7 and 8.  

Discussion 

In this study, we used multiple statistical methods (SLR, LASSO, 
and EN) to select variables and various SNP sets to build predic-

Fig. 7. Graph of best area under the receiver operating characteristic 
curve results with caliper = 0.19 KARE, Korea Association Resources; 
GWAS, genome-wide association study.
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tion models of T2D. Then, we compared the AUCs of the models 
for each SNP set. The AUCs of the models with both SNPs and 
demographic covariates were close to those of the models with 
only covariates. This result suggests that age, sex, and BMI may be 
good predictors of T2D in our data. 

Moreover, to estimate the pure additive contribution of SNPs in 
our data, we applied PSM to regulate the effects of these demo-
graphic variables. When constructing models using PSM, the 
AUCs of models with both SNPs and covariates were higher than 
those of models with only covariates. For each SNP set using PSM, 
we constructed the best models, which had AUC values that were 
on average 0.051 higher than those of the corresponding models 
with only demographic variables. In addition, the AUC results sug-
gest that that the prediction of T2D may be improved by up to 0.1 
by adding certain SNPs. 

The largest improvement obtained by adding SNPs (delta =  
0.1070) was found for the model with group 1 of the GWAS + 
KARE-psmmax 1000 set using the LASSO-LASSO method (vari-
able selection and prediction model). Table 9 summarizes the 
SNPs that were used in this model. Some of the genes in Table 9 
have been identified as related to T2D by other GWASs according 
to the GWAS catalog. In addition, some genes were already known 
to be related to T2D. For example, JAZF1, KCNJ11, and KCNQ1 
were previously shown to be related to insulin secretion [29]. In 
addition, IGF2BP2 and CDKAL1 were reported to be associated 
with reduced beta-cell function [20]. Both insulin secretion and 
beta-cell function play important roles in T2D. 

Some further studies are desirable to extend our study. First, 
there are multiple ways to match controls with cases. For example, 
Euclidian distance seems to be a promising way of matching cases 

Fig. 8. Graph of best area under the receiver operating characteristic 
curve results with caliper = 0.21 KARE, Korea Association Resources; 
GWAS, genome-wide association study.

Table 9. SNPs and gene locations in the GWAS + KARE psmmax top1000 LASSO-LASSO model

SNP Gene SNP Gene
rs4275659 ABCB9a rs5215 KCNJ11a

rs2838820 ADARB1a rs8181588 KCNQ1a

rs515071 ANK1a LOC100129400a rs163177 KCNQ1a

rs919115 C10orf59 rs4731420 LOC100131212a

rs1048886 C6orf57 rs4607103 LOC730057a

rs12924439 CDH13 rs6445525 MAGI1a

rs9460546 CDKAL1 rs8032675 MAP2K5
rs7767391 CDKAL1 rs3761980 MAPK14 SLC26A8a

rs2328549 CDKAL1 rs254271 PRPF31a

rs10870527 CHFR rs7403531 RASGRP1a

rs12075929 COL24A1 rs7593730 RBMS1a

rs17045328 CR2a rs10030238 RNF150
rs17072023 DOCK2 rs11855644 SCAPER
rs2845573 FADS2 rs12440511 SCAPER
rs1799884 GCKa rs560792 SCD PRO1933
rs780094 GCKRa rs9552911 SGCGa

rs1470579 IGF2BP2a rs8192675 SLC2A2a

rs864745 JAZF1a rs2548724 SLCO4C1a

rs4275659 ABCB9a rs10933537 TMEM16G

SNP, single-nucleotide polymorphism.
aGene recorded in the genome-wide association study catalog.
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and controls [30]. Second, PSM might be applied to the variable 
selection step by considering the pure additive contribution of ge-
netic variants. Third, the pure additive contribution of genetic 
variants estimated by applying PSM may be used to estimate heri-
tability, which needs further investigation. 
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