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To evaluate the clinical features and radiomics nomograms of tumors and peritumoral regions for the preoperative pre-
diction of the presence of spread through air spaces (STAS) in patients with lung adenocarcinoma. A total of 107 STAS-
positive lung adenocarcinomas were selected andmatched to 105 STAS-negative lung adenocarcinomas. Thin-slice CT
imaging annotation and region of interest (ROI) segmentationwere performedwith semi-automatic in-house software.
Radiomics features were extracted from all nodules and incremental distances of 5, 10, and 15 mm outside the lesion
segmentation. A radiomics nomogram was established with multivariable logistic regression based on clinical and
radiomics features. The maximum diameter of the solid component and mediastinal lymphadenectasis were selected
as independent predictors of STAS. The radiomics nomogram of lung nodules showed especially good prediction in the
training set [area under the curve (AUC), 0.98; 95% confidence interval (CI), 0.97–1.00] and test set (AUC, 0.99; 95%
CI, 0.97–1.00). The radiomics nomogram of peritumoral regions also showed good prediction, but the fitting degrees
of the calibration curves were not good. Our study may provide guidance for surgical methods in patients with lung
adenocarcinoma.
Introduction

Lung cancer is the leading cause of cancer death worldwide and may be
associated with a unique invasion pattern [1]. Spread through air spaces
(STAS) was first designated as a possible pattern of lung tumor invasion
by the Kadota study team [2] and was recognized as a new manifestation
of tumor spread similar to visceral pleural and vascular invasion in the
2015 World Health Organization classification [3]. STAS is defined as
“micropapillary clusters, solid nests, or single cells beyond the edge of the
tumor into air spaces in the surrounding lung parenchyma”, which is
based on pulmonary air space anatomy in the alveolar interstitium [3,4].
Some studies have shown that the presence of STAS is closely related to
lower survival and worse prognosis and could provide useful clinical
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treatment information for patients with lung adenocarcinoma [5,6]. Ren
et al. reported that STAS-positive patients tended to have poor prognosis
after undergoing sublobar resection, but not after undergoing lobectomy
in stage IA lung adenocarcinoma [7]. STAS has been confirmed only by bi-
opsy so far, but several previous studies suggest that some computed to-
mography (CT) characteristics of lung tumors may predict the existence
of STAS, such as the diameter of the tumor and the percentage of solid com-
ponents in the pulmonary nodule [8–10].

Radiomics, a process of converting radiographic images into quantifi-
able information, can potentially improve the accuracy of diagnosis, prog-
nosis and prediction models [11,12]. The quantifiable radiomics features
extracted from the region of interest (ROI) in medical images of lesions
can providemore comprehensive and richer information than radiographic
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images analyzed usingmachine learningmethods and biostatistics [13,14].
Some studies on radiomics showed that radiomics features performed well
for clinical decision making in patients with lung cancer [15,16]. To date,
there have been two studies on the radiomics analysis of STAS, which pre-
dicted the existence of STAS by establishing different models [17,18]. Al-
though the results showed that STAS could be predicted preoperatively,
the methods and results of the two papers were not completely consistent.

In this study, we aimed to develop a prediction model based on clinical
features and a radiomics nomogram for the preoperative prediction of the
presence of STAS in patients with lung adenocarcinoma.

Materials and methods

This retrospective study was approved by the institutional review
board, and the requirement for written informed consent was waived.

Patients

Patients with pathologically (paraffin section) confirmed STAS-positive
lung cancer were selected fromAugust 2016 to January 2019 at Zhongshan
Hospital (Shanghai, China). Patients who met any one of the following
criteria were excluded from the study: no continuous thin-slice CT images
(thickness < 2 mm); no plain CT images; no lung adenocarcinoma patho-
logically; the maximum diameter of the lesion was greater than or equal
to 3 cm; or history of pulmonary surgery. Finally, a total of 107 STAS-
positive patients were included in the study and matched to 105 STAS-
negative patients by using patient variables (including age and sex) in the
same time period at Zhongshan Hospital (Fig. 1).

CT imaging acquisition and CT imaging annotation

All CT examinations were performed in the supine body position with
arms up after deep inspiration. CT data were acquired from three scanners,
including SOMATOM Force (SIEMENS, Germany), Aquilion One/320
(TOSHIBA, Japan), and uCT128 (UIH, China). The CT scan parameters
of the above three devices were as follows: collimation, 160 ∗ 0.75 mm,
160 ∗ 0.5 mm, 64 ∗ 0.625 mm; tube voltage, 120–130 kVp; tube current,
100–150 mAs; rotation time, 0.5–0.75 s; pitch, 0.828–1.2; matrix, 512
∗ 512; lung window settings (width/level), 1200/−600 HU; and mediasti-
nal window settings (width/level), 400/40 HU. The lung algorithm was
used to reconstruct 1/1.5-mm-thick sections of CT images.

CT imaging annotation was performed by two radiologists (Y Zhuo, a
doctoral student with 2 years of chest radiological experience; and F
Fig. 1.A: Recruitment pathway in this study. B:Workflow of image processing. Aug: Aug
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Shan, a radiologist with 19 years of experience in chest radiology) with
semi-automatic in-house software. Neither radiologist knew the patients'
pathology results before performing imaging annotation, and consensus
was obtained by discussion in any cases of disagreement. The CT morpho-
logical characteristics assessed in our study were as follows: nodule size
(maximum, mean and minimum diameter), maximum diameter of the
solid component, percent of solid component, nodule type (solid, part
solid or ground glass), spiculated sign, cavity, vacuole, boundary (clear or
unclear), lobulated sign, air bronchogram, pleural indentation, pulmonary
vessel, and mediastinal lymph node size. The percentage of solid compo-
nent was calculated according to the following formula: (maximum diame-
ter of the solid component / maximum diameter of the nodule) ∗ 100%.
Lobulated sign was defined as a nodule showing jagged edges with petal-
like protrusions, and the ratio of arc-chord distance/chord length was
greater than or equal to 0.2. Air bronchogram was defined as the tubular
low-density bronchus reaching the edge of the nodule and may or may
not enter the inside of the nodule. Mediastinal lymphadenectasis meant
that the short diameter of the lymph nodes was >1 cm.

Nodule segmentation and radiomics feature extraction

Lung nodule segmentation in unenhanced chest CT images was per-
formed with semi-automatic in-house software. The boundaries of the
lung nodules were checked by the radiologist and manually adjusted if nec-
essary. It should be noted that the parts that crossed the interlobar pleura,
chest wall and mediastinum should be removed. Radiomics features were
extracted from nodules after image processing with different filters (includ-
ing LoG, Wavelet, Square, SquareRoot, Logarithm, Exponential, Gradient,
local binary pattern in 2D, and local binary pattern in 3D filters) by using
open-source PyRadiomics software (https://pyradiomics.readthedocs.io/
en/latest/index.html). A total of 1526 radiomics features were extracted
from each ROI, including first order statistics, shape-based (3D), shape-
based (2D), gray level cooccurrence matrix (GLCM), gray level run length
matrix (GLRLM), gray level size zone matrix (GLSZM), neighboring gray
tone difference matrix (NGTDM) and gray level dependence matrix
(GLDM) features.

Construction and assessment of the radiomics nomogram

The least absolute shrinkage and selection operator (LASSO) method,
which compresses some independent variables with little or no influence
to 0, was used to select nonzero coefficients from the 1526 radiomics fea-
tures [19]. A total of 12 clinical variables were involved in this experiment,
ust; Jan: January; STAS+: positive STAS; STAS-: negative STAS; F: female; M: male.
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which were combined with selected radiomics parameters into the multi-
variable logistic regression model for predicting the presence of STAS. For
easier understanding, a nomogramwas constructed after successfully estab-
lishing the prediction model. The experimental data of the STAS-negative
group and the STAS-positive group were randomly divided into a training
set and test set at a ratio of 7:3. The calibration curve was used to evaluate
the calibration ability of the nomogram, and the Hosmer-Lemeshow test
was used to evaluate the goodness of fit of the nomogram. The prediction
accuracy of the radiomics model was represented by the receiver operating
characteristic (ROC) curve and was quantified by the area under the ROC
curve (AUC) in both the training and test sets. Finally, decision curve anal-
ysis was used to evaluate the clinical usefulness of the prediction model.

Peritumoral regions of lung nodules

The following 3 ROIs were extracted for each nodule using point posi-
tioning and region growing methods: incremental distances of 5, 10, and
15 mm outside the nodule segmentation. The center point of the lesion
was determined according to CT imaging annotation, and a spherical
shape was fitted with the maximum distance from the center point to the
edge of the lesion as a radius. Finally, amplification was performed on the
basis of this sphere (Fig. 2). The methods of radiomics feature extraction
and radiomics nomogram construction were the same as above.

Statistical analysis

The LASSOmethod constructed a penalty function by adding constraint
conditions, and a prediction model was constructed by performing 10-fold
cross validation. Each prediction model included a clinical model and a
radiomics nomogram model. DeLong's test was used to compare whether
the ROC curves were different between the clinical and radiomics nomo-
gram models.
Fig. 2. A: Lung nodule segmentation. Extracting peritumoral regions: incremental
distances of 5 mm (B), 10 mm (C), and 15 mm (D) outside the nodule
segmentation. The center point of the lesion was determined according to CT
imaging annotation, and a spherical shape was fitted with the maximum distance
from the center point to the edge of the lesion as a radius. Finally, amplification
was performed on the basis of this sphere.
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TheWilcoxon rank sum test was used in the analysis of age, nodule size,
diameter of solid component and percent of solid component because none
of the above parameters were normally distributed. CT image featureswere
compared by χ2 tests between the STAS-positive and STAS-negative
groups. SAS statistical software (version 8) was used for statistical analyses.
The P value was analyzed by bilateral statistical analysis, and a P value <
0.05 indicated statistical significance. The measurement data were
expressed as the mean ± standard deviation (SD).
Results

Patient clinical characteristics

There were 324 patients with pathologically confirmed STAS-positive
lung cancer, but 217 patients were excluded for the following reasons: no
continuous thin-slice CT images (n = 187), no plain CT images (n = 4), no
lung adenocarcinoma pathologically (n = 7), and the maximum diameter
of the lesion was greater than or equal to 3 cm (n= 19). The clinical charac-
teristics of the participants in this study are shown in Table 1. In this study,
there were 107 people in the STAS-positive group [50 males and 57 females;
age 59.64± 9.54 years (mean± SD)] and 105 people in the STAS-negative
group [41 males and 64 females; age 58.05 ± 10.27 years (mean ± SD)].
Postoperative pathology showed no significant differences in pleural and
bronchial invasion between the two groups (P=0.0525 and 0.5916, respec-
tively), but the STAS-positive group had more lymphatic metastasis than the
STAS-negative group (P= 0.0069). In addition, the results of genetic testing
indicated that epidermal growth factor receptor (EGFR)mutation andNapsin
A expression were significantly different between the two groups (P =
0.0041 and 0.0000, respectively). Other indicators without statistical signifi-
cance are shown in Table S1.

The CT image characteristics of the patients are shown in Table 2. There
were significant differences in the maximum diameter of the nodule, max-
imum diameter of the solid component, percent of the solid component,
nodule type (solid, part solid or ground glass), spiculated sign, boundary
(clear or unclear), lobulated sign, air bronchogram and pleural indentation
between the two groups (P = 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
Table 1
The clinical characteristics of the participants.

All patients
(n = 212)

Negative for
STAS (n = 105)

Positive for
STAS (n = 107)

P value

Age (year) 58.84 ± 9.92 58.05 ± 10.27 59.64 ± 9.54 0.1960
Sex 0.2703
Female 121 (57.08)b 64 (60.95) 57 (53.27)
Male 91 (42.92) 41 (39.05) 50 (46.73)

Pleural invasion 0.0525
Present 46 (21.70) 13 (12.38) 33 (30.84)
Absent 119 (56.13) 54 (51.43) 65 (60.75)
NA 47 (22.17) 38 (36.19) 9 (8.41)

Bronchial invasion 0.5916
Present 3 (1.42) 1 (0.95) 2 (1.87)
Absent 153 (72.17) 84 (80.00) 69 (64.49)
NA 56 (26.41) 20 (19.05) 36 (33.64)

Lymphatic metastasis 0.0069a

Present 19 (8.96) 5 (4.76) 14 (13.08)
Absent 137 (64.62) 82 (78.09) 55 (51.40)
NA 56 (26.42) 18 (17.5) 38 (35.52)

EGFR 0.0041a

Present 104 (49.06) 41 (39.05) 63 (58.88)
Absent 108 (50.94) 64 (60.95) 44 (41.12)

Napsin A <0.001a

Present 141 (66.51) 41 (39.05) 100 (93.46)
Absent 66 (31.13) 64 (60.95) 2 (1.87)
NA 5 (2.36) 0 5 (4.67)

Abbreviations: NA, not available.
a Statistically significant.
b Data are numbers of patients, with percentages in parentheses.



Table 2
The CT image characteristics of the participants.

All patients (n = 212) Negative for STAS (n = 105) Positive for STAS (n = 107) P value

Maximum diameter of nodule (mm) 15.31 ± 6.01 12.36 ± 3.88 18.21 ± 6.04 <0.001a

Minimum diameter of nodule (mm) 11.64 ± 4.71 9.67 ± 3.68 13.58 ± 4.70 <0.001a

Mean diameter of nodule (mm) 13.47 ± 5.53 11.01 ± 3.68 15.89 ± 5.20 <0.001a

Maximum diameter of solid component (mm) 12.12 ± 7.91 7.82 ± 5.91 16.34 ± 6.04 <0.001a

Percent of solid component (%) 75.64 ± 41.35 61.13 ± 37.13 90.24 ± 15.41 <0.001a

Nodule type <0.001a

Solid 92 (43.40)b 34 (32.38) 58 (54.21)
Part solid 100 (47.17) 51 (48.57) 49 (45.79)
Ground glass 20 (9.43) 20 (19.05) 0 (0)

Spiculated sign <0.001a

Present 160 (75.47) 62 (59.05) 98 (91.59)
Absent 52 (24.53) 43 (40.95) 9 (8.41)

Cavity 0.7552
Present 9 (4.25) 4 (3.81) 5 (4.67)
Absent 203 (95.75) 101 (96.19) 102 (95.33)

Vacuole 0.0843
Present 38 (17.92) 14 (13.33) 24 (22.43)
Absent 174 (82.08) 91 (86.67) 83 (77.57)

Boundary <0.001a

Clear 127 (59.91) 46 (43.81) 81 (75.70)
Unclear 85 (40.09) 59 (56.19) 26 (24.30)

Lobulated sign 0.0273a

Present 193 (91.04) 91 (86.67) 102 (95.33)
Absent 19 (8.96) 14 (13.33) 5 (4.67)

Air bronchogram 0.0013a

Present 132 (62.26) 54 (51.43) 78 (72.90)
Absent 80 (37.74) 51 (48.57) 29 (27.10)

Pleural indentation <0.001a

Present 128 (60.38) 46 (43.81) 82 (76.64)
Absent 84 (39.62) 59 (56.19) 25 (23.36)

Pulmonary vessel 0.9773
Vessel convergence 182 (85.85) 86 (81.90) 96 (89.72)
Vessel expansion 4 (1.89) 2 (1.91) 2 (1.87)
Absent 26 (12.26) 17 (16.19) 9 (8.41)

Mediastinal lymphadenectasis 0.4134
Present 24 (11.32) 10 (9.52) 14 (13.08)
Absent 188 (88.68) 95 (90.48) 93 (86.92)

a Statistically significant.
b Data are numbers of patients, with percentages in parentheses.
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0.0000, 0.0273, 0.0013, and 0.0000, respectively). The remaining CT fea-
tures, including cavity, vacuole, location, pulmonary vessel, and mediasti-
nal lymph node size, were not statistically significant.

Radiomics feature extraction and radiomics signature construction

The radiomics parameters selected by using the LASSO method were
different for each ROI. A total of seven features with nonzero coefficients
were selected from the lung nodules, including first-order statistical,
NGTDM, GLSZM, GLCM and GLDM features (Fig. 3).

The radscore was calculated by summing the selected features
weighted by their coefficients and then adding a constant (−0.045)
(Table S2). We compared the radscore from all patients on the training
and test sets, and ROC analysis was used to evaluate the performance
of the model. The results showed that the radscores of the STAS-
negative group were lower than those of the STAS-positive group, and
the differences were statistically significant (P = 0.0000 and 0.0000,
respectively) (Fig. S1). ROC analysis showed good performance in the
training set [AUC, 0.88; 95% confidence interval (CI), 0.82–0.93] and
test set (AUC, 0.86; 95% CI, 0.77–0.95).

Construction, performance and validation of the radiomics nomogram

Univariate andmultivariate logistic regression analyses were performed
on the clinical data, and independent predictors of STAS were selected. The
selected predictors related to STAS in the regression analysis results were
the maximum diameter of the solid component and mediastinal lymph
node size.
4

After obtaining multivariate logistic regression equations based on
radiomics, a nomogrammodel was established to calculate the probabil-
ity of STAS for each patient (Fig. 4A). ROC and decision curves were
used to evaluate the clinical usefulness of the prediction model in both
the training and test sets. The radiomics nomogram of lung nodules,
consisting of seven selected radiomics parameters and clinical features,
showed good prediction in the training set (AUC, 0.98; 95% CI, 0.97–
1.00) and test set (AUC, 0.99; 95% CI, 0.97–1.00) (Fig. 4B–C). In addi-
tion, the results also showed that the AUC of the nomogram model
was slightly larger than that of the clinical model in both the training
and test sets, but there were no statistically significant differences be-
tween the nomogram and clinical model in either the training or test
set (P = 0.2108 and 0.1324, respectively).

The calibration curve was resampled 1000 times using the self-
service method to ensure the accuracy of the results. The Hosmer-
Lemeshow test showed that the P value was 0.8209 in the training set,
indicating that the fitting degree of the model was good. Similarly, the
P value was 0.9703 in the test set, which also showed good calibration
ability (Fig. 4D–E). The results above showed that the performance of
the nomogram in both groups was good.
Clinical use

Decision curve analysis was used to evaluate the clinical usefulness of
the prediction model (Fig. S2). Compared with the cases of treat-all and
treat-none, both the clinical and nomogrammodels could bring net benefits
to patients, of which the nomogram model added more benefits.



Fig. 3.Radiomics feature selection. The least absolute shrinkage and selection operator (A) included choosing the regularization parameterλ (B) anddetermining the number
of features. A total of seven radiomics features were chosen (C).
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Results of peritumoral regions

Intervals of 5, 10 and 15 mm outside the lung nodule created the
peritumoral regions. Six features with nonzero coefficients were selected
from the 5-mm peritumoral region, including first order statistics, GLCM,
GLRLM and GLSZM. Seven features with nonzero coefficients were selected
from the 10-mm peritumoral region, including first order statistics, GLSZM
and GLCM. Ten features with nonzero coefficients were selected from the
15-mm peritumoral region, including first order statistics and GLSZM.
The detailed data of the radiomics parameters selected from the three
ROIs are shown in Fig. S3.

The prediction models of all peritumoral regions also achieved favor-
able prediction efficacy, but the Hosmer-Lemeshow test showed that the
P values of the test set were 0.0426, 0.0000 and 0.0216, respectively,
which indicated that the calibration curves were departed from good fit
(Fig. S4).

Discussion

In our study, there were significant differences in the qualitative and
quantitative CT characteristics between the STAS-negative and STAS-
positive groups. Among these variables, the maximum diameter of the
solid component and mediastinal lymphadenectasis were selected to build
a prediction model for preoperatively predicting the presence of STAS.
The radiomics nomogram of lung nodules, consisting of seven selected
radiomics parameters and two clinical features, showed good prediction
in both the training and test sets. However, therewere no statistically signif-
icant differences between the nomogrammodel and clinical model in either
the training set or test set. In addition, the discriminative ability of the
radiomics nomogram of lung nodules was better than that of peritumoral
regions.

STAS was reported to be an independent prognostic factor for poor
recurrence-free survival and overall survival in previous studies, even in
early-stage lung adenocarcinoma [6,20]. Therefore, the presence of STAS
can influence clinical decision-making for surgery. The stepwise flowchart
provided by Suh et al. showed that segmentectomy was proper for patients
with negative STAS, and lobectomy was proper for patients with positive
5

STAS [21]. In our study, postoperative pathology showed no significant dif-
ferences in pleural and bronchial invasion between the two groups (P =
0.0525 and 0.5916, respectively). These results conflict with the findings
reported by Sun et al. that the positive rate of STASwas significantly higher
than that in lung tumors with pleural and bronchial invasion [22]. The
STAS-positive group had more lymphatic metastasis than the STAS-
negative group (P = 0.0069) in our study, which was compatible with
the results of a previous study [6]. In addition, the results of genetic testing
indicated that EGFR mutation and Napsin A expression were significantly
different between the two groups (P = 0.0041 and 0.0000, respectively).
The genetic mechanism of STAS in lung cancer has yet to be clarified. Be-
cause postoperative pathology cannot be used for preoperative prediction,
these results were not included as factors of the prediction model.

Some CT imaging features were related to the presence of STAS in our
study. The maximum diameter of the solid component and mediastinal
lymphadenectasis were selected to be independent predictors of STAS.
Kim et al. found that the percentage of solid components was independently
related to STAS by building a prediction model using CT features [9]. They
reported that the AUC in the model that used the percentage of the solid
component (AUC = 0.77) was larger than that in the model that used the
maximum diameter of the solid component (AUC=0.66), which indicated
that the percentage of the solid component was a more useful CT imaging
predictor than the maximum diameter of the solid component [8]. Another
study found that lobulated sign and nodule type were independent predic-
tors of STAS by multivariable analysis, and the presence of lobulated sign
and the absence of ground glass opacity were independently related to
STAS [10]. Our results showed that solid nodules were most likely to be
STAS positive, while pure ground glass nodules were least likely to be
STAS positive, which was similar to the findings of previous research
[8,9]. There was a significant difference in the lobulated sign between the
two groups, but it was not selected to be an independent predictor of STAS.

The AUCs of the clinical model in the training and test sets were 0.98
and 0.97, respectively. The radiomics nomogram of lung nodules, combin-
ing clinical and radiomics features, showed better prediction in the training
set (AUC, 0.98) and test set (AUC, 0.99). A total of seven features with non-
zero coefficients were selected from the lung nodules, including first-order
statistical, NGTDM, GLSZM, GLCMand GLDM features. First order statistics



Fig. 4.Construction, performance and validation of the radiomics nomogram.A: The radiomics nomogramwas developed using seven selected radiomics parameters and two
clinical features. ROC curves of the nomogram and clinical model in the training (B) and test (C) sets. The calibration curves of the radiomics nomogram in the training
(D) and test (E) sets.
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are used to describe the distribution of voxel intensity in the image region,
which is defined by the common mask and basic metrics. Second order sta-
tistics, including GLCM, GLRLM and GLSZM, need to involve the spatial po-
sition relationshipwith the voxel intensity. Higher order statistics, such as
Fourier transform, wavelet decomposition, and other filtering, can be
used for image preprocessing and feature extraction. Radiomics features
are automatically extracted by the computer, which compensates for
mistakes caused by subjective and manual measurements. Our results
showed that the AUC of the nomogram model was slightly larger than
that of the clinical model in both the training and test sets, but there
were no statistically significant differences between the nomogram
6

and clinical models in either the training set or test set (P = 0.2108
and 0.1324, respectively), which indicated that CT image features
could provide plenty of information for making a preliminary judgment
on the existence of STAS. Jiang et al. developed a random forest model
using CT-based radiomics features and achieved an AUC of 0.754 for
predicting the existence of STAS [18]. Another study built a Naïve
Bayes model using five radiomics features to predict STAS that showed
good performance with an AUC of 0.63 in internal validation and an
AUC of 0.69 in external validation [17]. The prediction effect of our no-
mogram model was better than the results of the above two studies.
After further study, we speculated that this might be related to the
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inclusion of many CT clinical features in the model building process,
such as nodule size, nodule type, and other CT features. As shown in
Fig. 4B–C, the clinical model of lung nodules showed good prediction
in both the training set (AUC, 0.98) and test (AUC, 0.97) set. Before
extracting parameters, we used 9 filters to process the CT images and
then extracted 1526 radiomics parameters for each ROI. This method
was far more involved than those of the above two studies but might
provide richer information for building prediction models. In addition,
STAS-positive patients accounted for approximately half of the total
population in our study, while the STAS-positive rates in the above
two studies were <30%, which may mean that different data composi-
tions may also influence the experimental results.

Dai et al. found that the maximum distances between the lung nodule
edge and STASwere 1.35 cmand0.87 cm in the study and validation cohorts,
respectively [20]. Therefore, intervals of 5, 10 and 15 mm outside the lung
nodule were selected to create the peritumoral regions. The prediction
models of all peritumoral regions also achieved favorable prediction efficacy,
but the Hosmer-Lemeshow test showed that the P values of the test set were
0.0426, 0.0000 and 0.0216, respectively, which indicated that the calibration
curves were departed from good fit. The prediction model established by the
radiomics parameters of lung tumors was better than the prediction model
established by radiomics parameters in peritumoral regions.

There were several limitations in our study. First, this was a single-
center retrospective study, and the predictions were unexpectedly good (al-
though they were repeatedly confirmed), which may suggest that we need
to validate this predictive model with an external validation set. Second,
when the STAS-negative group and the STAS-positive group were matched,
the smoking status was not matched because of incomplete data. There is a
close relationship between smoking and lung tumors, which may influence
the results. Third, the CT images in the study came from three different CT
machines, and the images were not processed with consistency, whichmay
affect the experimental results. Fourth, we only evaluated the relationship
between STAS and lung adenocarcinoma, and other pathological types of
lung tumors, such as lung squamous cell carcinoma, also needed further
investigation.

In conclusion, the radiomics nomogram of lung nodules showed favor-
able prediction efficacy for the presence of STAS andmay provide guidance
for surgical methods in patients with lung adenocarcinoma.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.tranon.2020.100820.
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