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Abstract: Both vitamin D deficiency and cognitive impairment are common in patients with
chronic kidney disease (CKD). Vitamin D exerts neuroprotective and regulatory roles in the central
nervous system. Hypovitaminosis D has been associated with muscle weakness and bone loss,
cardiovascular diseases (hypertension, diabetes and hyperlipidemia), inflammation, oxidative stress,
immune suppression and neurocognitive impairment. The combination of hypovitaminosis D and
CKD can be even more debilitating, as cognitive impairment can develop and progress through
vitamin D-associated and CKD-dependent/independent processes, leading to significant morbidity
and mortality. Although an increasingly recognized comorbidity in CKD, cognitive impairment
remains underdiagnosed and often undermanaged. Given the association of cognitive decline and
hypovitaminosis D and their deleterious effects in CKD patients, determination of vitamin D status
and when appropriate, supplementation, in conjunction with neuropsychological screening, should
be considered integral to the clinical care of the CKD population.
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1. Introduction

Suboptimal vitamin D status, hypovitaminosis D (vitamin D insufficiency and deficiency), is
extremely common [1]. Chronic kidney disease (CKD) has also become extremely common [2].
Both conditions, particularly prevalent in elderly patients (>65 years of age), are known risks for and
closely associated with cognitive decline [3,4]. Although it has been hypothesized that CKD patients
with inadequate vitamin D status could potentially experience an accelerated cognitive decline, there
are scant adequately designed studies on this topic. In this review, we discuss vitamin D function in
both healthy and CKD populations, centered specifically on vitamin D in brain function and the role
of hypovitaminosis D in cognitive impairment (CI). We gathered the current evidence on occurrence
rate, risk and role of hypovitaminosis D in non-dialysis and dialysis-dependent CKD patients with CL
We also provided clinical suggestions based on existing evidence for managing CKD patients with
hypovitaminosis D.

2. Vitamin D Biogenesis, Metabolism and Function in Healthy and in CKD Patients

Vitamin D is acquired through diet, supplementation and photosynthesis. Two forms of vitamin
D exist in circulation: 25(OH)D and 1,25(0OH),D. 1,25(0OH),D is the active form, generated from
25(OH)D through 1a-hydroxylation. The hydroxylation occurs primarily in the kidney but also in
multiple non-renal tissues including brain [5-7]. In addition to its classic role in regulating calcium and
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phosphorous and maintaining bone health, vitamin D possesses a pleiotropic effect across multiple
extraskeletal systems. Emerging evidence shows that vitamin D is able to regulate cellular proliferation
and differentiation, immunity [8], inflammation [9], neuron health (detailed in Section 3) and the
endocrine system including the renin angiotensin system (RAS), insulin secretion and lipid metabolism
through interaction with intracellular vitamin D receptor (VDR) expressed in multiple systems [1,6,7,10].
Studies have also shown that vitamin D may exert protective effects against the development of type 1
diabetes mellitus [11], rheumatoid arthritis [12], multiple sclerosis [13,14], infection [15,16] and certain
forms of cancer [17,18].

Vitamin D status is determined clinically by measuring the circulating 25(OH)D level [19,20].
The optimal level in the general population and CKD patients has not yet been firmly established.
Consensus, based on bone health and mortality data, suggests that circulating 25(OH)D levels of
>30 ng/mL (converted to nmol/L by multiplying 2.5 to the value of ng/mL) and <80 ng/mL are
optimal [21,22]. Suboptimal vitamin D status is further grouped to insufficiency and deficiency
(Table 1).

Table 1. Classification of Vitamin D Status by 25(OH)D concentration.

Classification 25(0OH)D Concentration
Optimal >30-80 ng/mL
Suboptimal
-Insufficient 20-30 ng/mL
-Deficient <20 ng/mL

Note: ng/mL can be converted to nmol/L by multiplying 2.5.

Suboptimal vitamin D is extremely prevalent worldwide and has become endemic.
A meta-analysis by Chowdhury et al. shows that the prevalence of suboptimal vitamin D (insufficiency
and deficiency) is 69.5% (95% confidence interval (CI), 62.1%-77.7%) for the USA and 86.4% (CI,
78.4%-95.2%) for Europe [23]. Moreover, 4% and 15% of the study populations, respectively, were
severely vitamin D deficient (<10 ng/mL). Similar occurrences were noted in developing countries [24].

Risk factors for suboptimal 25(OH)D include bimodal age groups (neonates, preschool children
and the elderly), obesity, lack of sun exposure, inadequate diet, and presence of CKD [25,26].
Recent studies also show that air pollution can be a significant risk factor for vitamin D deficiency due
to insufficient ultraviolet light [27-29]. Hereditary variations could also influence vitamin D status on
several levels including polymorphism at the level of conversion of vitamin D precursor to 25(OH)D,
la-hydroxylase activity, expression of VDR and variations of intracellular as well as circulating vitamin
D binding protein expression. Genome-wide associate studies have showed several significant loci that
can influence vitamin D status, specifically the polymorphisms of vitamin D conversion enzymes, VDR
and vitamin D binding proteins [30-32]. Variations in these loci can influence the risk for suboptimal
vitamin D.

Low circulating 25(OH)D have been shown to correlate with an elevated risk of all-cause and
cardiovascular mortality. In a systematic review and meta-analysis of 73 observational cohort studies
(data prior to 1 August 2013), involving 849,412 participants [23], suboptimal 25(OH)D with median
(range) level of 20.7 (17.5-24.3) ng/mL was associated with cardiovascular-specific, cancer-specific
and all-cause mortality with mean follow-up (range) of 6.0 (3.0-9.5) years. For each 10 ng/mL decline
in circulating 25(OH)D, there was a 16% (95% CI, 8% to 23%) increase in the risk of all-cause mortality.
A similar correlation was observed in several meta-analyses of prospective observational studies [21,33].

Interventional trials have generated interesting results. A prospective randomized study showed
that vitamin D supplementation reduced all-cause mortality only among elderly individuals and
only when vitamin D3 was used alone (without concomitant calcium supplementation). Vitamin D,
supplementation alone failed to show a significant mortality effect [23]. The lower bioavailability of
vitamin D; could potentially account for such an outcome [34]. Similarly, data on the relationship
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between cardiovascular events and vitamin D supplementation, reviewed by Wang et al. [35], showed
that vitamin D supplementation alone, but not with calcium, significantly reduced cardiovascular
events. It has been postulated that the increased calcium intake could potentially have negated the
beneficial effects of vitamin D [36].

CKD patients are particularly susceptible to the development of vitamin D deficiency (Figure 1).
The risk factors could be related to reduced vitamin D intake, compromised intestinal absorption,
urinary loss of vitamin D binding protein, reduction in the intra-renal activity of 1a-hydroxylase
leading to insufficient 1,25(OH),D generation, and elevation of fibrotic growth factor 23 (FGF-23),
which inhibits 1«-hydroxylase activity [37—40]. CKD patients often possess a number of additional
comorbidities (advanced age, obesity, diabetes and hypertension) known to be risk factors for vitamin
D deficiency [41,42]. KDIGO (Kidney Disease Improving Global Outcomes) guideline has adopted
results from prior studies in CKD patients [43] and define vitamin D status similar to those in the
general population (Table 1). Kim et al. assessed 25(OH)D status in 210 CKD patients and found
that the prevalence of suboptimal vitamin D (<30 ng/mL) increased progressively with worsening
CKD, 40.7% in CKD Stage 3, 61.5% in Stage 4, and 85.7% in Stage 5 [44]. A greater proportion of
patients with suboptimal vitamin D had diabetes and heavy proteinuria [44]. With late stage CKD
(eGFR < 15 mL/min/1.73 m?), uremia can cause progressive loss of tissue VDR (clearly demonstrated
in the parathyroids of uremic patients [45]) and diminishing binding capacity between 1,25(0OH),D
and VDR, leading to tissue vitamin D resistance [46—48]. Similar to the observations generated from
the general population, multiple observational studies have demonstrated an inverse relationship
between vitamin D status and all-cause mortality rates in the CKD population [49].

Chronic kidney disease
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Figure 1. Risks of suboptimal vitamin D status in chronic kidney disease patients.

Vitamin D supplementation in patients with CKD is associated with reduced all-cause mortality
in most observational studies [50,51], but not in randomized controlled trials [52-54]. Notably, most
observational studies had larger numbers of participants and longer durations of observation (months
to years) than those in randomized interventional trials (weeks to months). Properly sized and
longer-term prospective interventional trials are needed.

3. Vitamin D in Brain and Neurocognitive Function

Emerging evidence suggests an important role for vitamin D in brain physiology. Vitamin D
crosses the blood—brain barrier in the cerebral capillaries and enters the cerebrospinal fluid and the
brain via passive diffusion and specific carriers. The concentration of 25(OH)D in the cerebrospinal
fluid positively correlates with that in the serum. Vitamin D exerts its actions through VDR, which is
expressed in neuronal and glial cells in almost all regions of the central nervous system. In particular,
the VDR is expressed in the hippocampus, hypothalamus, cortex and subcortex, the areas essential
for cognition [55,56]. 1a-hydroxylase converting 25(OH)D to 1,25(OH),D is also expressed in most of
these regions [57]. Vitamin D has also been found to regulate expression of tyrosine hydroxylase, the
rate-limiting enzyme in the genesis of dopamine, norepinephrine and epinephrine [58].
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Vitamin D promotes neuron survival [59], inhibits oxidative pathways in the brain through reducing
free radical formation [60] and increases antioxidant (y-glutamyl transpeptidase) production [61],
reverses oxidative stress associated mitochondrial dysfunction [62], down-regulates L-type calcium
channels expression [63] and attenuates injurious effects of excitatory neurotoxins [64,65]. Vitamin D
also prevents amyloid-3 accumulation by reducing the amyloid-3 precursor transcription [66,67] and
stimulating phagocytotic clearance of the amyloid-f3 peptide [55,68]. Taken together, vitamin D exerts
neuroprotective and regulatory roles in the central nervous system. In line with these observations,
clinical evidence shows that low serum 25(OH)D is associated with CI [3].

A diagnosis of CI can be established by demonstrating a cognitive decline from a previously
attained level of functioning. It can be a decline in any of the six principle domains including
complex attention, executive attention, learning and memory, language, perceptual-motor function
and social cognition [69]. DSM-5 criteria put forth a set of diagnostic guidelines which are not
meant to provide confirmatory diagnoses, but rather to be added to the clinical assessment of
patients. Validation in clinical practice is necessary to achieve high levels of diagnostic reliability.
Mini-Mental State Examination (MMSE) [70] and Modified Mini-Mental State (3MS) [71] are widely
used neuropsychological instruments. They measure global cognitive function with an emphasis on
memory. The Trail Making Test A focuses more on attention, and the Trail Making Test B on executive
function [72]. In general, a diagnosis of CI can be made if the test scores in one or more cognitive
domains fall below 1 or 2 standard deviations of those in the general population.

A meta-analyses by Balion et al. showed that a serum 25(OH)D level of <20 ng/mL is associated
with reduced cognitive performance [73]. A further longitudinal prospective study in 858 Italian
elderly individuals (>65 years) showed an increased relative risk of significant cognitive decline in
those with baseline 25(OH)D levels <10 ng/mL, compared with individuals with levels >30 ng/mL
over a 6-year period [74]. Recently, studies from the 1958 British birth cohort (at age 50 years) have
shown that the presence of two APOE ¢4 alleles, a known genetic risk for dementia [45], is able
to modified the effects of 25(OH)D on memory function [31]. In a fully adjusted modal, 25(OH)D
level was positively and progressively associated with a better memory function only in individuals
carrying two APOE &4 alleles, not in those carrying zero or one allele [31]. These results are consistent
with a role for varying genetic backgrounds in the susceptibility of vitamin D deficiency associated
cognitive dysfunction.

4. Cognitive Impairment in Patients with CKD

CKD, especially elderly CKD, population is growing [2]. CI among this segment of the population
has now been increasingly recognized. A nationwide sample of U.S. community-dwelling adults
(age > 45 years, n = 30,239) participating in the REGARDS study (Reasons for Geographic and
Racial Disparities in Stroke), urine albumin excretion and eGFR reduction were independently
associated with CI [4,75]. Moreover, a longitudinal study of 3034 community-dwelling older adults
with a mean age (SD) of 74 (3) years showed that more advanced stages of CKD were associated
with progressively higher risks of CI, with odds ratio (OR) 1.32 for eGFR 45-59 mL/min/1.73 m? and
2.43 for eGFR < 45 mL/min/1.73 m? [76]. A meta-analysis of cross-sectional and longitudinal studies
involving 54,779 participants (in the years 1980-2012) showed a positive association between cognitive
decline and severity of CKD. CKD was identified as a significant and independent risk factor in the
development of cognitive decline [77]. Recently, Shin et al. descripted a phenomenon in a population
of Korea patients (1 = 10,667), in that the presence of APOE ¢4 (one and two alleles) can accelerate
and amplify the degree of CI in association with albuminuria [78]. In patients on dialysis, 30%-70%
develops some degrees of CI [4,76,79-81]. Griva et al. showed that two-thirds of a cohort of 145 mixed
peritoneal dialysis and hemodialysis patients in London had mild-to-moderate CI in a comprehensive
set of age-adjusted cognitive studies [82].

As shown in Figure 2, in addition to worsening kidney function and albuminuria as risk factors for
(I, cardiovascular risk factors, frequently co-exist with CKD such as hypertension, diabetes/metabolic
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syndrome and hyperlipidemia, have also been associated with the development of CI. Elevated
circulating inflammatory biomarkers, characteristics in CKD [83], could further accelerate vascular
diseases. Under physiological conditions, inflammatory responses remove the pathogens and initiate the
healing process. In patients with CKD, a prolonged plasma half-life for some of the pro-inflammatory
cytokines such as interleukin 1 and tumor necrosis factors could extend the presence of circulating
cytokines and enhance inflammatory load. The inflammatory milieu in turn exacerbates endothelial
dysfunction, atherogenesis and protein energy wasting, accelerating cardiovascular diseases [84].

CKD === Y eGFR
l Albuminuria

sEndothelial dysfunction
eInflammation/Oxidative stress
eAnemia/Uremia

Suboptimal Cognitive
Vitamin D Impairment

Vacular Risks

* Hypertension

¢ Diabetes

e Dyslipidemia

e Vascular calcification

Figure 2. Suboptimal vitamin D status directly and indirectly contributes to the development and
progression of cognitive impairment. Studies have demonstrated an association of hypovitaminosis
D and diseases that raise vascular risks [85]. Endothelial dysfunction and inflammatory/uremic
milieu in CKD act not only as a consequence of CKD but also through promoting vascular risk factors
contributing the CKD progression.

It has been hypothesized that CI in CKD patients would have a negative clinical impact similar
to that have been observed in the general population. Specifically, CI in patients with CKD is likely
associated with reduced survival, increased cardiovascular events, and withdrawal of treatment
for end-stage kidney disease. Thus far, studies have not been comprehensive and have generated
inconsistent results [86-88]. More comprehensive studies involving appropriate patient source, sample
size, prospective design and with detailed cognitive evaluations (including all six domains) are
necessary. One such study (The COGNITIVE-HD study [89]) in dialysis patients is currently ongoing.

5. Potential Association between Vitamin D Deficiency and Cognitive Impairment in CKD

Few studies are available on the cognitive effects of vitamin D in patients with CKD (Table 2).
Two cross sectional studies, using a similar battery of cognitive tests including MMSE/3MS and Trail
Making Tests A and B, showed that patients on hemodialysis and peritoneal dialysis had significant
degrees of 25(OH)D deficiency which are independently associated with worse cognitive function [90,91].
Shaffi et al. [90] investigated 255 hemodialysis patients in the U.S. with a mean age (SD) of 62.9 (16.9)
in the years 2004 to 2012. They found that about half of the patients (49%) had vitamin D levels >12
and <20 ng/mL (n = 139), 14% had levels <12 ng/mL (n = 36) and only 31% had levels >20 ng/mL
(n = 80). The vitamin D level > 20 ng/mL was independently associated with a higher global cognitive
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score, and the lower vitamin D levels were associated with impaired executive function but not global
function. Recently, Liu et al. [91] studied a population of Chinese peritoneal dialysis patients with
a mean age (SD) of 53.58 (14.06) in the years 2013 to 2014. They grouped patients into two groups,
vitamin D <10 ng/mL (n = 163) and >10 ng/mL (n = 110). The low vitamin D level was significantly
correlated with impairment of global cognitive function but not executive function.

Table 2. Comparison of the three studies on the relationship between vitamin D deficiency and
cognitive impairment in CKD patients.

Shaffi et al. 2013 [90] Liu ef al. 2015 [91] Jovanovich et al. 2014 [92]
N =255 N =273 N =605
Database 2004-2012 2013-2014 2001-2004 blood test

2005-2006 cognitive test

5 dialysis clinic units and

Units 1 hospital-based unit 2 hosp 1taCl;/. PD centers 36 medical centers (USA)
(USA) (China)
Dialysis modality HD PD CKD + ESRD/HD (247 + 358)
Age (mean + SD, years) 629 +16.9 53.6 +14.1 67 £ 12
Male (%) 140 (54.9) 136 (49.8) 595 (98.3)
Hypertension (%) 231 (90.6) - 585 (96.7)
Diabetes mellitus (%) 118 (46.3) 73 (26.7) 299 (49.4)
Dialysis duration (range,
Y months) & 15 (7-35) 26.8 (10.9-55.4) -
Seruiszg(’?g}zg‘ean 172474 99437 Median 18 (range12-25)
25(0H)D cut-off <12 ng/mL (36) <10 ng/mL (163) <13 ng/mL
ients’ number) 12to <20 ng/ml. (139) >10 ng/mL (110) 13-22 ng/mL
(patients” num >20 ng/mL (80) g g
MMSE , WMS-IIT Word
List Learning Subtest,

WAIS-III Block Design
and subtests, WAIS-III 3MS, TMT A, TMT B,
Digit Symbol Coding, RBANS sub-tests
TMT A, TMT B, Digit

Span, Mental Alternation

Cognitive tests TICSm

Test, COWAT
Main cognitive
1mp3\1,1i'tmhe2rgt(éf;lc;]cj1ated Executive function Global cognitive function -
concentration

PD, peritoneal dialysis; HD, hemodialysis; CKD, chronic kidney disease; ESRD, end stage renal disease; SD,
standard deviation; MMSE, Mini-Mental State Examination; WMS-III, Wechsler Memory Scale-11I; WAIS-IIT
Wechsler Adult Intelligence Scale-III, 3MS, Modified Mini-Mental State Examination; TMT A, Trail Making Tests
A; TMT B, Trail Making Tests B; COWAT, Controlled Oral Word Association Test; RBANS, Repeatable Battery
for the Assessment of Neuropsychological Status; TICSm, Telephone Interview for Cognitive Status-modified.

Although the assessment batteries were similar in the two studies, there were significant
differences in the patient populations (U.S. versus Chinese), ages (63 in U.S. patients and 54 in Chinese),
dialysis modalities (hemodialysis versus peritoneal dialysis), baseline 25(OH)D (17.2 ng/mL versus
9.9 ng/mL), and study years (2004 to 2012 for hemodialysis patients and 2013 to 2014 for peritoneal
dialysis patients). Patients in both studies were relatively young and should have had a lower inherent
risk for low vitamin D-associated cognitive effects, as prior studies showed that elderly patients
are significantly more susceptible to CI related to hypovitaminosis D [93]. Moreover, compared
with hemodialysis patients, peritoneal dialysis patients tend to be more isolated as they perform
their dialysis at home. Fewer social contacts could impact their global cognitive function and less
outdoor sun exposure could pose risk for hypovitaminosis D. In both studies, a fraction of patients
were incident-dialysis patients and can be loosely considered CKD patients. Despite the multiple
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differences, the overall results of the two studies suggest vitamin D deficiency can be an independent
risk factor for CI.

Not all studies, however, have shown a positive association. Jovanovich et al. [92] conducted
a study in non-dialysis and dialysis CKD patients at 36 Veterans Affairs Medical Centers in the
years 2001 to 2006. They found no association between cognitive function and vitamin D levels.
There were, however, several major limitations. The blood samples for vitamin D measurements
between December 2002 and January 2004, several years prior to the cognitive tests conducted in
June 2005 to July 2006. It is unknown whether the vitamin D levels in the cognitive study period were
remained the same as those in the earlier years. The tests were conducted via phone calls (each lasting
more than 20 min), which might have resulted a selection bias. Patients not feeling physically well,
or with some degree of CI, might not have been able to tolerate a 20 plus min phone conversation.
These patients likely would not have been included in the study. Thus, the selection of the participants
could have been biased toward a healthier patient population and null hypothesis. The study used
a different battery of instruments for measuring the cognitive capacity. Thus, it is hard to compare this
study with the studies by Shaffi et al. [90] and Liu et al. [91].

Taken together, given the neuroprotective and other multiple beneficial effects of vitamin D, it is
tempting to assume that vitamin D deficiency could potentially contribute to CI in patients with CKD.
The studies reported above, however, offer only limited information on a possible association between
low vitamin D and risk for some aspects of cognitive function. Differences in study protocols and
small sample sizes precluded drawing any conclusion, which underscores a critical need of further
investigation. Prospective randomized controlled study with proper sample size and more nuanced
cognitive evaluations would provide a much clearer picture and a causal relation between a low
vitamin D and CI in CKD. At least one such study (NCT01229878) [94] is ongoing. The results from the
study are eagerly awaited.

6. Implications for Clinical Practice

CI can lead to a global and functional deterioration that interferes with activities of daily living
and adherence to prescribed diet and medications, which, in turn, can be deleterious as diet and
medications are critical parts of the CKD management to control hypertension, diabetes, volume status
and mineral and bone disorders. These detrimental effects can lead to patient morbidity and mortality
as well as to increased utilization of healthcare resources. Neuropsychological assessment should,
therefore, be considered as a part of CKD care, especially given CI can occur in all stages of CKD [95].

Several well-established instruments are clinically available. For initial screening, the abbreviated
Six-Item Assessment of Cognitive Function derived from 3MS, could be useful. It takes less than
5 min and has been shown to be effective in identifying CKD patients with CI [75,96]. Following the
screening, several more extensive tools, such as detailed versions of MMSE, 3MS, Trail Making Test
A and B, and the Montreal Cognitive Assessment tool (MoCA) could be administered to fine tune
specific domains of cognitive defects [72,97].

Given the well-established beneficial effects of vitamin D on musculoskeletal health and all-cause
mortality, timely identification of hypovitaminosis D and restoration of adequate vitamin D status
in CKD would likely exert beneficial effects. Moreover, vitamin D insufficiency and deficiency may
represent a reversible risk component for the development and progression of CI. This assumption is
supported by the fact that adequate vitamin D status can directly and indirectly protect patients from
CI by attenuating cardiovascular risk factors, such as insulin resistance, endothelial dysfunction,
RAS hyperactivation, reactive oxygen specie formation and systemic inflammation [98] and by
neuroprotective effects of vitamin D. Fortunately, vitamin D status can be screened easily and repleted.
We suggest screening vitamin D status periodically for CKD patients and supplementing if appropriate.
Moreover, different ethnicity, culture, clothing habits, outdoor activity, dietary choices and genetic
background (APOE ¢ status) should all be taken into consideration in determining the timing and



Nutrients 2016, 8, 291 8of 13

frequency of evaluation and management of vitamin D status. Current practice is to maintain serum
25(OH)D at an optimal range of >30 to 80 ng/mL in patients with CKD [22].

Adpverse effects of vitamin D supplementation are rare. Hypercalcemia is the major adverse effect
and is extremely rare with the current 25(OH)D target [99]. In rodent experiments, extreme 25(OH)D
elevation to approximately 330 ng/mL has been shown to give rise to kidney tubular interstitial injury
due to altered macrophage phenotype [100]. Such a high level would not be attainable in humans with
the vitamin D supplementation regimens used in the current practice. A recent study reported in one of
197 CKD patients who were treated with cholecalciferol 1000 IU/day developed a mild asymptomatic
calcium elevation of 10.5 mg/dL [44]. A pilot trial using oral cholecalciferol 50,000 IU weekly for
six months for hemodialysis patients with suboptimal baseline vitamin D status is ongoing [94].
The results could provide valuable information on the tolerability of such a supplementation regimen.
We look forward to future randomized controlled trials to shed light on the tolerability and effects of
vitamin D repletion, specifically on cognitive function in patients with CKD. Meanwhile, integrated
care bringing together clinicians, nurses, nutritionists and clinician researchers would likely benefit
CKD patients through effective prevention and treatment of hypovitaminosis D, thereby optimize
cognitive function and patient outcomes.

7. Conclusions

CI in patients with kidney dysfunction has received much attention in the last decade.
Emerging evidence suggests a role for a reduced circulating 25(OH)D (insufficiency and deficiency)
in CKD, through CKD-dependent and CKD-independent mechanisms, on the development and
progression of cognitive decline. CKD patients show a disproportionately high incidence of
hypovitaminosis D. The combination of vitamin D deficiency and CKD may exert a synergistic and
deleterious effect on cognition. As improving cognitive function could be one potential mechanism
through which vitamin D exerts its beneficial effects in CKD, vitamin D repletion holds promise.
Further well-designed randomized controlled trials are, however, required to clarify whether vitamin
D indeed exert clinically relevant long-term beneficial effects on cognitive function in CKD.
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Abbreviations

CKD chronic kidney disease

CI cognitive impairment

VDR vitamin D receptor

KDIGO Kidney Disease Improving Global Outcomes

eGFR estimated glomerular filtration rate

MMSE Mini-Mental State Examination

3MS Modified Mini-Mental State Exam
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