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ABSTRACT
Background Severe, disease-causing germline
mitochondrial (mt)DNA mutations are maternally
inherited or arise de novo. Strategies to prevent
transmission are generally available, but depend on
recurrence risks, ranging from high/unpredictable for
many familial mtDNA point mutations to very low for
sporadic, large-scale single mtDNA deletions.
Comprehensive data are lacking for de novo mtDNA
point mutations, often leading to misconceptions and
incorrect counselling regarding recurrence risk and
reproductive options. We aim to study the relevance and
recurrence risk of apparently de novo mtDNA point
mutations.
Methods Systematic study of prenatal diagnosis (PND)
and recurrence of mtDNA point mutations in families
with de novo cases, including new and published data.
‘De novo’ based on the absence of the mutation in
multiple (postmitotic) maternal tissues is preferred, but
mutations absent in maternal blood only were also
included.
Results In our series of 105 index patients (33 children
and 72 adults) with (likely) pathogenic mtDNA point
mutations, the de novo frequency was 24.6%, the
majority being paediatric. PND was performed in
subsequent pregnancies of mothers of four de novo
cases. A fifth mother opted for preimplantation genetic
diagnosis because of a coexisting Mendelian genetic
disorder. The mtDNA mutation was absent in all four
prenatal samples and all 11 oocytes/embryos tested.
A literature survey revealed 137 de novo cases, but PND
was only performed for 9 (including 1 unpublished)
mothers. In one, recurrence occurred in two subsequent
pregnancies, presumably due to germline mosaicism.
Conclusions De novo mtDNA point mutations are a
common cause of mtDNA disease. Recurrence risk is
low. This is relevant for genetic counselling, particularly
for reproductive options. PND can be offered for
reassurance.

INTRODUCTION
Mitochondrial diseases due to defective oxidative
phosphorylation are the most common inborn
errors of metabolism,1 with between 15% and 25%
of cases caused by pathogenic mitochondrial (mt)
DNA mutations.1 2 In the majority of cases, these
mtDNA mutations are heteroplasmic, a mixture of
mutated and wild-type mtDNA molecules in cells
and/or tissues of an individual. At a certain level of
mtDNA mutant load, the cell expresses dysfunction

and symptoms will occur, the so-called threshold
effect. This threshold varies within tissues and
between different mutations and is difficult to
specify for most mtDNA mutations. Nevertheless,
mutant loads of below ∼18% are not considered to
cause symptoms in >95% of the cases.3 Severity of
clinical involvement broadly increases with a higher
heteroplasmy level, although clearly this is not the
only factor. Individuals exclusively receive their
mtDNA from their mother. It is transmitted, at
least in part, through a genetic bottleneck induced
by a drastic reduction in the number of mtDNA
molecules per primordial germ cell during oogen-
esis, leaving a few mtDNAs to become the founders
for the offspring, although the exact nature and
timing of events remain topic of debate.4–8 The
result is, however, indisputable: children of a
woman carrying a heteroplasmic mtDNA mutation
can display a wide variety of mutation loads.
Disease-causing mtDNA mutations can be point

mutations or single, large-scale deletions/rearrange-
ments as a primary cause, or multiple deletions and
depletions usually secondary to a nuclear gene
defect or environmental factor (eg, nucleoside RT
inhibitors and ageing). The recurrence risk in a sub-
sequent pregnancy depends on the underlying
primary genetic defect. The potential of a severe
phenotype and the lack of effective treatment often
prompts couples who have affected offspring or a
positive family history of mtDNA disease to request
intervention to prevent transmission.
Women harbouring an mtDNA deletion have a

low risk (∼1 in 24) of clinically affected offspring,9

whereas females with an mtDNA point mutation
potentially have a high risk of recurrence. Often,
for female carriers the risk of having an affected
child is difficult to predict. However, a substantial
proportion of the children with a single, large-scale
mtDNA deletion or point mutation have a de novo
mutation not inherited from their mother.1 The
recurrence risk of de novo, single large-scale
mtDNA deletions in subsequent offspring is low.9–11

For de novo point mutations, one would expect the
recurrence risk to be similarly low, although this has
not been systematically investigated to date.
In reproductive counselling of mtDNA muta-

tions, the choice between prenatal diagnosis (PND)
and preimplantation genetic diagnosis (PGD)
depends mainly on the recurrence risk and on the
expected predictive value of the test. The latter can
be problematic in PND given the potential
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woman carrying a heteroplasmic mtDNA mutation
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child is difficult to predict. However, a substantial
proportion of the children with a single, large-scale
mtDNA deletion or point mutation have a de novo
mutation not inherited from their mother.1 The
recurrence risk of de novo, single large-scale
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difficulties of interpreting results for most mtDNA mutations
when fetal mutant load falls within a ‘grey zone’ where correl-
ation between genotype and phenotype is unclear. However,
when the likelihood of offspring with either no mutation or a
mutant load below the heteroplasmic threshold of disease
expression is high, PND can be applied for reassurance. This is
the case for single, large-scale mtDNA deletions9–12 and for
low-level mtDNA mutations demonstrating skewing to the
extremes (eg, m.8993T>G) in the mother.13 Also, when mater-
nal mutation load of a non-skewing mtDNA mutation is very
low, PND could be considered. For familial mtDNA mutations
showing an unpredictable and/or high recurrence risk, PGD is
an attractive option,3 14 although patient preference and choice
plays an important role in the decision-making process.
Moreover, other factors including maternal age or pre-existent
fertility problems may influence an informed decision regarding
preferred reproductive options.

In order to study the relevance and recurrence risk of appar-
ently de novo mtDNA point mutations, we evaluated the occur-
rence of de novo mtDNA point mutations in our own
experience and in the literature, and present data on five
couples presenting to our own clinical services who have had an
affected child and for whom PND or PGD has been performed
in a subsequent pregnancy. We offer recommendations for
reproductive counselling including strategies to prevent the birth
of children affected by mtDNA disease.

MATERIALS AND METHODS
Patients and patient data
The frequency of de novo versus recurrent mtDNA disease was
studied by cataloguing all (likely) pathogenic mtDNA point
mutations identified in our diagnostic laboratory either by spe-
cifically screening for known mutations (m.3243A>G,
m.8344A>G, m.8993T>C/G) or sequencing the entire mito-
chondrial genome. ‘Likely’ pathogenic refers to novel mutations
that are suspected to be pathogenic based on well-established
prediction tools and accepted criteria;15 16 however, this was
not in all cases proven by functional (eg, single-fibre segregation,
transmitochondrial cybrid) studies. In addition, we documented
whether maternal relatives of the index patients were tested to
determine presence and, if applicable, heteroplasmy levels of
the mtDNA mutation. Apparent de novo mtDNA mutations
were defined by their absence in one or more accessible mater-
nal tissues (eg, blood, urinary sediment, buccal epithelia) and, if
tested, absence in other matrilineal relatives. Conversely, if the
mtDNA mutation was detected in the mother and/or other
maternal relatives, it was classified as maternally inherited/famil-
ial. The de novo frequency was calculated by taking the propor-
tion of apparently de novo mutations from all mtDNA
mutations identified between January 1996 and March 2015.
Cases where it was not clear whether the reported mtDNA
mutation was (apparently) de novo or maternally inherited/
familial because additional familial testing was not possible were
excluded from the analysis.

Literature search
PubMed was systematically searched as of December 2015 for
cases of de novo mtDNA mutations. Search terms were
‘mtDNA de novo mutation’. PubMed’s automated query transla-
tion, incorporating MeSH terms and enhancements from the
Unified Medical Language System (UMLS), was as follows:
“dna, mitochondrial"[MeSH Terms] OR (“dna"[All Fields] AND
“mitochondrial"[All Fields]) OR “mitochondrial dna"[All Fields]
OR “mtdna"[All Fields]) AND “de novo"[All Fields] AND

(“mutation"[MeSH Terms] OR “mutation"[All Fields]. Also
‘related citations’ of de novo reports in PubMed were screened.

Prenatal diagnosis and preimplantation genetic diagnosis
Chorionic villus sampling (CVS) samples were obtained at 10
+4 weeks and 11+2 weeks gestation, respectively, amniotic
fluid sampling at 16+2 weeks and 16+6 weeks, respectively.
DNA extraction from prenatal and postnatal tissues, quantitative
analyses of the mtDNA mutations as well as the PGD procedure
were performed as previously described.14 16 17 Primers used
for the Maastricht cases are for m.8993T>C/G: CACACC
TACACCCCTTATCCC (forward) and TCATTATGTGTTGTC
GTGCAG (reverse); for m.5556G>A: CACCATCATAGCCAC
CATCA (forward) and GGCTGAGTGAAGCATTGGAC (reverse);
for m.8969G>A: GCTTCATTCATTGCCCCCAC (forward)
and AGGGCTATTGGTTGAATGAGTAAG (reverse); and for
m.3243A>G: CAACTTAGTATTATACCCACAC (forward) and
TTTCGTTCGGTAAGCATTAG (reverse). Mutation-specific re-
striction enzymes are HpaII (Roche) for m.8993T>C/G, DdeI
(Roche) for m.5556G>A, AluI (Roche) for m.8969G>A and
HaeIII (Roche) for m.3243A>G. For the Newcastle cases (ref. 18
and unpublished data), pyrosequencing was used to quantitatively
assess mtDNA mutation heteroplasmy levels as described previ-
ously19 (primer sequences available on request). For one patient,
further assessment of mtDNA heteroplasmy was undertaken using
next-generation sequencing (NGS)-based mtDNA sequencing;
briefly, patient DNA samples were amplified by long-range PCR,
sheared using the Ion Xpress Plus Fragment Library Kit and
sequenced on an Ion Torrent PGM platform according to manufac-
turer’s protocols (Life Technologies, Foster City, California, USA).

RESULTS
De novo mtDNA point mutations
In our diagnostic laboratory, 105 index cases were identified
based on laboratory diagnoses with a (likely) pathogenic
mtDNA point mutation (table 1 and online supplementary table
S1). The majority (72/105) being adults, our cohort seems a fair
representation of the patient population. A subset of 17 patients
were found to harbour an apparently de novo mtDNA mutation
(table 1), of which 12 were between 0 and 3 years of age at
investigation, whereas 5 were >18 years old. Of note, in 3 of
17 cases only maternal blood was analysed, and with a semi-
quantitative method. In two other mothers, besides blood only
hair, and hair plus fibroblasts, respectively, were tested. These
cases have a lower probability of being truly de novo than the
remaining 12 where besides blood also maternal urine and/or
muscle has been investigated. Maternal inheritance was firmly
established for 52 patients, 35 of whom were adults (see online
supplementary table S1). Notably, for one of these cases
(patient 44) we were able to demonstrate de novo occurrence of
the pathogenic mtDNA mutation in the mother of the patient,
which might also be the case for two other families (families 14
and 20). For the outstanding 36 patients, it remains unknown
whether the mtDNA mutation arose de novo in the index
patient or not (see online supplementary table S1). Accordingly,
17/69 (24.6%) of the (likely) pathogenic mtDNA point muta-
tions occurred de novo in the index patient in our series.
Additionally, we identified a further 137 de novo cases in the lit-
erature (see online supplementary table S2; those published
from our own centre and therefore shown in table 1 or online
supplementary table S1 are not included). These are listed
according to whether the mother and/or siblings were tested as
well, and if so, whether this was carried out in one or more
tissues to assess mtDNA heteroplasmy levels. Reports with
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apparently de novo mtDNA mutations where no (close/relevant)
relatives were tested20–24 are not included in the table.

PND/PGD in subsequent pregnancies
The parents of four of the five children described below with
apparently de novo mtDNA disease (figure 1, tables 1 and 2)
were counselled in the outpatient department of Clinical
Genetics in Maastricht. For case 3, the parents were counselled
at another centre while mtDNA analyses were performed in
Maastricht.

Case 1
Couple 1 was referred for PGD because their son had Leigh
syndrome due to the m.8993T>G mutation in the MTATP6
gene, with 90% mutant load in skeletal muscle. He died at the
age of 1. Family history was otherwise negative. His healthy
older sister, 6 years of age, was not tested for the mutation. In
the mother’s blood, hair and muscle the m.8993T>G mutation
was absent (detection level <1%). The mutation seeming to
have arisen de novo in their son, a low recurrence risk was esti-
mated and PND was offered for reassurance. The couple were
surprised because maternal inheritance of the m.8993T>G

mutation was assumed, based on the high mutation percentage
and severe disease in the affected child, and they were coun-
selled as having a high recurrence risk. Furthermore, they were
informed that PND was not an option because of limitations in
predicting the phenotype of the offspring and PGD was recom-
mended. The couple opted for PND. The mutation was not
detected in chorionic villus DNA and a healthy daughter was
born. The child has not been genetically tested post partum, but
is still doing well at the age of 11.

Case 2
Couple 2 was referred for PGD. Their daughter had a mito-
chondrial disorder due to oxidative phosphorylation defects
(strongly diminished complex I, III and IV activities). She was
shown to carry an m.5556G>A mutation in the MTTW gene,
with >90% heteroplasmy level in skeletal muscle. This mutation
had not been described before. Pathogenicity was based on the
disruption of the tertiary structure of mt-tRNATrp by the muta-
tion, and the compatibility of the mutation with the combined
deficiency of complexes I, III and IV, which was also demon-
strated in transmitochondrial cybrids.25 She died when she was
1.5 years old. Family history was negative. The mother’s blood,

Table 1 (Likely) Pathogenic mtDNA mutations identified in our diagnostic laboratory (Maastricht), presumably de novo in the index patients

Reference
Family
no. Gene Mutation

Mutation load(s) in tested tissue(s)
of index patient

Mutation load(s) in tested tissues
of (maternal) relative(s)

Index patient’s age at
investigation

De novo cases
1. – 16390 MTTL1 m.3243A>G 12% (Bl) Mother: n (Bl, U)

Daughter: 4% (U)
44

2. – 19462 MTTL1 m.3243A>G 8% (M, Bl) Mother: n (Bl, U) 3
3. This article

(case 5)
22023 MTTL1 m.3243A>G 13% (Bl), 12% (M), 17% (F), 16% (U),

14% (BM)
Mother: n (Bl, M, BM)
11 oocytes/embryos in PGD cycle:

2

4. This article
(case 2)

15503 MTTW m.5556G>A >90% (M) (not tested in our
laboratory)

n Mother: n (Bl, H, U, M)
Mother’s subsequent pregnancy:
n (amniocentesis)

0

5. This article
(case 3)

17063 MTATP6 m.8969G>A 95% (Bl, F, M) Mother: n (Bl, U)
Mother’s subsequent pregnancy:
n (amniocentesis)

0

6. This article
(case 1)

7387 MTATP6 m.8993T>G 90% (M) Mother: n (Bl, H, M)
Mother’s subsequent pregnancy:
n (CVS)

1

7. This article
(case 4)

19006 MTATP6 m.8993T>G 97% (Bl, M), 96% (F) Mother: n (Bl, U, H)
Mother’s subsequent pregnancy:
n (abortus material)
Mother’s second subsequent
pregnancy: n (CVS)

0

8. – 21838 MTATP6 m.8993T>G 92% (M), 90% (Bl) Mother: n (Bl, U) 1
9. – 14652 MTATP6 m.9155A>G 88% (M) Mother: n (Bl, M) 1
10. – 9868 MTND3 m.10191T>C 100% (Bl, M) Mother: n (Bl, M, H, U) 0
11. – 2869 MTTS2 m.12207G>A >60% (M), n (Bl) (with

semiquantitative sequence analysis)
Mother: n (Bl) (with semiquantitative
sequence analysis)

41

12. Blok et al49 6604 MTND5 m.13511A>T 65% (Bl), 53–65% (F), 72% (M) Mother: n (M, Bl, H) 3
13. Blok et al49 2339 MTND5 m.13513G>A 4–6% (Bl), 13–15% (M), 1–5% (F) Mother: n (Bl, F, H)

Two sisters: n (Bl)
Maternal grandmother: n (Bl, F)

19

14. Blok et al49 4707 MTND5 m.13513G>A 11–16% (Bl), 17% (H), 16% (M), n (F) Mother: n (Bl, H)
Maternal grandmother: n (Bl, H)

1

15. – 18686 MTND5 m.13513G>A 1% (Bl), 10% (M) Mother: n (Bl, M) 42
16. – 22006 MTCYB m.15153G>A Heteroplasmic (Bl, M) (with

semiquantitative sequence analysis)
Mother: n (Bl) (with semiquantitative
sequence analysis)

43

17. – 27171 MTCYB m.15158A>G Heteroplasmic (Bl, M) (with
semiquantitative sequence analysis)

Mother: n (Bl) (with semiquantitative
sequence analysis)

0

Mutations are listed according to nucleotide position.
Bl, blood; BM, buccal mucosa; CVS, chorionic villus sampling; F, fibroblasts; H, hair; M, muscle; n, normal (mutation not detected); PGD, preimplantation genetic diagnosis; U, urine.
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hair, urine and muscle did not show the m.5556G>A mutation
(detection level <1%), and accordingly, the mutation was con-
sidered de novo in their daughter, further supporting a patho-
genic role. The recurrence risk was regarded as low and PND
was offered. PGD seemed a less suitable option because of the
presumed low recurrence risk and the maternal age (38 years).
As in case 1, the couple was surprised since at the referring

centre PND was not considered an option because of uncer-
tainties about the representativeness of the prenatal sample for
the fetus, about the stability of the mutant load over time, and
about the clinical phenotype to be expected. Amniocentesis
revealed no mutation. A healthy daughter was born, who is
now 4 years old. No mutation analysis was performed post
partum.

Figure 1 Pedigrees of the five case descriptions in this report.
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Case 3
The son of couple 3 died at age 7.5 months carrying the
m.8969G>A mutation in the MTATP6 gene with 95% hetero-
plasmy in blood, fibroblasts and skeletal muscle. The
m.8969G>A mutation was not detected in the mother’s blood
and urine (detection level <1%). The couple opted for PND in
a subsequent pregnancy, and amniocentesis showed no muta-
tion. A healthy girl was born, now almost 4 years old. She has
not been tested for the mutation post partum.

Case 4
Couple 4 was referred to discuss their reproductive options
because their son had Leigh syndrome caused by an almost
homoplasmic m.8993T>G mutation in the MTATP6 gene,
demonstrated in his blood, fibroblasts and skeletal muscle. He
died when he was 5.5 months of age. In the mother’s blood,
urine and hair, the m.8993T>G mutation was not present
(detection level <1%). The mutation therefore appeared de

novo in their son, resulting in a low recurrence risk. The boy
also had neurofibromatosis type 1 (NF1) caused by a de novo
mutation c.2155dupA in the NF1 gene. Since recurrence risks
of both the m.8993T>G and the NF1 mutation were low, PND
was offered. The subsequent pregnancy ended in a spontaneous
miscarriage. The m.8993T>G mutation was not detected in the
abortus. Subsequently, a further spontaneous pregnancy was
achieved. CVS was performed and the m.8993T>G was not
detected in chorionic villi. A healthy daughter was born, who is
presently 2 years old. No mutation analysis was performed post
partum.

Case 5
Couple 5 was referred to us to discuss the possibility of PGD
because their son harboured the m.3243A>G MTTL1 mutation.
Mutation loads were 13%, 12%, 17%, 16% and 14% in his
blood, skeletal muscle, fibroblasts, urine and buccal mucosa
cells, respectively. The mutation was absent in the mother’s

Table 2 Presumably de novo mtDNA mutations for which prenatal diagnosis (PND) and/or preimplantation genetic diagnosis (PGD) has been
performed in a subsequent pregnancy (Maastricht+Newcastle+literature)

Reference Gene Mutation
Mutation load(s) in tested tissue
(s) of index patient Mutation load(s) in tested tissues of (maternal) relative(s)

1. This article (case 1) MTATP6 m.8993T>G 90% (M) Mother: n (Bl, H, M)
Mother’s subsequent pregnancy: n (CVS)

2. This article (case 2) MTTW m.5556G>A >90% (M) Mother: n (Bl, H, U, M)
Mother’s subsequent pregnancy: n (amniocentesis)

3. This article (case 3) MTATP6 m.8969G>A 95% (Bl, F, M) Mother: n (Bl, U)
Mother’s subsequent pregnancy: n (amniocentesis)

4. This article (case 4) MTATP6 m.8993T>G 97% (Bl, M), 96% (F) Mother: n (Bl, U, H)
Mother’s subsequent pregnancy: n (abortus material)
Mother’s second subsequent pregnancy: n (CVS)

5. This article (case 5) MTTL1 m.3243A>G 13% (Bl), 12% (M), 17% (F),
16% (U), 14% (BM)

Mother: n (Bl, M, BM)
11 oocytes/embryos in PGD cycle: n

6. Lebon et al37 MTND3 m.10158T>C 85% (M) Mother: n (Bl)
Mother’s subsequent pregnancy: n (CVS and amniocentesis)

7. Steffann et al38 MTATP6 m.8993T>G 90% (Bl) Mother: n (Bl)
Mother’s subsequent pregnancy: n (CVS and amniocentesis)
Mother’s second subsequent pregnancy: n (amniocentesis)

8. Shanske et al39 MTND5 m.13513G>A 89% (M), 80% (Bl) Mother: n (Bl, U)
Mother’s subsequent pregnancy: n (amniocentesis)
Postpartum analysis of this sister: n (cord blood, Bl)
Maternal aunt: n (Bl, U)
Maternal grandmother: n (Bl, U)

9. Marchington et al34 MTATP6 m.9176T>C 99% (in ‘all tissues examined’,
not further specified)

Mother: n (Bl, BM, U, 15 oocytes), 40% (2 oocytes together; could
not be dissected separately), ≤5% (1 oocyte)
Mother’s subsequent pregnancy: n (CVS)
Postpartum analysis of this sibling: n (16 samples of placenta,
cord blood)

10. Götz et al40 MTTS1 m.7453G>A 100% (M) Mother: n (Bl)
Mother’s subsequent pregnancy: n (CVS)

11. Shanske et al41 MTND3 m.10198C>T 100% (M, heart, liver, brain) Mother: n (Bl, U, H)
Mother’s subsequent pregnancy: n (CVS and amniocentesis, also:
prenatal fetal muscle biopsy)
Postpartum analysis of this sister: n (placenta portion,
cord blood, H)
Maternal grandmother: n (U)

12. Nesbitt et al,18 personal
communication

MTATP6 m.9176T>C 97% (Bl, M) Mother: n (Bl, U)
Mother’s subsequent pregnancy: 98% (CVS)
6 embryos in PGD cycle: n (no pregnancy achieved)
Mother’s second (spontaneous) subsequent pregnancy: 8% (CVS)

13. Nesbitt et al,18 personal
communication

MTND6 m.14453G>A 65% (M), 39% (F) Mother: n (M, Bl, U, BM)
Mother’s subsequent pregnancy: n (CVS)

14. Unpublished data from
Newcastle

MTND5 m.13513G>A 81% (M) Mother: n (Bl)
Mother’s subsequent pregnancy: n (CVS)

Bl, blood; BM, buccal mucosa; CVS, chorionic villus sampling; F, fibroblasts; H, hair; M, muscle; n, normal (mutation not detected); U, urine.
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blood, muscle and buccal mucosa (detection level <1%); the
mutation was also absent in the maternal grandmother’s blood,
urine and buccal mucosa, consistent with a de novo mutation in
the index patient and a low recurrence risk of
m.3243A>G-related disease. It was doubtful, however, whether
the boy’s severe, infantile-onset, clinical presentation with hypo-
tonia, feeding problems, psychomotor retardation and intract-
able epilepsy could be explained by the relatively low mutation
load of the m.3243A>G mutation, and just prior to his death at
age 3, compound heterozygosity for the POLG mutations
c.2740A>C, p.(Thr914Pro) and c.2243G>C, p.(Trp748Ser)
was diagnosed, which was consistent with his clinical features of
Alpers’ syndrome. Both parents were carriers (father
c.2740A>C, p.(Thr914Pro) and mother c.2243G>C,
p.(Trp748Ser)), resulting in a recurrence risk of 25% for the
recessive POLG mutations. The couple preferred PGD to PND.
Despite the presumed low recurrence risk for the m.3243A>G
mutation, they also requested analysis of the embryos for the
m.3243A>G mutation. It was agreed that of the embryos one
blastomere was tested for POLG and one blastomere for
m.3243A>G. Since testing for the m.3243A>G mutation was
performed as reassurance, analysis of one blastomere seemed
reasonable, although two blastomeres are usually analysed.14 In
none of the 11 embryos and oocytes the m.3243A>G mutation
was detected. One embryo, heterozygous for one of the POLG
mutations, was transferred and resulted in a successful preg-
nancy. The couple did not opt for PND to confirm the PGD
result. A healthy son was born. Postpartum DNA analysis was
performed in cord blood and confirmed the blastomere geno-
type and absence of the m.3243A>G mutation.

In the literature, together with one unpublished case from
Newcastle, we identified a further 11 prenatal diagnoses, per-
formed in 9 pregnant mothers of a previously identified case of
de novo mtDNA disease. These are listed in table 2, together
with our own five cases. All but one case (case 12) showed
normal prenatal results. One of the mothers (also case 12) add-
itionally underwent one PGD treatment.

DISCUSSION
Irrespective of the mechanism leading to mtDNA disease in a
child, parents may desire to prevent disease in a subsequent
child. The reproductive options available to such couples largely
depend on the genetic aetiology. Based on data provided from
our own clinical experience and from cases published in the lit-
erature, we conclude that mtDNA mutations arise de novo in a
significant number of cases and that the recurrence risk for
apparently de novo mtDNA mutations is low.

A common approach to determine whether an mtDNA muta-
tion occurred de novo is by testing multiple tissues from the
mother for the heteroplasmic mtDNA variant. It is, however,
remarkable that often only the mother’s blood is analysed even
when the mutation was not tested or detected in the affected
child’s blood (see online supplementary table S2). It is well
known, at least for certain mtDNA mutations,26–28 that mutant
load in blood, a rapidly dividing tissue, can decrease over time
due to negative selection. This clearly has implications for the
reliability of maternal blood in evaluating de novo occurrence
of an mtDNA mutation. Therefore, preferably muscle (a postmi-
totic tissue) should be included in the maternal analysis, which
has however the drawback of an invasive procedure. Notably,
needle muscle biopsy sampling nowadays offers a less invasive,
more rapid alternative to conventional open muscle biopsies,
yielding a sufficient muscle amount for DNA analysis. Urine epi-
thelium has been shown to be a reliable non-invasive alternative

for the m.3243A>G mutation.29 This may also be true for
other pathogenic mtDNA point mutations,30 although urine
mutant load has not been compared with muscle levels for
these. Evaluation of tissue distribution is also critical in light of
potential selection events in the germline. Negative selection has
been suggested for pathogenic tRNA mutations with low blood
mutant levels (pointing to detrimental effects in replicating
cells), which are less likely to be transmitted and as a conse-
quence occur more often in isolated cases.31 Similarly, negative
germline selection has been proposed for deleterious heteroplas-
mic mtDNA mutations and for de novo mutations in a recent
study of healthy humans.32 These findings implicate that muta-
tions that are absent or (very) low level in the index patient’s
blood may be more likely to have indeed occurred de novo.
This cannot, however, be assumed for individual mutations
without careful analysis of the mother. Furthermore, conversely,
potential positive selection events in the germline whereby high
mutation loads in offspring could result from low maternal
levels cannot be excluded and again stress the importance of
thorough maternal investigation. In addition to analysis of
maternal tissues, testing apparently healthy siblings of the
affected child can contribute to the likelihood that a mutation
occurred de novo. The method used to assess mtDNA hetero-
plasmy is of critical importance. Fluorescent last-cycle restric-
tion fragment length polymorphism (RFLP) analysis has a
detection level of <1%, whereas Sanger sequencing has a sensi-
tivity of between 5% and 30% to detect different heteroplasmic
mutations (unpublished laboratory findings). Even using last-
fluorescent RFLP analysis, the absence of a mutation in the
mother is obviously not definitive as a mutation load below the
detection threshold for the assay in the mother cannot be
excluded, neither can the presence of the mutation in her
untested tissues, particularly oocytes.

Proportion of mtDNA point mutations arising de novo in
patients with mtDNA disease
Based on the absence of the mtDNA mutation in (mostly mul-
tiple) maternal tissue(s), 24.6% of the putative pathogenic
mtDNA point mutations in our cohort were de novo, a signifi-
cant subset of cases. which is in agreement with available data
from other centres (see online supplementary table S2).1 Since
paediatric patients seem over-represented in the de novo sub-
group, whereas the majority of the entire cohort are adult
patients, the proportion of de novo mutations is likely higher in
the paediatric patient population and lower in adults.

De novo mtDNA point mutations manifesting below the
threshold required for phenotypic expression are clearly not
included in this number. It is, however, important to realise that
de novo mutations in asymptomatic individuals could poten-
tially segregate to high levels and thus cause mtDNA diseases in
subsequent generations. This mechanism is also illustrated by
our cases (grey-coloured cases in online supplementary tables S1
and S2) where a mutation did not occur de novo in the index
patient, but in the healthy mother (or another maternal relative).
Such carriers with low mtDNA mutation loads themselves will
only be identified if they have a clinically affected child.

Recurrence risk of de novo mtDNA mutation or disease
The recurrence risk of a de novo mtDNA mutation depends on
the moment at which the mutation arose. A germline de novo
mutation event, which reaches clinical significance, most likely
occurs at the lowest point of the bottleneck during oogenesis,
when the mtDNA copy number is lowest. The same de novo
event is not expected to happen twice and the recurrence risk is
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therefore negligible. Mutations may also be pre-existent in
(some) maternal oocytes, representing gonadal mosaicism and
resulting in a potential recurrence risk. Oocyte sampling has
been used to further estimate the recurrence risks of mtDNA
mutations,33 34 although the invasive nature of this procedure
may pose ethical questions if no assisted fertility treatment is
intended. Also, it is still not guaranteed that the analysed
oocytes are representative of the entire oocyte pool. Finally, a de
novo mutation may represent a de novo somatic mutation (being
by definition not present in the mother) rather than a de novo
germline mutation. In the latter scenario, there is no risk of
recurrence. Somatic mutations may be present in only one tissue
(eg, skeletal muscle); however, also when detected in several
tissues, even of different embryonic origin (such as muscle and
urinary epithelial cells,35 or muscle and hair roots,36 respect-
ively), the mtDNA mutation can be somatic, having occurred
very early in embryological development. Taken together, it is
nigh impossible to distinguish whether an mtDNA mutation
occurred de novo somatically or in the germline (and if so, at
what point in the germline) in single-disease cases. In practice,
all three scenarios should be considered in cases of apparently
de novo mtDNA mutations and as such are taken together in
empirically established recurrence risks as discussed below.

Our PND/PGD data of subsequent pregnancies obtained from
five mothers of patients with de novo mtDNA disease indicate a
very low recurrence risk for de novo mtDNA mutations. These
results are supported by (un)published data in which PND in
subsequent pregnancies following affected children with an
apparently de novo mtDNA mutation were reported in nine
mothers (table 218 34 37–41). In eight of these, the mtDNA muta-
tion was not detected in the prenatal sample(s). The absence of
the mtDNA mutation in 97 siblings of individuals with a pre-
sumed de novo mtDNA mutation further adds to the low recur-
rence risk of these mutations (table 1 and online supplementary
table S2). However, in most asymptomatic siblings of an index
patient (a low) mtDNA mutation load could not be excluded as
they were not tested for the mutation on ethical grounds.
Recurrence risk is increased in the case of gonadal mosaicism,
which was shown for one of the de novo cases in the literature
(case 9, table 2/case 58, online supplementary table S234). The
single case where the mutation was present in subsequent preg-
nancies of the mother (case 12, table 2/case 59, online
supplementary table S218) without being detectable in her blood
or urine is presumably also an example of gonadal mosaicism.
The maternal mutation analysis was repeated using deep NGS
analysis, but even with this the mtDNA mutation could not be
detected in the mother. It is the only case known so far where
three offspring have the same mtDNA mutation that is not
detectable in the mother. The pattern of distribution of muta-
tion load in this mother’s offspring with very high levels in
some (her affected child and one of the prenatal samples), but
no mutation in the majority (six embryos), is quite similar to an
m.8993T>G carrier with low mutant load we previously
described (case 44, online supplementary table S114).
Interestingly, the two cases of (presumed) maternal gonadal
mosaicism in table 2 concern the same mtDNA mutation,
m.9176T>C.18 34

The total number of prenatal/preimplantation samples
described in this paper is 50, including multiple pregnancies per
female (cases 7 and 12, table 2) multiple oocytes and/or
embryos per female (cases 5, 9 and 12, table 2) and analysed
abortus material (case 4, table 2). In four of these samples, the
mtDNA mutation present in the index patient was detected,
indicating a recurrence risk of 8% (4/50). Larger numbers of

(normal) prenatal diagnoses are presently not available to
include in our analysis. However, we do have results in siblings
that can be added. Also, 100 siblings of 57 individuals with an
apparently de novo mtDNA mutation based on absence of the
mutation in the mother (note: families where the mother of
such an individual was not analysed, cases 79 and 80 in online
supplementary table S2, were not included in this calculation)
were tested, both from our own centre and from the literature.
In one of these, the mtDNA mutation might be present at low
levels in a clinically unaffected sibling (case 108, online
supplementary table S236), although recurrence is debatable
here since the sibling’s mutation load is at the limit of detection.
Besides, in the mother only blood was tested, which is also the
case in a second recurrence example (case 97, online
supplementary table S242). In a third case, the mutation was
present (3% mutant load) in the sibling’s urine, whereas it was
absent in the mother’s blood and urine (case 122, online
supplementary table S243). Considering both the prenatal/preim-
plantation data (n=50) and the sibling data (n=100), a recur-
rence risk of approximately 4% is calculated (5–7/150) in this
data set. It is likely that this percentage further decreases when
all healthy siblings that were not tested could be included.

Few other reports from family studies potentially describe
recurrence, but the data are not unambiguous. These include a
case where the similarly affected sibling was not tested for the
mtDNA mutation and pathogenicity of the mutation has not
been proven (case 93, online supplementary table S244); and
two cases where relatives with neurological symptoms were not
extensively or not at all tested for the mtDNA mutation,
whereby it remained unclear whether these symptoms are
related to the familial mtDNA mutation or represent a separate
disease (cases 50 and 79, online supplementary table S245 46).
Presence of the m.14484T>C mutation in an unaffected sibling,
when no mutation was detectable in the mother, was reported
in a monozygotic twin (case 136, online supplementary
table S247), consistent with no recurrence.

Even if all the cases discussed (with the exception of the
monozygotic twin) would actually represent recurrence despite
absence of the mutation in the mother, 8 examples in 154 cases
(17 from our own centre, 137 from literature) would still
support our hypothesis of a low recurrence risk, considering the
likely bias that exceptional cases may be more easily reported.
Furthermore, it is important to note that in none of the (poten-
tial) recurrence cases (including the proven gonadal mosaicism
one) postmitotic tissue such as muscle was analysed in the
mother. None of these involved the m.3243A>G mutation.

Reproductive counselling strategy for mtDNA disease
When a couple with a child affected by mtDNA disease seeks
counselling regarding the likelihood of having subsequent
unaffected offspring, an individual risk assessment should be
performed, leading to personalised advice (figure 2). The first
step is to ascertain the genetic cause of the disease. As is illu-
strated by case 5, finding a pathogenic mtDNA mutation does
not always provide an unequivocal answer and the mtDNA het-
eroplasmy level and clinical phenotype should be consistent
with previous reports of affected individuals. If a causative
mtDNA mutation is identified, the next step is to evaluate
whether the mutation occurred de novo or was maternally
inherited. It is necessary to examine multiple tissues in the
mother preferably including a postmitotic tissue such as muscle
if possible (needle–biopsy suffices) and being mindful of the
tissues anticipated to harbour the mutation at detectable levels.
For the m.3243A>G mutation, urine can be considered a
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reliable alternative for muscle, but for other mutations this cor-
relation has not been validated. A quantitative method with low
detection level (<1–2%), such as fluorescent RFLP, pyrosequen-
cing or NGS, should be used. Testing of unaffected siblings of
the affected child should be considered but may be deemed
unacceptable on ethical grounds. As it will be impossible to fully
exclude a mutation in the mother, partly due to technical
reasons and the availability of tissues or oocytes (note: oocyte
sampling might be considered), couples should be aware of a
small residual risk. Based on our current calculation, this risk
may be ∼4%, although the actual risk is likely to be lower. If a
couple wishes reproductive genetic testing, PND is the preferred
option given the high likelihood that the mutation will not be
present in the fetus. PND is also a fair option for carriers with
low mutation load (eg, <10%) of familial mutations, particu-
larly for an mtDNA mutation that manifests skewed segregation,
and for single, large-scale mtDNA deletions, the latter both for
healthy mothers of an affected child and for affected women
themselves. Although amniocentesis seems to be the preferred
method for some mtDNA mutations,48 one can discuss the rele-
vance of this in situations where no mutation is to be expected
at all. CVS, on the other hand, has the advantage that results
can be obtained earlier in the pregnancy. In most familial
mtDNA mutations, with a high or unpredictable recurrence risk
in offspring, and given the potential difficulties of interpreting
PND results, PGD is currently the best reproductive option.14

Decisions on reproductive options naturally also depend on per-
sonal considerations of the individual couple; providing all the
available options and information is the key to being able to
make a well-informed decision.
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